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Abstract: Due to the high complexity of detailed sector-coupling models, a perfect foresight opti-
mization approach reaches complexity levels that either requires a reduction of covered time-steps or
very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used.
This paper examines the influence of the foresight horizon on local energy systems using the model
DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy
system with a connection to the superior electricity grid level. It is shown that with the advantage
of a significantly reduced run-time, a limited foresight yields fairly similar results when the input
parameters show a stable development. With unexpected, shock-like events, limited foresight shows
more realistic results since it cannot foresee the sudden parameter changes. In general, the limited
foresight approach tends to invest into generation technologies with low variable cost and avoids
investing into demand reduction or efficiency with high upfront costs as it cannot compute the
benefits over the time span necessary for full cost recovery. These aspects should be considered when
choosing the foresight horizon.

Keywords: optimization; energy system model; myopic; perfect foresight

1. Introduction

Energy system optimization models are widely used tools to investigate questions
concerning the energy sector, its potential developments, effects of new technologies,
or price developments to name a few. With increasing efforts to transform the energy
systems in order to face and mitigate climate change, planning horizons, solution space and
exchange rate of technologies increase in many energy-system models. Additionally, the
power sector has a high complexity due to its network-based transmission and distribution.
On the one hand, modeling always requires certain computational resources. On the other
hand, researchers as well as energy system planners work with simplifications and idealized
approaches. This boils down to a delicate balance between reducing the complexity and
hence ensure solvability as well as a reasonable run-time with the available technical
resources and the amount of detail required to actually generate a proper evaluation and
assessment of energy system questions. Model runs often reach computational limits so
that system planners reach out to solutions like reducing the number of covered time-steps,
aggregating the number of considered nodes to solve energy system problems within a
reasonable run-time. Future carbon-neutral energy systems are not only characterised
by high shares of renewable energy, but also by an increasing coupling of energy sectors.
When adding sector coupling to the problem the scope is not only doubled but could
lead to an exponential increase of the variables within the mathematical problem. This
requires different approaches that lead to a reduction of the model run-time according to
the available computational resources.

When considering energy system optimization models that forecast future periods and
investment decisions, such as [1–11] amongst others, two approaches can be found. Many

Energies 2021, 14, 495. https://doi.org/10.3390/en14020495 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-5116-2021
https://doi.org/10.3390/en14020495
https://doi.org/10.3390/en14020495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14020495
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/2/495?type=check_update&version=2


Energies 2021, 14, 495 2 of 22

models use a perfect foresight method over the whole optimization period [1,2], meaning
that all the given information and developments are known to the solver from the starting
point. Usually, several years are considered in such an analysis, and as a result the number
of time-steps per year is reduced sharply to be able to solve the mathematical problem in
reasonable time. The second approach is a myopic optimization, where the optimization
period is broken down into sub-periods that are optimized consecutively [1,12]. Each of the
approaches has its strengths and weaknesses. For example, in reality, no stakeholder has a
perfect foresight of the future, so the perfect foresight approach always renders the best
possible solution in an ideal world. However, the limited foresight in the myopic approach
neglects that stakeholders have a certain expectation of future developments when they
evaluate their investment decisions. Nonetheless, the myopic approach needs considerably
less computation time and can thus speed up the modeling phase.

Some undertaken evaluations showed that for power system models with consistent
optimization constraints, the results are similar with both approaches unless parameters in-
clude a “shock”, which in reality would be an unexpected development that denotes a stark
shift away from the past development. [13] However, past evaluations have mainly looked
at national energy system models and mostly the power sector. Therefore, the authors iden-
tified a knowledge gap in the local energy systems field as well as the sector coupling topic
and whether a myopic approach can be suitable in certain scenario settings. Hence, this
paper investigates under which criteria one can benefit from the myopic advantages like
shorter run times and under which settings perfect foresight should be preferred despite
its longer runtime. The analysis is conducted with the regional sector-coupling energy
system model DISTRICT presented in [14–17]. From this, a guideline that helps in choosing
the more appropriate approach is derived. The remainder of the paper is structured as
followed: Section 2 gives a brief overview of relevant literature and Section 3 gives an
overview on the model DISTRICT and the two expansion approaches. Section 4 describes
the analyzed system, necessary assumptions, and the scenario design. In Section 5, the
scenario results are compared for both expansion approaches, concluding with a discussion
on the applicability of each method. Section 6 summarizes the recommended applicability
of each method depending on the research question at hand.

2. Literature Review

As a vast amount of literature has been published looking into energy system models
at national as well as at distributed level, this literature review focuses on work especially
dedicated to the influence of the time horizon and time steps in optimization models.

Ref. [3] provides an review on existing models on local or district levels. It summarizes
the different advantages and disadavantes, mainly connected with data requirements,
physical robustness, accuracy, runtime, applicability, and specific use. Due to the results
in this paper, the cirmcumstances or research question highly interact with the chosen
model approach.

Ref. [1] tested perfect forecast optimization, time step approach and stochastic opti-
mization on different research questions. In the paper, the advantages of each approach
is quantitatively assessed. Shocks could be better analyzed with the time step approach,
whereas stoachstic optimizations shows advantages on different energy price scenarios.
Similar to this paper, [2] also highlights the aspects of flexibility and lost opportunities in
the case of a shock if modeled with a time step approach. In general, it is expected that
this approach represents a more realistic reaction of the system of a real world, unexpected
shock event.

Ref. [12] assess the effect of an alternative sequential decision approach instead of a
perfect foresight approach within the optimization model MESSAGE. The main difference
lies in the limited foresight of the sequantial approach, where the optimizer only has
knowledge of some of the future information. However, unlike the standard myopic
approach, this solution provides the possibility to alter some of the decisions at a later stage.
This is not applicable for decisions like investment decisions. This approach was tested
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on three differnet scenarios and one variant. The results show that the limited foresight
approach represents reality more accurately. Decision makers base a lot of their choices on
the needs of the present and do not consider many of the future changes. Since the present
relies heavily on fossile fuels for example, investments in fossile technolgies can be made
which disregard climate constraints of the future.

The effects of limited foresight on technology adoption is the focus of [18]. One of
the results show that minimizing the cost of each time period can result in a non optimal
solution in total. The study also shows that with a limited foresight approach and long
decision periods early adoption of new technologies is more likely. However when reaching
a certain length, the influence gets minimized and becomes less visible. The authors find
that “the range of technological bifurcation is much larger than that with perfect foresight,
but uncertainty in technological learning tends to reduce the range by removing the early
adoption paths of a new technology” [18].

Ref. [19] develops a moypic version of the perfect forecast model Perseus. It splits the
optimization into multiple and individually smaller optimization problems to improve the
computing time of the model. With a stable input parameter set, the new myopic model is
sloved in only 10% of original computing time of the perfect foresight model.

Ref. [20] studied the development of the European electricity sector under different
foresight and CO2 budget approaches with the model dynELMOD. The reduced foresight
leads to stranded investments compared to the perfect foresight approach. More gas-
powered plants are installed, shifting generation from coal to gas, but as CO2 emissions
decline, so do their full load hours. Additionally, they find that using a budget approach
for CO2 emissions, where an aggregated budget for the whole period is given to the model,
leads to a faster reduction of CO2 emissions than in those scenarios with periodical CO2
emission targets.

Ref. [21] examine the influence of the foresight horizon on decarbonization pathways
for the power system under different strategies. Those strategies include waiting for a
so-called “unicorn” technology to emerge that allows reaching carbon reduction goals
easily. When waiting in vain, the myopic approach leads to considerably higher greenhouse
gas emissions and installed capacities. Furthermore, even with the unicorn technology
emerging, the myopic approach shows high overcapacities compared to the perfect fore-
sight approach. The authors conclude that to reach the targets of reducing greenhouse gas
emissions, one should try to increase the foresight of parameter development in the real
world by establishing a corresponding political framework.

Ref. [13] explore decision making and investment strategies in a power sector model
for Belgium under a different foresight and a myopic approach. It is shown that the myopic
approach aims to maximize short-term profits. In the presented case, this equals investment
into coal fired plants without carbon capture storage in the first periods, when carbon
prices are low. These lead to higher carbon emissions and thus mitigating costs at the end
of optimization. The authors find that the myopic approach does not extrapolate visible
price trends and thus falls short to represent investments under uncertainties as in reality
the trend of certain parameters can be extrapolated beyond the current period of interest.
They also argue the perfect foresight approach to be unrealistic as a representation for
investment decisions, as a sudden jump in prices cannot be foreseen by all investors.

Compared to the existing literature, the paper analyzes the advantages of the myopic
and perfect forecast optimization for a regional sector-coupling energy system model.
Furthermore, it discusses which approach might be more suitable for certain scenario
settings or research includes aspects such as price shocks or demand reduction technologies
with high investment cost. In the discussion section, a comparison with existing literature
is undertaken.

3. Methodological Approach

The present methodological comparison is undertaken for the regional energy system
model DISTRICT. DISTRICT is an optimization model that targets costs minimization.
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3.1. General Modeling Approach

The model covers the electricity, heat, and cold sectors for a regional energy system.
The model takes into account renewable generation technologies (such as photovoltaic,
solar thermal, and wind energy), storage technologies, sector-coupling technologies (such
as combined heat and power plants and heat pumps), and demand-side management at
prosumer level. The regional system is subdivided into model areas to consider electricity,
heat, and cold grid infrastructure between the model areas. Model areas can be scaled from
single buildings up to districts by adjusting the input data. Retrofit and its accompanying
reduction in heat demand are also included (technically, it would also be possible to
consider refurbishment for districts, but the model formulation would require all buildings
aggregated to one model area to be refurbished to the same energy efficiency standard;
so far, it has only been applied to single buildings) and are optimized endogenously,
considering the tradeoffs between retrofit, available technologies, and corresponding costs.
Within each model area, energy can be generated, consumed directly, stored, and/or fed
into the grid. Remaining energy demand can be covered by withdrawing energy from
the grid if a grid connection exists. For the electricity sector, the regional energy system is
embedded in the national electricity market and disposes of a connection to the superior
grid. This provides the opportunity to assess potential trades at the central energy markets,
marked by load flows in and out of the superior grid.

DISTRICT’s objective function minimizes the total system (TC) cost. This includes
the total variable cost (VC), total fixed (FC), and investment cost, which is included in the
model based on an annuity calculation (AN) CO2 Emission Cost and a cost variable for the
buying and selling electricity and heat respectively across the system boarder.

Total Cost = Variable Cost + Fix Cost + Annuities + Trade Sum electricity + Trade Sum Heat + CO2 Emission Cost (1)

As this paper focuses on comparing expansion methods, these are presented in the
following sections. For the detailed formulation of the remaining model aspects, cf. [14–17].
The model includes the possibility to switch between the perfect foresight and myopic
expansion approaches for the optimization, giving the user the opportunity to select the
most appropriate approach for their current research question.

3.2. Perfect Foresight Expansion

The perfect foresight approach is used in many energy-system models to find an
optimal system development. Under perfect foresight, the model has all information about
the whole optimization period at once [1,18]. Thus, the optimization is capable of adjusting
decisions of the present according to future developments [1,19].

Figure 1 illustrates the perfect foresight approach within an energy system model in
general. The model receives a certain set of input data that covers the whole optimization
period. Depending on the case, additionally, a start system is given as a basis. The opti-
mization is executed over the whole period at once, using all input data for all time-steps
considered. As a result, the objective value and the corresponding system values are
determined over the whole optimization period. The model thus is able to account for
future price developments in the first time-steps already, adjusting the variables to derive
the optimal target value [1].

3.3. Myopic Expansion

The myopic approach divides the optimization period into several shorter periods,
generating several optimization problems [12]. These sub-problems are smaller and thus
easier to solve than very large optimization problems. Within the myopic approach, there
are two types: One where the sub-problems are aligned and one where the sub-problems
overlap each other in the covered time period allowing decisions to be partially revised
in the following optimization period [12]. For the model DISTRICT, the first approach is
implemented and illustrated in Figure 2. In contrast to the perfect foresight approach, the
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myopic recursive approach only has information about the current optimization period.
Thus, it has a limited foresight of parameter developments and can only make decisions
based on the information for the sub-period that it currently optimizes [1]. In consequence,
future developments of parameters cannot be foreseen, preventing the optimization in
earlier periods to adjust its values to future developments such as price increases.

Figure 1. Illustration of the perfect foresight approach.

Figure 2. Illustration of the myopic recursive approach, where the optimization problem is divided
into several smaller optimization problems that are optimized consecutively without information
about future periods.

In the literature, various terms exist for the myopic approach, among others, time-
step [1] or recursive-dynamic approach [22]. These notations can lead to different inter-
pretations of the method. For example, all energy system models have a time horizon
that is separated into different time-steps, which is not related to the chosen expansion
approach. Furthermore, the myopic approach does not use a real recursion by definition,
rather it splits the complexity of the problem and solves the sub-problems sequentially [1],
as shown in Figure 2.

Generally, the myopic approach also disposes of a perfect foresight within each
optimization period, having all the information for this particular sub-period. Hence, the
concept of a perfect foresight is also partially used in the myopic approach. Due to this,
the term “perfect foresight” can lead to confusion. Nevertheless, in the literature, it is
the dominant term for the aforementioned expansion approach and will thus be used
accordingly in the publication at hand.

4. Case Study Design

The analyzed system represents part of the Weingarten district in Freiburg im Breisgau,
Germany. It consists of six regions, each representing one building.

4.1. System Layout

The buildings consist of five apartment buildings and one row housing block (ID 4).
The latter includes eight apartments with three to four inhabitants each (Table 1). The five
apartment buildings (ID 1, 2, 3, 5, and 6) include 30 to 120 apartments per building. On
average, there are two persons per apartment. The KfW (Kreditanstalt für Wiederaufbau)
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standards describe the energy reduction from 100%, being the current standard, to 85% or
55%, respectively.

Table 1. Overview and key data of buildings included in the case study (check Appendix A Figure A1 for more details).

Building Living Area [m2] Current Energy
Demand [MWhth/a]

KfW 100
[MWhth/a]

KfW 85
[MWhth/a]

KfW 55
[MWhth/a]

Energy Demand for
Hot Water [MWhth/a]

1 2220.4 283.8 94.7 72.5 30.2 64.2

2 1871.0 229.3 69.2 54.7 16.3 60.5

3 7929.6 658.4 229.1 162.5 34.6 235.7

4 856.8 111.1 41.8 32.4 14.9 20.5

5 2435.1 232.0 72.9 48.3 12.3 96.4

6 2106.7 198.6 56.3 40.8 7.8 79.8

The corresponding electricity grid is derived from the existing grid installed in the
area; see Figure 3. It represents a low voltage grid and a transformer, which is located
in the node connected to the superior grid level, where transactions with the electricity
spot market are accounted for. The transformer capacity is fixed based on the analyzed
buildings’ demand to 340 kW. Each grid connection has a capacity of 166 kW. Unlike the
electrical grid, the district heating grid, (Figure 3, right), is assumed. The node in the west
(left) of the system, which, is called “central region” for the heating system and represents
the transformer, connecting the electrical grid to the superior grid, in the electrical system.
At this central location, large-capacity technologies such as central CHP plants or central
storage systems can be installed to feed into the corresponding grid.

Figure 3. Model region including electricity grid, demand regions, and spot market connection area
(left) and heating grid, demand regions, and central region (right).

Each building has an individual heating and electrical demand. The heating demand
temperature is dependent on the building standard. In the case of a refurbished building,
the required space heating is in low temperature. In contrast, a non-refurbished ‘old’
building has high-temperature heating demand.

These demands can be covered either by existing technologies installed in the build-
ings or by newly deployed technologies. It is assumed that in four of the six buildings,
gas boilers are installed. In buildings 1 and 4, the boilers will be decommissioned in 2029
and a new installation is required in 2030. In buildings 5 and 6, the gas boilers will be
decommissioned earlier and require a replacement technology in 2025. This set up forces
the system to install new capacities throughout the optimization period and, therefore,
helps to analyze and evaluate system and technology effects over time caused by different
circumstances.
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4.2. Potential Generation Technologies

There are similar technology potentials in each model region and hence each building.
The exact potentials are determined as follows: For non-retrofitted buildings, potentials
are set to 110% of the current peak demand, i.e., they exceed peak demand by 10%. This
applies to CHP, heat pumps, and boilers. As heat pumps cannot provide high-temperature
heat, their potential is limited to 110% of the peak demand of the KfW 100 standard.

PV and solar thermal potentials are limited to 80% of the roof areas of each building
since 20% are reserved for other uses. DISTRICT also considers that areas used for PV
cannot be used for solar thermal installations, i.e., if 50% of the roof are used for PV
installations, only the remaining 30% is available for the installation of solar thermal panels.
The heating demand of each building has a specific temperature level (high, low, or hot
water) and the chosen mix of supply technologies must be able to meet the demand at all
corresponding levels. Table 2 displays the considered generation technologies and their
corresponding energy type and temperature levels.

Table 2. Energy generation technologies and provided energy type and temperature levels.

Energy Generation Technologies High Temperature Heat Low Temperature Heat Hot Water Electricity

Gas Boiler X X X -
Wood Pellets Boiler X X X -

Power-to-Heat X X X -
Solar Flat Collector X X X -

CHP Gas micro X X X X
CHP Gas mini X X X X
Heat Pump Air - X X -

Low Temperature Oil Boiler - X X -
Photovoltaics - - - X

As seen in the table, there are some technologies like a heat pump or a low-temperature
oil boiler that can only provide heat at low temperatures or hot water level. For cases
like these, a secondary technology can be used to heat up the output to a higher tempera-
ture level.

4.3. Time-Step Selection

There are two main assumptions necessary when it comes to the choice of time-steps in
an optimization. Firstly, the length of each individual time-step has to be defined. Bottom-
up energy models have a techno-economic focus and, hence, a relatively detailed time
division is necessary to keep the logic of the model as realistic as possible. Furthermore, the
time-step length must be sufficient to allow an appropriate simulation of the operation of
technologies. Nevertheless, the disaggregation of the time horizon into shorter time-steps
increases the run time of the optimization. Consequently, the time-step length is defined as
one hour. This setting allows a relatively detailed modeling of reality and is a level that can
still be optimized within a reasonable run time.

The second parameter is the total amount of time-steps considered in the optimization.
On one hand, small number of time-steps can lead to a distorted result, which is not
representative of the entire optimization period. On the other hand, a large number of
time-steps can increase the run times enormously.

To minimize this distortion factor for the calculation, all time-steps are considered
once in the entire optimization time horizon, however, not for every year in order to keep
the optimization problem to a solvable size. The year is divided into four equal sections
and a time rolling horizon is used for the complete optimization period. Figure 4 illustrates
the selected sections for each of the expansion years. As can be seen, in the first year, the
blue sections of time-steps are used, in the second year, the light grey section, and so on.
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Figure 4. Time-step selection for the optimization years (2020, 2025, 2030, and 2035).

Every section includes 2190 time-steps and is used for one year of the optimization.
The optimization has a time horizon of 15 years in which both expansion methods optimize.
The model optimizes every fifth year including 2020, 2025, 2030, and 2035. As a result, a
total number of 8760 time-steps are considered in the optimization.

The myopic expansion approach optimizes every year separately (2190 per period/year).
Therefore, the method runs the optimization four times and only considers the information
of the particular year. Furthermore, both expansion approaches can decide whether to
install new capacities at the beginning of every year.

4.4. Discounting of Cost

For the perfect foresight approach, costs are discounted to account for inflation. In
DISTRICT, costs are discounted within the model with an assumed discount factor. For the
perfect foresight approach, the considered time steps are assigned to the corresponding
optimization years in use. This allows discounting the future cost. For the myopic approach,
an endogenous discounting does not influence the model decisions since each year is
optimized separately and the same discount factor applies to all costs within one year.
However, to make the results comparable, for this research, the costs are discounted within
the optimization with the same factor as in the perfect foresight approach. For the present
paper, a discount factor of 2% is assumed.

4.5. Energy Prices

Three primary energy types including oil, gas, and wood pellets are considered. All
costs are based on the year 2015, the gas price being 6.8 ct/kWh [23]. In addition, taxes and
grid fees (3 ct/kWh) are subtracted [24]. The subtraction is done because neither taxes nor
grid fees are included in the electricity price. The resulting 3.8 ct/kWh are multiplied with
1.1 in order to get the costs of the facilities primary energy usage according to the calorific
value [25]. Therefore, the primary costs for gas are 4.2 ct/kWh.

The cost of oil (8.0 ct/kWh) is derived from the Bundesminesterium für Wirtschaft
und Energie (BMWi) [23]. The costs are set higher than stated in the report due to the
massive price drop in recent years which leads to the expectation of prices rising again in
the next years. Hence, to avoid biased results due to a temporary fall in prices, the oil costs
are set to a higher level. The price for wood pellets is set at 4.7 ct/kWh and equals the price
for a 5 tons delivery in Germany [26]. To map the future price increase, these prices for the
primary energies are multiplied with a factor for every year to retrieve the corresponding
prices for the optimization years, given in Table 3.

Another energy type that is considered in the optimization is electricity. In contrast
to the considered fossil fuels, the electricity price varies for each time-step and represents
the price per kWh at the spot market. The main characteristics of used spot market price
projection can be found in the Appendix A in Table 3. The electricity procured at the spot
market and imported into the system is accompanied by the corresponding CO2 emissions
derived from the power plants in use. Except for one scenario (VAR_CO2), this emission
factor is constant for each year to limit the run-time.
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Table 3. Emission factors and primary Energy Prices for each optimization year.

Primary
Energy

Emission
Factor [g/kWh]

Price in 2020
[€/kWh]

Price in 2025
[€/kWh]

Price in 2030
[€/kWh]

Price in 2035
[€/kWh]

Oil 267.8 0.084 0.088 0.092 0.097
Gas 198.5 0.049 0.057 0.066 0.076

Wood pellets 10.4 0.049 0.051 0.054 0.057

4.6. Scenario Design

The scenario selection is based on variations that represent a variety of different cases;
see Table 4. The main goal is to show how different factors impact the outcome of both
expansion methods. To achieve this, the scenarios vary in the technologies available for
expansion and the manner in which CO2 emissions are considered; compare Table 4. The
CO2 emission cost and average spot market price for the imported electricity are shown in
Table 3 in the Appendix A.

Table 4. Scenario selection and main assumptions.

Options TECH VAR_CO2 EEX_SHOCK RETRO

Tech expansion x x x x

Elec grid expansion x x x

Refurbishment x

spot market CO2 emission Constant Variable Constant Constant

4.6.1. Technology Scenario

First, a technology expansion (TECH) scenario is defined. This case allows an evalua-
tion of the influence of technology expansion, i.e., investment cost and an almost continuous
increase in outer boundary conditions like the spot market price and CO2 emission costs.
The TECH scenario has very basic expansion opportunities. It is capable of installing
new generation and storage technologies within the buildings or in the central region. In
addition, investments in grid expansion are possible. A moderate increase in the electricity
price, as well as CO2 emission cost, is assumed; see Table 3. In this case, a constant CO2
emission encumbrance in the electricity mix is defined. This means that imported electricity
is charged with a constant CO2 emission value for each time-step.

4.6.2. Variable CO2 Emission Scenario

The VAR_CO2 scenario is an extended scenario of the TECH scenario that additionally
considers a variable CO2 emission encumbrance within the subordinate electricity mix,
which is supplied to the district via the spot market. Since the CO2 emissions are charged
with a penalty based on the CO2 price, the objective of the system would be to avoid
emissions as much as possible and hence the effect on the technology deployment and
operation. This allows a more detailed evaluation of the operation and the differences in
the expansion approaches since all other scenarios have a constant emission value. The
developments of the emissions are illustrated in Figure 5. Both assumptions reflect the
current emission reductions of the German power plant fleet, because of the increasing
share of renewable energy and other decarbonization measures [27].

The electricity price development, as well as the expansion options, are however the
same as in the TECH scenario.

4.6.3. EEX Price Shock Scenario

Since one of the main differences between the two expansion approaches is the dura-
tion of the foresight given to the solver, a scenario with a sudden increase in a price signal
is included. In the EEX_SHOCK scenario, a peak in the electricity price is embedded in
the second expansion year (2025), which is then reduced back to the reference value in the
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third expansion year (2030) (see Figure 6) i.e., the EEX_SHOCK scenario increases the price,
just for a short period of time, to a level that would normally occur in later periods.

Figure 5. Average CO2 emission factor in the electricity mix.

Figure 6. Average day-ahead spot market price for TECH and EEX_SHOCK scenarios.

The remaining parameters are left unchanged to the TECH scenario. This procedure
makes it possible to analyze how the expansion approaches react to an extreme temporary
change that deviates highly from the rather linear increase rate in the TECH scenario. An-
other aspect which is integrated into the scenario of the EEX_SHOCK is the non-negativity
of the electricity prices as of the year 2025. Since 2008, negative day-ahead prices are al-
lowed in the Spot Market. This price constellation usually occurs if the share of renewable
energy generation is high and other energy plants are not reducing their production, due to
inflexibility [28]. The price shocks permit these negative prices and, hence, the system is not
able to make a profit from buying electricity. The cost development curves are presented in
Figure 6.

4.6.4. High Initial Investment Scenario

The last scenario RETRO is chosen to represent a case with a high initial investment
choice at the beginning of the optimization. Due to the methodology of the modeling
approach of refurbishment in DISTRICT, the investment decision of building refurbishment
can only take place in the first expansion year (2020). There are three retrofit levels
implemented in the system: KfW100, KfW85, and KfW55. With the implementation of
each level, the heat demand will change to low temperature, and the total heat demand
decreases. The amount by which the heat demand is reduced with each building standard
is illustrated in Figure 7. The figure states the cumulated heat demand of the whole
system if each building has the same retrofit standard. The corresponding costs of the
retrofit measures for each building are listed in the Appendix A (Table A2). Since building
refurbishment represents a very large investment, the different expansion approaches could
potentially lead to different results in the refurbishment decision.



Energies 2021, 14, 495 11 of 22

Figure 7. Annual heat demand for the regarded system, assuming the entire building stock has the
same building standard.

Like in the TECH scenario, the RETRO scenario has a moderate increase in the spot
market price development over the optimization period. However, the RETRO scenario
considers in one case a higher rise in the CO2 prices over time, and a moderate one in a
second case.

5. Results

In this chapter, the scenario results are presented and discussed. The first section
presents the results of each scenario which is then followed by a general discussion of
the results.

5.1. Technology Scenario

The TECH scenario, with the possibility to invest into generation technologies as
well as grid capacity, shows that the objective values of the two expansion methods are
almost identical. However, the grid expansion decisions of the perfect foresight and myopic
approach differ.

Both of the expansion approaches only invest in grid capacities in the first optimization
year (2020), but the myopic approach installs more connection and transformer capacities
than the perfect foresight approach. The difference between the investment decisions
for new grid capacities is given in Table 5. Here, and in the remainder of the paper,
all differences are defined as value = [(result perfect foresight—result myopic)/(result
perfect foresight)]

Table 5. Comparison of expanded grid capacities in the first optimization year of the TECH scenario.

Scenario Grid Component Perfect Foresight [kW] Myopic [kW] Difference to Myopic

TECH

Transmission Line 540 820 −51.9%

Transformer 290 448 −54.5%

Generation capacities 1471 1634 −101.1%

The different grid and generation capacity decisions also affect the resulting cost
structure. The additional capacities of the myopic approach lead to an increase in the
investment and fixed costs in comparison to the perfect foresight approach as seen in
Table 6.

Moreover, the spot market costs are also higher in the myopic approach. In the myopic
approach more investments in power-to-heat technologies are undertaken than in the
perfect foresight approach; see Table 4. This leads to a higher electricity demand, increasing
the amount of electricity procured at the spot market. In the long run, however, the different
technology mix leads to lower variable costs. Hence, the variable and fuel costs are higher
in the perfect foresight approach, because of the need to compensate for the missing heating
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energy from power to heat with alternative technologies such as gas boilers. Overall, the
higher fixed and investment cost outweigh the lower variable cost so that regarding the
total cost; both approaches reach the same level. However, the development of the results
differs over time between the approaches; compare Figure 8. Although the objective values
converge in the target year, based on differing investment decisions there is a significant
difference between the development of investment and spot market cost. It can be seen
that the difference decreases over time due to the aforementioned investment decisions.

Table 6. Comparison of objective value and costs of the TECH scenario.

Cost Perfect Foresight [Euro] Myopic [Euro] Difference to Myopic

TECH

Objective value 185,217.15 185,432.67 −0.12%
Investment cost 21,559.50 22,138.20 −2.68%

Fix cost 13,637.70 14,021.10 −2.81%
Variable cost 59,920.10 56,463.60 5.77%

Spot market cost 65,389.70 67,165.30 −2.72%
Emission Cost 25,154.67 25,660.00 −2.01%

Figure 8. Cost difference between the two approaches over the optimization period.

5.2. Variable CO2 Scenario

In the CO2_VAR scenario, the objective values of both approaches do not differ
considerably. The main difference is found in the investment cost; see Table 7. In the
perfect foresight approach, 30% less connection and transmission capacities are deployed
in comparison to the myopic approach. A similar trend is observed in the generation
capacities. The myopic approach deploys around 10% more generation technologies. These
two decisions lead to the higher investment cost in the myopic approach. Due to the
additional deployed technologies and especially the grid expansion, the fix costs are also
respectively higher in the myopic approach.

Table 7. Comparison of objective value and costs of the CO2_VAR scenario.

Cost Perfect Foresight [Euro] Myopic [Euro] Difference to Myopic

CO2_VAR

Objective value 180,651.1 181,512.8 −0.5%
Investment cost 18,868.0 22,260.3 −18.0%

Fix cost 12,361.9 13,945.2 −12.8%
Variable cost 56,628.6 55,132.2 2.6%

Spot market cost 70,875.8 68,415.2 3.5%
Emission Cost 5431.33 5952.32 9.6%

Another difference that can be observed is the time of deployment. In the perfect
foresight approach, wood pellet boilers are installed earlier than the myopic approach,
whereas PV deployment takes place at the last expansion year; compare Table 4. The
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resulting installed capacities at the end of the optimization is, however, the same in both
approaches; see Table 4. Another difference in the presented scenario is a deployment
of battery storage systems in the myopic approach. The investment decision is based
on the opportunity of importing electricity at low prices and low emission costs. This
however is only valid in the early years, and in the later periods, this benefit is reduced
significantly. Hence, in the perfect foresight approach, this investment is not worthwhile
based on the knowledge of the upcoming years. Thus, the system knows that charging
costs will increase considerably. Since the information of increased electricity prices and
higher emission costs are not known to the myopic approach, the battery storage systems
are considered a useful investment.

5.3. EEX Price Shock Scenario

The objective values are almost identical in each case, as in the previous scenarios.
The values are presented in Table 8.

Table 8. Comparison of objective value and costs of the EEX_SHOCK scenario.

Cost Perfect Foresight [Euro] Myopic [Euro] Difference to Myopic

EEX_SHOCK

Objective value 192,889.60 193,510.10 −0.3%
Invest cost 21,016.10 26,532.40 −26.2%

Fix cost 13,599.80 14,105.40 −3.7%
Variable cost 65,474.20 61,729.00 5.7%

Spot market cost 68,281.30 64,825.90 5.1%
Emission Cost 6356.00 6583.08 3.6%

However, the grid expansion decisions of the perfect foresight and myopic approach
differ. In both expansion approaches, investments into grid infrastructure are undertaken in
the first optimization year (2020) only, but the myopic approach installs higher connection
and transformer capacities than the perfect foresight approach; compare Table 9.

Table 9. Comparison of newly installed grid components and generation capacities of the EEX_SHOCK scenario.

Scenario Grid Component Perfect Foresight [kW] Myopic [kW] Difference to Myopic

EEX_SHOCK
Transmission Line 490 820 −67.3%

Transformer 254 448 −76.4%
Generation capacities 1482 1715 −15.7%

The table shows that the difference between the expansion approaches is higher than
67% for connection and transformer capacities, respectively. The additional grid capacities
allow the myopic approach to using a higher amount of power-to-heat, which increases
the electricity demand and thus the amount of electricity sourced at the spot market since
there is no local electricity generation in the first year; see Figure 9. In the last optimization
year, the difference in the installed capacities reaches 16%.

Another difference in the installed technologies is the time of the PV deployment. In
the myopic approach, the PV deployment takes place in the second expansion year (2025),
wherein the perfect foresight the deployment takes place in the following expansion year
(2030). This is due to the fact that in the perfect foresight approach, the development of
spot market prices as well as the decrease in PV investment cost are known, whereas the
myopic approach does not have this information and hence starts installing PV as soon as
it becomes profitable compared to procuring electricity at the spot market. The opposite
effect can be observed in the wood pellet boiler deployment. In this case, the boilers are
deployed to a higher extent in early stages in the perfect foresight approach. The reasons
are the upcoming increase in the CO2 and electricity prices in the following years.
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Figure 9. Installed generation capacities in the EEX_SHOCK scenario.

The total additional capacities of the myopic approach lead to higher investment and
fixed costs in comparison to the perfect foresight approach. In addition, the variable and
fuel costs are higher for the perfect foresight approach, as the missing heating energy from
power to heat has to be compensated with alternative technologies such as gas boilers with
their corresponding fuel and variable costs. The trade costs in the EEX_SHOCK scenario
are lower in the myopic approach, due to the previously mentioned earlier installation of
PV power plants and the resulting reduction of imported electricity from the spot market.

However, the increased and earlier PV installations of the myopic approach do not
lead to noticeably lower CO2 emissions. The increased power-to-heat technologies require
a large amount of electricity, which is imported from the spot market and therefore charged
with CO2 emissions. This additional electricity demand and thus import nearly outweighs
the reduction in emission achieved by higher PV capacities. Effectively, the CO2 emissions
are lower in the myopic scenario, but as considerably as one could have expected when
looking at the installed PV capacities.

5.4. High Initial Investment Scenario

Building retrofit requires a high upfront investment, which only becomes beneficial
in the long run. The profitability is obtained by reducing the heat demand, which leads
to corresponding savings by reduced operating costs and cheaper reinvestments when a
technology needs to be replaced.

The results show that the objective values of the expansion approaches are almost
identical for both cases. However, with the perfect foresight approach, a noticeable differ-
ence in the investment and variable costs is observed; see Table 10. This is due to the retrofit
investment decisions. Compared to the myopic approach, the model opts to refurbish one
additional building in the perfect foresight approach.

Table 10. Objective and cost values of the RETRO cases.

Cost Perfect Foresight [Euro] Myopic [Euro] Difference to Myopic

RETRO

Objective value 176,046.36 176,512.71 −0.26%
Invest Cost 75,819.38 67,947.28 10.38%

Fix Cost 13,324.42 13,831.63 −3.81%
Variable Cost 15,442.78 20,983.26 −35.88%

Spot market Cost 54,415.46 55,641.64 −2.25%
Emission Cost 17,044.33 18,108.89 −6.25%
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Figure 10 illustrates the difference between the retrofit decisions of the perfect foresight
and myopic approach. This leads to a reduced heat demand in the perfect foresight
approach, which is accompanied by higher invest, but considerably lower variable costs.

Figure 10. Left picture displays retrofit decisions of the perfect foresight and the right picture of the
myopic approach.

This leads to a difference in the heat demands of the expansion approaches, whereby
the decrease over the optimization period in the perfect foresight approach is 28%, which
corresponds to 159 MWh. The additional retrofit also has an impact on the cost structures
of the expansion approaches. On the one hand, the retrofit leads to a high increase in
investment costs for the perfect foresight approach. On the other hand, operational costs,
including fuel and emission costs, are significantly lower in comparison to the myopic
approach. Figure 11 shows the heat generation for the two approaches, which confirms
the fact that in total, the perfect foresight approach achieves lower operation and emission
costs due to the reduction in heat demand and hence in necessary heat generation.

Figure 11. Heat generation in the RETRO scenario for the two expansion approaches.
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The RETRO scenario shows an increased amount of installed generation capacities for
the myopic approach. Moreover, the difference is even more crucial in cost developments
with an extra retrofit of building five. This is caused by the decrease of needed heat demand
and, therefore, less need for generation capacities for heating. The myopic method installs
2.2% more generation capacities, which are shown in Figure 11, with the reference CO2
price increase and 6.1% more when a high CO2 price increase is considered. The major
effect of the additional retrofit investment decision is the decreasing CO2 emissions of the
energy system. This amount is reduced by 35 tons due to the lower heat demand for the
perfect foresight approach. This amounts to 6.4% lower emissions in this case.

The cost development over time (Figure 12) shows that the driver for the difference
of the objective value is the investment decision in the first year. Although the relative
difference is fairly small with 0.1%, it is obvious that with such costly investment decisions,
these become the driver for the future development. It can also be seen that the mitigation
of rising CO2 emissions in the myopic scenario by increasing emission costs as well as nec-
essary investments into generation technologies outweigh the savings from not retrofitting
in the beginning.

Figure 12. Cost difference between the two approaches over the optimization period for the RETRO scenario with high
CO2 prices.

5.5. Discussion

Figure 13 summarizes the relative difference between the cost elements of the objective
value and the latter itself for all scenarios. The paper cannot completely confirm the
preference of conventional generation technologies in the myopic approach found by [3],
but there is a preference for a postponement of investments, especially pronounced in the
RETRO scenario. As many of the considered technologies can be regarded as advanced
technologies with high investment cost, this is in line with the findings of [18]. A previous
study [18] showed that “the shorter the foresight, the later the adoption of an advanced,
but currently expensive, technology“. One explanation for this effect may well be the
maximization of short term profits by the myopic approach, which is also observed by [13].

The most significant differences between costs can be observed for those scenarios
with either a shock-like development or when high investment options to avoid CO2
emissions are combined with more strongly increasing CO2 costs so that avoiding CO2
emissions becomes a necessity. This is either achieved by a higher retrofit rate, as in the
perfect foresight approach or by mitigating the effects of higher CO2 emissions in later
years as in the myopic approach. Without considerable price increases for CO2 emission
certificates, the costs are neither sufficient to justify building refurbishment nor do they
impose a need to mitigate increasing CO2 emissions by any means.



Energies 2021, 14, 495 17 of 22

Figure 13. The relative difference between the results of the myopic and the perfect foresight
approach in each scenario, the difference is displayed as value = [result perfect foresight − result
myopic]/result perfect foresight.

For enforced restrictions, e.g., limits to GHG emissions, [1] proposes an investigation
with a combined application of both approaches, as he finds that “the resulting costs of lost
opportunities can be of the same order of magnitude as the mitigation costs themselves”.
This seems also fitting for scenarios that include retrofit, as it has very high upfront
costs combined with a large potential to save GHG emissions. The presented scenarios
with DISTRICT include CO2-prices rather than limits to GHG emissions so that the cost
of mitigating the additional emissions in the myopic scenario add up to a comparable
objective value rather than choosing retrofit in the beginning, supporting the findings
from [1]. Nevertheless, it also shows that investment options with high upfront costs
need longer planning horizons, making them less attractive than other options, which is
arguably one of the main reasons retrofit is not realized at the desired pace. Including
retrofit endogenously is also one of the main differences to national energy system models,
where these decisions are usually external factors and less detailed.

As can be seen in Figure 14, the optimization runs with the perfect foresight approach
take significantly longer than the myopic approach. As optimization complexity and the
thereby resulting run-times are often an issue among researchers, it can be concluded
that the myopic approach reduces complexity and thus run-time significantly, as was
the case in [19]. This then allows researchers to assess more complex options within the
model that might not even be solvable with the perfect foresight approach or may require
run-times that exceed several weeks. Depending on the conditions in the researchers work
environment, the latter might not only not be desired, but also impossible to wait for.

In conclusion, the myopic approach prefers to invest into generation technologies with
low variable costs, as they are cheaper in the short-term. Investment into more efficient,
but expensive technologies would require a rise in external prices or carbon emission costs.
This takes place in later years, but the model cannot see this when making first investment
decisions. Accordingly, the myopic approach shows less investment into demand reduction
technologies (retrofit) as investment is very high and the positive effects become relevant
in later optimization years. This creates lock-in effects in later optimization years, so
that with stable parameters and options for retrofit, the myopic approach shows higher
emission costs. These effects allow the total costs converge, leading to more or less the same
objective values. This has to be considered while interpreting the results. Using DISTRICT
with the myopic expansion approach allows for the generation of consistent results with
a considerably shorter run-time under the condition that input parameters are stable,
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similar to the results of [1,19] for their corresponding models. Shock-like events, suddenly
enforced restrictions, or options with very high upfront investment costs like building
retrofit, however, generate very different results. Thus, it cannot be assumed that the
myopic approach is valid when analyzing refurbishment rates or similar costly investments
that lead to considerable reductions in GHG emissions. If the researcher wants to find the
optimal mix between refurbishment and renewable energy generation, the perfect foresight
approach is still recommended. If due to other restrictions the myopic approach has to be
used, the result should be analyzed regarding the cost spend on CO2 emission certificates
and then compared to the alternative of retrofitting additional buildings. Otherwise, the
result might not depict the complete picture.

Figure 14. Duration of the optimization runs for the complete time horizon in hours.

Knowing in which direction the myopic approach shifts the results (towards higher
investment and fix costs and lower variable costs for generation technologies and less
invest into demand reduction, while reaching fairly similar total cost), enables researchers
to benefit from the shorter run-times while maintaining reasonable results. Taking into
account that the end systems are quite similar for the two approaches, the myopic approach
is considered a good fit when optimizing energy systems with a very high endogenous
complexity. For the DISTRICT model, especially the different temperature levels and
expansion options for retrofit, heat and electricity grid increase the complexity enormously.
Reducing the run-times with the myopic approach allows increasing the technological, as
well as time and spatial resolution (e.g., including more buildings). The appropriateness of
the myopic approach for certain scenario frameworks is in line with the findings of [1,12,19].

6. Conclusions

In this paper, the impact of applying a myopic and perfect foresight approach to the
regional energy system optimization model DISTRICT is analyzed.

The analysis at hand shows that for regional scenario layouts with stable input param-
eters, both approaches lead to a very similar result with marginal differences. In scenario
settings with shock-like events, the results in the year with the shock differ considerably. If
researchers desire to analyze the shock as an unforeseen event, only the myopic approach
can enable this. In scenario settings that include technology options with very high up-
front costs such as building refurbishment, the refurbishment decisions differ, leading to
different energy systems in the target year. However, the savings from realizing that less
refurbishments are needed to mitigate additional CO2-emissions in later years so that the
total cost is comparable at the end of the optimization period. This indicates that in order
to investigate the optimal system layout including very costly, long-term investments, the
myopic approach is not a perfect fit.

Generally, with the perfect foresight approach there is a tendency towards higher
investment and fix costs compared to the myopic optimization. This is due to the fact that
technologies with lower operating costs are preferred by the myopic approach, leading to
higher import and mitigating costs in later years, so that over the whole optimization period,
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both approaches reach similar objective values. Bearing this in mind when interpreting
results, the myopic approach allows reducing run-times by more than 90%. This allows
the inclusion of more time-steps, technologies, or model areas compared to the perfect
foresight approach, allowing a higher level of detail. Especially in local energy systems,
this means one could include larger areas when modeling at building level, including more
technologies and sectors, such as cooling grids, Power to X, or electro mobility, without
risking the model to reach an infeasible problem-size. Additionally, this means more
scenarios can be run and analyzed at the same time. In future work, these technologies
can be further analyzed with the interaction on the modeling approach such as perfect
foresight or myopic optimization as well as with stochastic approaches. It can be also
tested if one approach is more suitable on reaching climate targets when considering the
diverse stakeholders at the local level. Different stakeholders have different objectives
and knowledge levels, which might correspond better with one approach or the other.
This may indicate if specific technologies or transformation pathways have to be adapted
or intensified.
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Appendix A

Figure A1. EnEV standards according to [29].

The Kreditanstalt für Wiederaufbau (KfW) standards are compared to the standards
from the German energy efficiency law (EnEV) standard. The main criterion is the reduction
in demand. KfW100 is equivalent to the current EnEV standards, where KfW85 requires a
reduction of 15% reaching a total demand of 85% of the EnEv standard. KfW55 requires a
45% reduction, respectively.

Table A1. Costs of the generation technologies [30].

Energy Generation Technologies Invest Costs
[€/kW]

Fix Costs
[€/kW_a]

Variable Costs
[€/kWh]

Low temperature boiler 350 7.8 0.0004
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Table A1. Cont.

Energy Generation Technologies Invest Costs
[€/kW]

Fix Costs
[€/kW_a]

Variable Costs
[€/kWh]

Gas boiler 175 4.38 -

CHP Gas micro 1700 17 -

CHP Gas mini 2070 41.4 -

Wood Pellets 788 8.3 0.0004

Power to Heat 50 1.5 -

Heatpump air 1195 29.88 -

Solar Flat Collector 595 8.93 -

Photovoltaics 975 (year 2020) 30 -

Table A2. Refurbishment cost for the different building standards.

Building/Region KfW100
[€]

KfW85
[€]

KfW55
[€]

1 192,861 216,608 428,017

2 168,816 189,204 376,390

3 421,376 472,083 1147,776

4 106,934 118,643 198,153

5 188,767 219,934 456,350

6 144,043 167,778 373,552

Table 3. CO2 emission cost and average spot market prices for the calculated scenarios.

2020 2025 2030 2035

CO2 emission cost Euro/t

TECH 10 25 50 85

VAR_CO2 10 25 50 85

EEX_SHOCK 10 25 50 85

RETRO 10 25 85 125

Average annual spot market price in
Euroct/kWh

TECH 3.7 4.91 5.9 7.89

VAR_CO2 3.7 4.91 5.9 7.89

EEX_SHOCK 3.7 7.37 5.9 7.89

RETRO 3.7 4.91 5.9 7.89

Table 4. Installed generation capacities in all scenarios.

TECH

2020 2025 2030 2035

Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic

Gas boiler 752 752 467 484 243 260 258 263
Heat pump air 86 83 96 97 127 140 127 140

Oil boiler 0 1 13 1 18 1 18 1
Power to heat 245 254 259 267 264 275 264 275

PV 0 0 0 0 217 239 239 239
Thermal storage 2 4 8 6 12 11 21 16

Wood pellets boiler 0 0 0 0 19 13 39 48
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Table 4. Cont.

EEX_Shock

2020 2025 2030 2035

Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic

Gas boiler 858 779 656 710 456 533 456 533
Heat pump air 52 60 53 60 59 64 59 64
Power-to-Heat 481 659 481 659 482 659 482 659

Wood pellets boiler 36 8 246 220
PV 239 221 239 239 239

CO2_VAR

2020 2025 2030 2035

Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic

Gas boiler 831 777 597 630 397 479 605 627
Heat pump air 55 60 59 62 64 64 64 65
Power-to-Heat 544 656 544 656 545 656 559 656

Wood pellets boiler 55 2 223 200
PV 208 239 239

RETRO

2020 2025 2030 2035

Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic Perfect foresight Myopic

Gas boiler 752 752 467 484 240 256 242 266
Heat pump air 84 87 97 97 131 140 131 140

Oil boiler 0 0 0 0 0 0 0 0
Power to heat 248 254 262 274 265 274 265 274

PV 0 0 0 0 218 239 239 239
Thermal storage 1 4 4 6 7 10 17 15

Wood pellets boiler 0 0 0 0 22 14 41 46
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