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Abstract: Shared mobility based on cars refers to a transportation mode in which travelers/drivers
share vehicles to reduce the cost of the journey, emissions, air pollution and parking demands.
Cost savings provide a strong incentive for the shared mobility mode. As cost savings are due to
cooperation of the stakeholders in shared mobility systems, they should be properly divided and
allocated to relevant participants. Improper allocation of cost savings will lead to dissatisfaction
of drivers/passengers and hinder acceptance of the shared mobility mode. In practice, several
schemes based on proportional methods to allocate cost savings have been proposed in shared
mobility systems. However, there is neither a guideline for selecting these proportional methods nor
a comparative study on effectiveness of these proportional methods. Although shared mobility has
attracted much attention in the research community, there is still a lack of study of the influence of
cost saving allocation schemes on performance of shared mobility systems. Motivated by deficiencies
of existing studies, this paper aims to compare three proportional cost savings allocation schemes by
analyzing their performance in terms of the numbers of acceptable rides under different schemes. We
focus on ridesharing based on cars in this study. The main contribution is to develop theory based
on our analysis to characterize the performance under different schemes to provide a guideline for
selecting these proportional methods. The theory developed is verified by conducting experiments
based on real geographical data.

Keywords: shared mobility; cost; ridesharing; allocation

1. Introduction

Energy consumption and the associated impact on the environment due to urbaniza-
tion and growth of population are two challenges directly linking to sustainability of cities
that have attracted researchers’ attention for decades. According to [1], the transportation
sector accounts for a large proportion of global energy consumption and greenhouse gas
(GHG) emissions. Fuel combustion in the transportation sector accounts for 24% of direct
CO2 emissions, which has significant impact on the environment. How to effectively
minimize the impact on the environment by the transportation sector is critical to achieve
sustainability of cities. Sharing economy has attracted much attention of practitioners,
researchers, policy makers and individuals to improve efficiency and sustainability based
on sharing of assets [2]. The transportation sector contributes to a large part of energy
consumption and hence the study on green transportation and solutions has become an
important research subject for the sustainable development of sharing economy [3]. In
the past years, shared mobility emerges as a popular transportation mode that attracts
the attention of researchers as well as practitioners in the transportation sector [4]. Shared
mobility refers to a transportation mode in which travelers/drivers share vehicles to re-
duce the cost of the journey, energy consumption, emissions, air pollution and parking
demands. It takes different forms in the world, including ridesharing, carpooling and bike
sharing [5,6]. In this paper, we consider ridesharing systems based on cars. Shared mobility
services enable users to access transportation services conveniently on an as-needed basis.
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Thus, shared mobility services provide a flexible transportation option besides public
transport. In addition to the advantage due to flexibility in terms of routing and timing,
users of shared mobility services also can enjoy the benefits of cost savings due to the
shared use of vehicles.

Cost savings provide a strong incentive for the shared mobility mode. Therefore,
optimization of performance metrics relevant to cost savings in shared mobility systems
has been extensively studied in the literature [7–9]. As the primary incentive for users to
share a ride is cost savings, the way to allocate cost savings is an important factor to the
adoption of ridesharing by the users. Allocation of a portion of cost savings to the service
providers is also important for maintaining operation of ridesharing information systems.
As cost savings are due to cooperation of the stakeholders in shared mobility systems based
on cars, they should be properly divided and allocated to relevant participants. In the
literature, several schemes to allocate costs/cost savings among players in a coalition of
transportation systems have been studied in [10]. Due to computational complexity and
the need for agile problem solvers [8], proportional methods have been adopted in practice
to allocate costs/cost savings. For ridesharing systems, several schemes to allocate cost
savings have been proposed based on proportional methods, e.g., [11–13]. However, there
is no guideline to select the correct and proper scheme for allocation of cost savings due
to the lack of a comparative study on these proportional schemes. Improper allocation of
cost savings will discourage users and hinder acceptance of the shared mobility model.
This is due to the lack of consideration of the satisfaction factor of drivers and passengers.
For example, suppose all cost savings are allocated to the passengers. The drivers will
not accept share rides with passengers. Therefore, how to allocate cost savings properly is
an important issue. Although proportional methods have been proposed and studied in
different problem domains [10], analysis of effectiveness of the three proportional allocation
methods for ridesharing has not been carried out. Although shared mobility has attracted
much attention in the research community, there is still a lack of study on the influence of
cost savings allocation schemes on the performance of shared mobility systems. Motivated
by deficiencies of existing studies on these issues, this paper aims to develop a framework
to compare the three different cost savings allocation schemes proposed in [11–13] based
on proportional methods and compare their performance in terms of the numbers of
acceptable rides under different schemes. The contributions of this paper are three-fold.
First, we develop theory to compare the performance of the three different cost savings
allocation schemes. Second, we provide a guideline with rules for selecting a proper
cost savings allocation scheme from the three cost savings allocation schemes for shared
mobility systems. Third, policy makers may apply the guideline to increase the number
of acceptable shared rides to enhance sustainability and service providers may apply the
guideline to increase the number of acceptable shared rides and profits.

The decision support systems for shared mobility systems with cars typically include
two stages—stage 1: determination of shared rides and stage 2: allocation of cost sav-
ings [13]. For the drivers and passengers, they must make decisions about whether they
accept the recommended rides for ridesharing. In this paper, we assume that the drivers
and passengers determine whether to accept shared rides based on the minimal expected
rewarding rate. A ride recommended by the decision support systems for shared mobility
systems with cars accepted by the driver and the passenger is called an acceptable ride.
The stakeholders include drivers, passengers and the shared mobility service/information
provider. Schemes to allocate cost savings to the stakeholders in shared mobility systems
are defined based on these stakeholders. To achieve the goals of this paper, there are four
tasks to complete: (1) identification of shared mobility decision model and definition of
schemes to allocate cost savings to participants, (2) introduction of the concept of minimal
expected rewarding rate of drivers and passengers and development of theory based on
analysis of the influence of different cost savings allocation schemes on the number of
acceptable shared rides, (3) verification of the developed theory by test cases and (4) a
guideline for selecting the proper proportional scheme to allocate cost savings.
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The structure of the remainder of this paper follows. In Section 2, we briefly review
existing studies on shared mobility systems with cars. In Section 3, a shared mobility
decision model and the three proportional schemes, including Fifty-Fifty Scheme, Local
Proportional Scheme and Global Proportional Scheme, to allocate cost savings to the
stakeholders in shared mobility systems are defined. We compare the Fifty-Fifty Scheme
and Local Proportional Scheme in Section 4, compare the Local Proportional Scheme and
Global Proportional Scheme in Section 5 and compare the Global Proportional Scheme and
Fifty-Fifty Scheme in Section 6. We verify theoretical properties by examples in Section 7.
In Section 8, we provide a discussion based on the results obtained and, to allocate cost
savings, offer a guideline for selecting a proper proportional scheme from the three schemes
studied in this paper. Finally, we conclude this paper in Section 9.

2. Literature Review

The widespread adoption of mobile communication devices and ICT to provide
efficient access to transportation services has made shared mobility an important paradigm
for cities [14]. Shared mobility may take different forms, including sharing of vehicles
and sharing of rides [15]. The former allows cars, motorcycles, scooters, and bikes to
be shared and the latter enables ridesharing and on-demand ride services for passenger
rides. The benefits of shared mobility include significant reduction of total travel distance,
trip cost, carbon emissions and congestion [16,17]. The advantages of ridesharing lead to
several variants of transportation modes. Carpooling is an early variant of ridesharing in
which employees in companies are encouraged to travel with colleagues for commuting
to minimize the number of cars traveling to sites of the companies and travel cost of the
employees [18]. Vanpooling is another variant of ridesharing transportation mode. In
vanpooling, commuters drive to an intermediate location to take a van and ride together
to the destination [19]. Generally speaking, ridesharing reduces the travel cost for people
with similar itineraries and schedules by sharing vehicles [5]. In addition, ridesharing
models with mixed passengers, parcels [20] or goods [21] were proposed. Recent trends in
studies on ridesharing include social ridesharing, such as the one in presented in [22].

In this paper we focus on ridesharing systems with cars. Although shared mobility
promises to achieve sustainability of cities, reduce energy consumption and provide an
alternative way to meet passengers’ transportation need without owning a car, it relies on
the development of an efficient decision model and decision support tools to attain these
goals. Actually, shared mobility poses several challenging research issues [7,8,23]. In the
literature, optimization of shared mobility systems was discussed in [7,8]. The solution
algorithms can be classified into exact methods and heuristic/metaheuristic methods.
Exact methods are applied to find the optimal solutions for optimization of shared mobility
systems [24]. Exact methods, however, can only be applied to small problems due to
computational complexity. Therefore, many heuristic/metaheuristic methods have been
proposed to solve optimization problems of shared mobility systems. For example, the
genetic algorithm [25], tabu search [26], population-based metaheuristic algorithms [27],
the differential evolution algorithm [28] and hybridization of metaheuristics [29] have been
proposed to solve relevant optimization problems in shared mobility systems.

Beside optimization issues, efforts to realize shared mobility have developed. Mobility-
as-a-service (MaaS) aims to provide users access to shared mobility services through a
single friendly online interface from planning, booking to payment. Several cities have
already implemented or are in the process of implementing MaaS trials or pilot projects.
Although MaaS provides a potential alternative to private vehicle ownership, there are
barriers and risks for adoption of MaaS in cities [30] such as the lack of appeal to public
transport users and private vehicle users. Ridesharing is a potential transportation mode
to reduce the number of cars, but it is still not widely adopted. Studies in [31,32] point
out that savings of cost and time are the main incentives for ridesharing. For ridesharing
drivers and passengers, a proper scheme to allocate cost savings among participants is
important for adoption of ridesharing.



Energies 2021, 14, 6931 4 of 30

In the literature, the problem to allocate costs/cost savings among players in a coalition
of transportation systems has been studied in [10]. Shapley value [33], nucleolus [34] and
proportional methods [35] have been proposed in the literature to allocate costs/cost
savings in cooperative game theory. Shapley value [33] and nucleolus [34] suffer from
computational complexity problems [36,37]. Therefore, proportional methods [35] are often
adopted in practice. There are many studies on application of proportional methods in
different domains in the literature. For example, a pricing scheme is used in [38] is to
maximize the total profit through exchanging transportation requests among collaborative
carriers. In [39], proportional methods are used to allocate costs and emissions in a carrier’s
delivery network with multiple customers served by a single carrier. As transportation
cost of low-value forest fuels, including trees, tree bark, branches, stumps and wood chips,
accounts for a large part in logistic cost, several alternative ways applying proportional
methods to lower logistic cost of forest fuels transport have been studied in [40].

In the context of ridesharing systems, several cost allocation methods have been
developed. The problem to achieve fair cost allocation in ridesharing systems based on
the nucleolus method has been studied in [41]. In [42], the problem to allocate passen-
gers to drivers, charge passengers and create feasible schedules for drivers in a dynamic
ridesharing scenario is addressed. Due to computational complexity and the need for
agile algorithms in ridesharing systems, proportional methods have been widely used
in practice. For example, the ones proposed in [11–13] are based on proportional meth-
ods. In [11], the authors consider a ridesharing problem in which each driver shares a
ride with at most one rider. The cost allocation scheme proposed in [11] divides the cost
savings of sharing a ride equally between the two matched participants (the driver and
the rider) of the shared ride. Such cost allocation satisfies the property of Shapley value
in the cooperative game theory. In [12], the authors considered ridesharing systems in
which at most one pickup and delivery may take place during the trip and transfers are
not allowed. In [12], it is assumed that costs are proportional to vehicle-miles driven. The
cost savings allocated to the driver and the rider are proportionally to the lengths of their
original trips. The cost allocation schemes in [11,12] are proposed for ridesharing systems
in which each shared ride includes one driver and one rider. In [13], a ridesharing problem
which allows multiple passengers to be transported by a driver is considered. A cost
allocation scheme which divides the cost savings among three types of stakeholders in
a ridesharing system, including ridesharing information provider, drivers and riders, is
proposed. The cost savings allocation scheme proposed in [13] allocates a portion of the
overall cost savings to the ridesharing information provider and the remaining cost savings
to each ridesharing passenger and each driver, which is based on the weighting of their bid
price with respect to overall bid price of all ridesharing passengers’ and all drivers’ bids.
However, there still lacks a comparative study on whether the cost savings allocated by
these allocation schemes are acceptable for drivers and passengers. That is, the cost savings
allocation schemes will surely influence the number of acceptable shared rides for drivers
and passengers. An interesting but unexplored research issue is to compare the number of
acceptable rides that can be satisfied under the three proportional cost savings allocation
schemes proposed in [11–13].

This paper does not focus on optimization of the ridesharing matching problems to
minimize overall travel distance or maximize overall cost savings. In this paper, we will
study effectiveness of three cost savings allocation schemes in terms of the number of
acceptable shared rides that satisfy the minimal rewarding rate requirements of drivers and
passengers. In the literature, different ridesharing matching methods have been proposed.
To ensure fairness of comparison, the overall cost savings of a ridesharing system are
obtained by the same ridesharing matching method. The cost savings allocation policies to
be compared in this paper include those proposed in [11–13]. We compare the three cost
savings allocation schemes by theoretical analysis. The properties and theorems established
through analysis are verified by examples.
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3. Decision Model and Cost Savings Allocation Schemes for Shared Mobility Systems

The decision support systems for shared mobility systems typically include two decision
stages. A decision model for shared mobility systems is used in the first stage to find the
shared rides. In the second stage, the solution obtained from the decision model is then used
to divide the cost savings among the participants by applying different allocating schemes. To
focus on the comparison of different schemes for allocating cost savings, the decision model
in [13] based on maximization of cost savings will be used in this study. A list of notations
used in this study is summarized in Table 1 for reference.

Table 1. Notations of symbols, variables and parameters.

Variable Meaning

P total potential passengers
D total potential drivers
p the index of a passenger, where p ∈ {1, 2, 3, . . . , P}
d the index of a driver, where d ∈ {1, 2, 3, . . . , D}
k the index of a location, k ∈ {1, 2, . . . , P}
Jd total bids submitted by driver d ∈ {1, 2, . . . , D}
j the index of the j− th bid placed by a driver with j ∈ {1, 2, . . . , Jd}

BIDdj

BIDdj = (q1
dj1, q1

dj2, q1
dj3, . . . , q1

djP, q2
dj1, q2

dj2, q2
dj3, . . . , q2

djP, odj, cdj), the j− th bid of
driver d, where
q1

djk: number of seats allocated at passenger k’s pick-up location,

q2
djk: number of seats released at passenger k’s drop-off location,

odj: the cost when the driver travels alone,
cdj: the cost of the bid.

BIDp

BIDp = (s1
p1, s1

p2, s1
p3, . . . , s1

pP, s2
p1, s2

p2, s2
p3 . . . , s2

pP, fp): the bid submitted by
passenger p, where
s1

pk: number of seats requested for passenger k’s pick-up location,

s2
pk: number of seats released at passenger k’s drop-off location,

fp: the cost of passenger p without ridesharing.

xdj
a decision variable indicating whether the j− th bid of driver d is a winning bid
(xdj = 1) or not (xdj = 0)

yp
a binary decision variable indicating whether the bid of passenger p is a winning
bid (yp = 1) or not (yp = 0)

N the set of all players in a cooperative game, N = {1, . . . , N}
Ω the set Ω of all subsets of N
C a characteristic function: Ω→ to assign the cost to each coalition S in Ω
βn the share value for a player n ∈ N, where ∑

n∈N
βn = 1

α the share value for the information provider m
βP

p the share value for passenger p ∈ P
βD

d the share value for driver d ∈ D
Γdj the set of passengers in the ride corresponding to the j-th bid submitted by driver d

F(x, y)
overall cost savings,

F(x, y) =

(
P
∑

p=1
yp

(
fp

))
+

(
D
∑

d=1

Jd

∑
j=1

xdjodj

)
−
(

D
∑

d=1

Jd

∑
j=1

xdjcdj

)

Fdj(x, y)
the cost savings of the j-th bid submitted by driver d,

Fdj(x, y) =

[(
∑

p∈Γdj

yp fp

)
+ xdjodj −

(
xdjcdj

)]

3.1. Decision Model

The decision support system for ridesharing makes decisions within a time period.
Requests of drivers and passengers arriving before the start of the decision time period will
be considered by the ridesharing decision support system. The decision support system
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follows the framework in [13] and the decision period is divided into two stages—stage 1:
determination of shared rides and stage 2: allocation of cost savings. In the decision
model used in stage 1, drivers and passengers submit bids [13]. Bids are generated by
bid generation procedures to meet spatial, time and capacity requirements/constraints
of drivers and passengers. The bid generation procedure for passengers generates bids
based on the origins, destinations, earliest departure time, latest arrival time and number
of seats requested by passengers. The bid generation procedure for drivers generates bids
based on the origins, destinations, earliest departure time, latest arrival time, the number
of seats for ridesharing and the maximum detour ratio specified by drivers. Therefore, the
decision model can handle spatial, time and capacity requirements in ridesharing systems.
In addition, the decision model is flexible and has been extended in [22] to deal with trust
requirements in social ridesharing problems.

For the above decision model, suppose P passengers and D drivers submit bids to the
systems. The bid of passenger p is BIDp = (s1

p1, s1
p2, s1

p3, . . . , s1
pP, s2

p1, s2
p2, s2

p3 . . . , s2
pP, fp), where

s1
pk is the number of seats requested for passenger k’s pick-up location, s2

pk is the number of seats
released at passenger k’s drop-off location and fp is the cost of passenger p without ridesharing.
A driver may submit multiple bids, but only one bid can be accepted. A bid accepted by the
system is called a winning bid. BIDdj = (q1

dj1, q1
dj2, q1

dj3, . . . , q1
djP, q2

dj1, q2
dj2, q2

dj3, . . . , q2
djP, odj, cdj)

denotes the j− th bid of driver d, where q1
djk is the number of seats allocated at passenger k’s

pick-up location, q2
djk is the number of seats released at passenger k’s drop-off location, odj is the

cost when the driver travels alone and cdj is the cost of the bid. It is assumed that the bids of
passengers and drivers are generated by applying bid generation procedures developed in [13],
taking into account the timing, capacity and spatial constraints of drivers and passengers. The
bid generation procedures calculate the cost based on a function P f (d), where d is the travel
distance. The decision model in [13] can handle the bids regardless of whether the function
P f (d) used to calculate cost is linear or nonlinear.

The overall cost savings are the difference between the overall original cost (without
ridesharing) and the overall cost after ridesharing. Original cost of passengers (without rideshar-

ing) and original cost of drivers (without ridesharing) is

(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjodj

)
. Cost

of passengers and drivers with ridesharing is

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)
. The overall cost savings are the

difference between these two terms. That is, the overall cost savings are(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjodj

)
−
(

D
∑

d=1

Jd
∑

j=1
xdjcdj

)
.

The decision problem aims to determine the winning bids submitted by the potential
drivers and passengers to maximize the overall cost savings. Thus, the objective function
is defined in (1) as follows:

F(x, y) =

(
P

∑
p=1

yp fp

)
+

(
D

∑
d=1

Jd

∑
j=1

xdjodj

)
−
(

D

∑
d=1

Jd

∑
j=1

xdjcdj

)
(1)

The problem to determine the winning bids is formulated as an integer programming
problem subject to demand and supply constraints (2), (3), nonnegative cost savings
constraint (4) and single winning bid constraints for drivers (5) as follows:

max
x,y

F(x, y)

s.t.
D

∑
d=1

Jd

∑
j=1

xdjq1
djk = yps1

pk ∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (2)
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D

∑
d=1

Jd

∑
j=1

xdjq2
djk = yps2

pk ∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (3)

P

∑
p=1

yp fp +
D

∑
d=1

Jd

∑
j=1

xdjodj ≥
D

∑
d=1

Jd

∑
j=1

xdjcdj (4)

Jd

∑
j=1

xdj ≤ 1 ∀d ∈ {1, . . . , D} (5)

xdj ∈ {0, 1} ∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd}
yp ∈ {0, 1} ∀p ∈ {1, 2, . . . , P}

Due to computational complexity, only small instances of the above problem can
be solved by applying exact algorithm due to exponential growth of solution space with
respect to the problem size. In the literature, the problem to optimize cost savings in
ridesharing systems has been extensively studied. Many approximate approaches can be
applied to solve this problem, including evolutionary computation algorithms, bio-inspired
evolutionary algorithms and metaheuristic approach. Therefore, many algorithms have
been proposed to solve this problem, e.g., [13,28]. A comparison of these approaches
appears in the literature [13]. The comparative study provides a guideline for selection
of a solution methodology for solving the above cost savings optimization problem. As
this paper focuses on comparison of cost allocation schemes, it is assumed that a solution
algorithm is used to solve the cost savings optimization problem in the shared mobility
model to ensure fairness in comparison of different cost allocation schemes. In this paper,
the algorithm proposed in [13] is applied to determine the winning bids.

3.2. Three Cost Savings Allocation Schemes Based on Proportional Methods

Cost savings in ridesharing systems are due to collaboration of the participants in
shared rides. Ridesharing can be considered as a type of collaborative transportation
through which the participants, drivers and passengers in shared rides benefit from cost
savings. Therefore, the participants in shared rides can be regarded as a coalition. The issue
is to divide cost savings among participants in the coalition in collaborative transportation
modes [10]. As cost savings are due to cooperation of participants in the coalition, they must
be divided and allocated properly. Different ways to allocate cost savings can be developed
for the shared mobility system. Several cost allocation methods have been proposed in the
literature. Shared mobility systems can be modeled as a class of cooperative games in which
participants represented by agents cooperate to benefit from cost savings. Consider a set
N = {1, . . . , N} of all players in a cooperative game. The set N is called the “grand coalition.”
For the set Ω of all subsets of N, we define a characteristic function C: Ω→ R to assign
the cost to each coalition S in Ω. A cost allocation vector is denoted as z = (z1,z2, . . . , zn),
which represents the value zn ∈ R assigned to each player n in N. A cost allocation
vector is also called a preimputation. The characteristic function and cost allocation vector
satisfy the “efficiency” property if C(Φ) = 0 and ∑

n∈N
zn = C(N). An allocation vector is

said to be “rational” if there does not exist a subset S of players such that they would
perceive less total cost than the total cost allocated to them by forming a coalition separately
from the rest. Rationality of an allocation vector can be represented by the constraints
∑

n∈S
zn ≤ C(S) ∀S ∈ Ω. The set of cost allocation vectors or preimputations satisfying

rationality is called the “core”. An allocation in the core is stable as there is no subset S of
the players such that its players would be better off by deviating from the coalition.

Several well-known methods have been proposed to allocate cost. These include
Shapley value [33], nucleolus [34] and proportional methods [35]. Each cost allocation
method has its pros and cons. Two appealing features of Shapley value allocation are
efficiency and uniqueness. However, Shapley value allocation does not belong to the
core in general. In addition, Shapley value allocation poses a computation complexity
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challenge [33]. Nucleolus is more complex than Shapley value although it always belongs
to the core [34]. A simple way for cost allocation is proportional methods [35]. In the
literature, several schemes to allocate cost savings in ridesharing systems were proposed
in [11–13] based on the proportional methods. However, a further study on application of
the proportional methods to shared mobility systems is needed to assess effectiveness of
these methods. In this section, the schemes proposed in [11–13] to allocate cost savings in
shared mobility systems are defined. These schemes to allocate cost savings are analyzed
in the next section.

A proportional method allocates a share βn of the total cost C(N) to each player
n ∈ N. That is, zn = βn × C(N) ∀n ∈ N, where ∑

n∈N
βn = 1. By assigning the share value

βn properly, we can obtain the schemes proposed in [11–13].
In shared mobility systems, the players are the stakeholders, including the information

provider, a set of passengers, {1, 2, 3, . . . P} and a set of drivers, {1, 2, 3, . . . , D}. The share
values for the information provider, passenger p ∈ P and driver d ∈ D are denoted by α, βP

p

and βD
d , respectively. Different cost savings allocation schemes can be defined by applying

different rules to assign the share values α, βP
p and βD

p , where
P
∑

p=1
βP

p +
D
∑

d=1
βD

d + α = 1.

Instead of considering the original schemes proposed in [11–13] only, we generalize these
schemes by taking into account allocation of cost savings to the information provider of
shared mobility systems in addition to drivers and passengers. The three schemes proposed
in [11–13] are variants of proportional methods defined by specifying the share values dif-
ferently. For these three cost savings allocation schemes, it is assumed that the information
provider is allocated αF(x, y) of cost savings. Let us define these three schemes formally.

For the convenience of discussions, we will call the schemes proposed in [11–13]
“Fifty-Fifty Scheme”, “Local Proportional Scheme” and “Global Proportional Scheme”,
respectively. We call the scheme proposed in [11] “Fifty-Fifty Scheme” as the cost savings
of sharing a ride are equally divided between the two matched participants (the driver
and the passenger) of each shared ride under this scheme. That is, fifty percent of cost
savings of a shared ride is rewarded to the driver and the remaining fifty percent of
cost savings is rewarded to the passenger. We call the scheme proposed in [12] “Local
Proportional Scheme” as it allocates the cost savings of a ride to the driver and the passenger
proportionally to the lengths of their trips. We call the scheme proposed in [13] “Global
Proportional Scheme” as it allocates the cost savings to the drivers and passengers based
on the weighting of individual bid price with respect to overall bid price of all ridesharing
passengers’ and drivers’ bids. These three schemes are formally defined next. As the
original schemes proposed in [11–13] do not consider the portion of cost savings allocated to
information provider, the “Fifty-Fifty Scheme”, “Local Proportional Scheme” and “Global
Proportional Scheme” defined below extend the original schemes by taking into account
allocation of cost savings to information provider. In each of the schemes, the cost savings
are divided into three parts: the first part is allocated to the information provider, the
second part is allocated to the drivers and the third part is allocated to the passengers.

The overall cost savings of a solution (x, y) is clearly defined in (1). Before defining
the three schemes, we first distinguish the cost savings of a single ride from overall cost
savings. For the ride corresponding to a winning bid, say the j-th bid submitted by driver
d, let Γdj denote the set of passengers in the ride corresponding to the j-th bid submitted by
driver d. The cost savings of the j-th bid submitted by driver d is defined in (6) as follows:

Fdj(x, y) =

 ∑
p∈Γdj

yp fp

+ xdjodj −
(

xdjcdj

) (6)

The three schemes are defined as follows.
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In the Fifty-Fifty Scheme, which considers one driver and one passenger of a shared
ride, fifty percent of cost savings of the ride is rewarded to the driver and the remaining
fifty percent of cost savings is rewarded to the passenger.

Definition 1. Fifty-Fifty Scheme

(1) This scheme allocates αF(x, y) to the information provider. The share value for the information
provider is α.

(2) This scheme allocates σP
p (1 − α)Fdj(x, y) to the ridesharing passenger p ∈ P (yp = 1)

transported by driver d, where σP
p = 1

2 . The share value for passenger p ∈ P(yp = 1) is

βP
p =

yp(1−α)Fdj(x,y)
2F(x,y) .

(3) This scheme allocates σD
d (1− α)Fdj(x, y) to each ridesharing driver d ∈ D(xdj = 1 for some

j), where σD
d = 1

2 . The share value for the ridesharing driver d ∈ D (xdj = 1 for some j) is

βD
d =

Jd
∑

j=1
xdj(1−α)Fdj(x,y)

2F(x,y) .

Note that
P
∑

p=1
βP

p +
D
∑

d=1
βD

d + α = 1.

The scheme proposed in [12] allocates cost savings to the driver and the passenger
proportional to the lengths of their trips. Let us call it the Local Proportional Scheme. The
Local Proportional Scheme allocates αF(x, y) to the information provider and allocates cost
savings based on the weighting of the original bid price of each ridesharing passenger
and driver in a shared ride with respect to overall bid price of the driver and the relevant
passenger in the shared ride. The Local Proportional Scheme can be defined as follows:

Definition 2. Local Proportional Scheme:

(1) This scheme allocates αF(x, y) to the information provider. The share value for the information
provider is α.

(2) This scheme allocates σP
p (1 − α)Fdj(x, y) to each ridesharing passenger p ∈ P (yp = 1)

transported by driver d, where σP
p =

yp fp ∑
p∈Γdj

yp fp

+xdjcdj

 . The share value for the ridesharing

passenger p ∈ P (yp = 1) transported by driver d is βP
p =

σP
p yp(1−α)Fdj(x,y)

F(x,y) .

(3) This scheme allocates σD
d (1− α)Fdj(x, y) to each ridesharing driver d ∈ D (xdj = 1 for some j),

where σD
d =

xdjcdj ∑
p∈Γdj

yp fp

+xdjcdj

 .

The share value for the ridesharing driver d ∈ D (xdj = 1 for some j) is

βD
d =

Jd
∑

j=1
xdjσ

D
d

(
1− α)Fdj(x, y)

F(x, y)
.

Note that
P
∑

p=1
βP

p +
D
∑

d=1
βD

d + α = 1.

The Global Proportional Scheme proposed in [13] allocates a portion of the overall
cost savings to each participant according to the percentage of the participant’s travel
cost with respect to the overall travel cost. The Global Proportional Scheme is different
from the Local Proportional Scheme defined previously. This scheme allocates αF(x, y)
to the information provider and allocates the remaining cost savings to each ridesharing
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passenger and driver based on the weighting of their bid price with respect to overall bid
price of all ridesharing passengers’ and drivers’ bids.

Definition 3. Global Proportional Scheme:

(1) This scheme allocates αF(x, y) to the information provider. The share value for the information
provider is α.

(2) This scheme allocates βP
p F(x, y) to the winning passenger p ∈ P (yp = 1), where the share

value βP
p =

(1−α)yp fp[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] .

(3) This scheme allocates βD
d F(x, y) to each winning driver d ∈ D (xdj = 1 for some j).

The share value for driver d ∈ D (xdj = 1 for some j) is

βD
d =

Jd
∑

j=1
(1− α)xdjcdj[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] .

Note that
P
∑

p=1
βP

p +
D
∑

d=1
βD

d + α = 1.

To compare different cost savings allocation schemes, it is important to study how
many matched rides can satisfy cost savings expectations for relevant drivers and passen-
gers. We define the minimal expected rewarding rate as follows to describe the minimal
cost savings expectations of drivers and passengers.

Definition 4. The minimal cost savings expectations for a ridesharing participant (either a driver
or a passenger) are called the minimal expected rewarding rate, which is defined as the ratio of
the cost savings to the travel cost of the participant. The minimal expected rewarding rate is
denoted by r.

In the real world, drivers or passengers may not be satisfied with the shared rides
recommended by the shared mobility system due to low rewarding rate even if these rides
can meet their transportation requirements. A driver or a passenger may choose either
to accept or reject a ride found by the ride matching system. To assess effectiveness of
different schemes to allocate cost savings, we distinguish acceptable shared rides from
unacceptable ones.

Definition 5. A shared ride is an acceptable ride if the rewarding rate for all the participants on
the ride is greater than or equal to the minimal expected rewarding rate r. A shared ride is not an
acceptable ride if the rewarding rate for any participant on the ride is less than the minimal expected
rewarding rate.

We will compare effectiveness of the Fifty-Fifty Scheme, Local Proportional Scheme
and Global Proportional Scheme by analyzing the number of acceptable rides.

4. Comparison of the Fifty-Fifty Scheme and Local Proportional Scheme

In this section, we will compare the Fifty-Fifty Scheme and Local Proportional Scheme
by analysis. Based on the analysis, a theorem will be stated to characterize the relation of
these two schemes in terms of the number of acceptable rides.

A passenger or a driver will not accept to share a ride if any of their minimal cost
savings expectations, i.e., the minimal expected rewarding rate, cannot be met. A shared
ride is called an acceptable ride if the rewarding rate of the driver and the rewarding rate
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of the passenger are greater than or equal to the minimal expected rewarding rate. The
comparison between cost savings allocation schemes is based on the number of acceptable
shared rides. We first state two lemmas to pave the way for the establishment of a theorem
that state the relation between the number of acceptable rides under the Fifty-Fifty Scheme
and Local Proportional Scheme.

Lemma 1. Suppose the original travel distance of the passenger p ∈ Γdj is not greater than that of
the driver d on a shared ride (with xdj = 1 for some j). The rewarding rate for driver d (with xdj = 1)
under the Fifty-Fifty Scheme is less than or equal to that under the Local Proportional Scheme. The
rewarding rate for passenger p in the shared ride is greater than or equal to the rewarding rate for
driver d.

Proof of Lemma 1. Under the Fifty-Fifty Scheme, the cost savings allocated to driver d in the

ride corresponding to the j-th bid of driver d with xdj = 1 is
(1−α)Fdj(x,y)

2 . The rewarding rate

for driver d is
(1−α)Fdj(x,y)

2cdj
. Under the Local Proportional Scheme, the cost savings allocated to

driver d with xdj = 1 is σD
d (1− α)Fdj(x, y) =

cdj(1−α)Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 . The rewarding rate for driver

d with xdj = 1 is
(1−α)Fdj(x,y) ∑

p∈Γdj
yp fp

+xdjcdj

 . In [12], it is assumed that there is at most one passenger

transported by a driver; there is only one element in Γdj. Let p denote the passenger transported

by driver d. Then

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
= yp fp + xdjcdj = fp + cdj. As the original travel

distance of the passenger p ∈ Γdj is not greater than that of the driver in the shared ride, fp ≤ cdj.
Hence fp + cdj ≤ 2cdj.

Therefore,
(1−α)Fdj(x,y)

2cdj
≤ (1−α)Fdj(x,y) ∑

p∈Γdj
yp fp

+xdjcdj

 .

In this case, the rewarding rate for driver d with xdj = 1 under the Fifty-Fifty Scheme
is less than or equal to that under the Local Proportional Scheme.

Note that, as fp ≤ cdj,
(1−α)Fdj(x,y)

2cdj
≤ (1−α)Fdj(x,y)

2 fp
.

Therefore, the rewarding rate for passenger p in the ride corresponding to the j-th bid
of driver d with xdj = 1 is greater than or equal to the rewarding rate for driver d. �

Lemma 2. Suppose the original travel distance of passenger p is greater than that of the driver
d ∈ D in the shared ride corresponding to the j-th bid of driver d with xdj = 1. The rewarding rate
for passenger p under the Fifty-Fifty Scheme is less than that under the Local Proportional Scheme.
The rewarding rate for driver d in the shared ride is greater than the rewarding rate for passenger p.

Proof of Lemma 2. Under the Fifty-Fifty Scheme, the cost savings allocated to passenger p is
(1−α)Fdj(x,y)

2 . The rewarding rate for passenger p is
(1−α)Fdj(x,y)

2 fp
. Under the Local Proportional

Scheme, the cost savings allocated to passenger p is σP
p (1− α)Fdj(x, y) =

yp fp(1−α)Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 .

The rewarding rate for passenger p is
yp fp(1−α)Fdj(x,y)

fp

 ∑
p∈Γdj

yp fp

+xdjcdj

 =
yp(1−α)Fdj(x,y) ∑

p∈Γdj
yp fp

+xdjcdj

 .

In [12], it is assumed that there is at most one passenger transported by a driver; there



Energies 2021, 14, 6931 12 of 30

is only one element in Γdj. Let p denote the passenger transported by driver d. Then[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
= yp fp + xdjcdj = fp + cdj.

As fp > cdj, 2 fp > 2cdj + fp.

Hence
(1−α)Fdj(x,y)

2 fp
<

yp(1−α)Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 . In this case, the rewarding rate for passen-

ger p under the Fifty-Fifty Scheme is less than that under the Local Proportional Scheme.

As fp > cdj,
(1−α)Fdj(x,y)

2cdj
>

(1−α)Fdj(x,y)
2 fp

.
Therefore, the rewarding rate for driver d in the shared ride is greater than the rewarding

rate for passenger p in the ride corresponding to the j-th bid of driver d with xdj = 1. �

Theorem 1. The number of acceptable shared rides under the Fifty-Fifty Scheme is not greater than
the number of acceptable shared rides under the Local Proportional Scheme.

Proof of Theorem 1. Under the Fifty-Fifty Scheme, the cost savings allocated to passenger

p is
(1−α)Fdj(x,y)

2 . The set of shared rides can be divided into two disjoint subsets: R1 and R2,
where the original travel distance of the passenger is not greater than the original travel
distance of the driver for each ride in R1 and the original travel distance of the passenger is
greater than the original travel distance of the driver for each ride in R2. We first show that
the number of acceptable shared rides in R1 under the Fifty-Fifty Scheme is less than or
equal to that under the Local Proportional Scheme. We then show the number of acceptable
shared rides in R2 under the Fifty-Fifty Scheme is also less than or equal to that under the
Local Proportional Scheme.

(I) Whether a shared ride is acceptable is determined by the rewarding rate for the
driver and the rewarding rate for the passenger in the ride. If either the rewarding rate
for the driver or the rewarding rate for the passenger in the ride is less than the minimal
expected rewarding rate r, the ride will not be accepted either by the driver or the passenger.
The minimum of the rewarding rate for the driver and the rewarding rate for the passenger
in a ride determines whether the ride is acceptable.

For a ride in R1, as the travel distance of the passenger p ∈ Γdj is not greater than
that of the driver in a shared ride, according to Lemma 1, the rewarding rate for driver
d with xdj = 1 under the Fifty-Fifty Scheme is less than or equal to that under the Local
Proportional Scheme and the rewarding rate for passenger p in the shared ride is greater
than or equal to the rewarding rate for driver d. Thus, the minimum of the rewarding rate
for the driver and the rewarding rate for the passenger in a ride in R1 is the rewarding
rate of the driver and is less than or equal to that under the Local Proportional Scheme.
Therefore, if a ride in R1 is accepted under the Fifty-Fifty Scheme, it must be accepted
under the Local Proportional Scheme. As this holds for each ride in R1, the number of
acceptable shared rides in R1 under the Fifty-Fifty Scheme is less than or equal to that
under the Local Proportional Scheme.

(II) Next, we then show the number of acceptable shared rides in R2 under the Fifty-
Fifty Scheme is also less than or equal to that under the Local Proportional Scheme.

Whether a shared ride is acceptable is determined by the rewarding rate for the driver
and the passenger in the ride. If either the rewarding rate for the driver or the passenger in
the ride is less than the minimal expected rewarding rate r, the ride will not be accepted
either by the driver or the passenger. The minimum of the rewarding rate for the driver
and the rewarding rate for the passenger in a ride determine whether the ride is acceptable.

For a ride in R2, as the travel distance of the passenger p ∈ Γdj is greater than that
of the driver in the shared ride, according to Lemma 2, the rewarding rate for passenger
p under the Fifty-Fifty Scheme is less than that under the Local Proportional Scheme.
The rewarding rate for driver d in the shared ride is greater than the rewarding rate for
passenger p.
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Thus, the minimum of the rewarding rate for the driver and the rewarding rate for the
passenger in a ride in R2 is the rewarding rate of the passenger and is less than that under
the Local Proportional Scheme. Therefore, if a ride in R2 is accepted under the Fifty-Fifty
Scheme, it must be accepted under the Local Proportional Scheme. As this holds for each
ride in R2, the number of acceptable shared rides in R2 under the Fifty-Fifty Scheme is less
than or equal to that under the Local Proportional Scheme.

Based on the reasoning of (I), the number of acceptable shared rides in R1 under the
Fifty-Fifty Scheme is less than or equal to that under the Local Proportional Scheme. Based
on the reasoning of (II), the number of acceptable shared rides in R2 under the Fifty-Fifty
Scheme is less than or equal to that under the Local Proportional Scheme. Therefore, the
number of acceptable shared rides in R1 ∪ R2 under the Fifty-Fifty Scheme is less than or
equal to that under the Local Proportional Scheme. This completes the proof. �

5. Comparison of the Local Proportional Scheme and Global Proportional Scheme

In this section, we will compare the numbers of acceptable shared rides under the
Local Proportional Scheme and Global Proportional Scheme. We present two theorems
based on analysis. The first theorem in this section states that in case the rewarding rate
under the Global Proportional Scheme is greater than or equal to the minimal expected
rewarding rate, the number of acceptable shared rides under the Global Proportional
Scheme will be greater than or equal to that under the Proportional Scheme. The next
theorem in this section states that in case the rewarding rate under the Global Proportional
Scheme is less than the minimal expected rewarding rate, the number of acceptable shared
rides under the Local Proportional Scheme will be greater than or equal to that under the
Global Proportional Scheme.

To characterize different cost savings allocation schemes, we define the concept of “all
or nothing scheme” for cost savings allocation schemes.

Definition 6. A cost savings allocation scheme is a local all or nothing scheme if the driver and
passengers in the shared ride receive the same rewarding rate, but the driver and passengers in
different shared ride may receive different rewarding rate under the scheme.

Definition 7. A cost savings allocation scheme is a global all or nothing scheme if all the drivers
and passengers receive the same rewarding rate under the scheme.

Based on these definitions, the Local Proportional Scheme proposed in [12] is a local
all or nothing cost savings allocation scheme and the Global Proportional Scheme proposed
in [13] is a global all or nothing scheme. In addition, the Fifty-Fifty Scheme is neither a
local nor a global all or nothing cost savings allocation scheme as the driver and passenger
in each ride may not receive the same rewarding rate under this scheme and all the drivers
and passengers may not receive the same rewarding rate under the scheme.

Property 1. Under a local all or nothing cost savings allocation scheme, the driver and passenger
in each ride either both accept or reject the rewarding rate.

Property 2. Under a global all or nothing cost savings allocation scheme, all the drivers and
passengers either accept or reject the rewarding rate.

Before stating the main results in this section, we first introduce two lemmas as follows.

Lemma 3. The minimal rewarding rate for passengers under Local Proportional Scheme is less
than or equal to that under the Global Proportional Scheme.

Proof of Lemma 3. Please refer Appendix A. �
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Lemma 4. The minimal rewarding rate for drivers under the Local Proportional Scheme is less
than or equal to that under the Global Proportional Scheme.

Proof of Lemma 4. Please refer Appendix B. �

Theorem 2. If rewarding rate under the Global Proportional Scheme is greater than the minimal
expected rewarding rate for all winning drivers and winning passengers, the number of acceptable
shared rides under the Global Proportional Scheme is greater than or equal to that under the Local
Proportional Scheme.

Proof of Theorem 2. According to Property 2, the Global Proportional Scheme is an
all or nothing cost savings allocation scheme. As the rewarding rate under the Global
Proportional Scheme is greater than the minimal rewarding rate for all winning drivers and
winning passengers, the number of acceptable shared rides under the Global Proportional
Scheme is the number of all the shared rides for the solution (x, y). To show that the number
of acceptable shared rides under the Global Proportional Scheme is greater than or equal
to that of the Local Proportional Scheme, we show that there exists one or more rides in
which either the rewarding rate of passengers or drivers is less than or equal to the Global
Proportional Scheme. According to Lemma 3, the minimal rewarding rate for passengers
under the Local Proportional Scheme is less than or equal to that of the Global Proportional
Scheme. According to Lemma 4: The minimal rewarding rate for drivers under the Local
Proportional Scheme is less than or equal to that of the Global Proportional Scheme. For
the rides in which rewarding rate of passengers or drivers under the Local Proportional
Scheme is less than or equal to Global Proportional Scheme, these rides may or may not
be acceptable. However, these rides must be acceptable under the Global Proportional
Scheme as the number of acceptable shared rides under the Global Proportional Scheme
is all the shared rides for the solution (x, y). Therefore, the number of acceptable shared
rides under the Global Proportional Scheme is greater than or equal to that of the Local
Proportional Scheme. �

Before stating the next result, we first introduce the following lemma:

Lemma 5. The maximal rewarding rate for passengers and drivers under the Local Proportional
Scheme is greater than or equal to that of the Global Proportional Scheme.

Proof of Lemma 5. Please refer Appendix C. �

Theorem 3. If the rewarding rate is less than the minimal expected rewarding rate for all drivers
and passengers under the Global Proportional Scheme, the number of acceptable shared rides under
the Local Proportional Scheme is greater than or equal to that under the Global Proportional Scheme.

Proof of Theorem 3. According to Property 2, the Global Proportional Scheme is an
all or nothing cost savings allocation scheme. As the rewarding rate under the Global
Proportional Scheme is less than the minimal rewarding rate for all winning drivers and
winning passengers, the number of acceptable shared rides under the Global Proportional
Scheme is zero for the solution (x, y). According to Lemma 5, the maximal rewarding rate
for passengers and drivers under the Local Proportional Scheme is greater than or equal to
that of the Global Proportional Scheme. Combining these facts, it follows that the number
of acceptable shared rides of the Local Proportional Scheme is greater than or equal to that
of the Global Proportional Scheme. �

6. Comparison of the Global Proportional Scheme and Fifty-Fifty Scheme

In this section, we will compare the numbers of acceptable shared rides under the Fifty-
Fifty Scheme and Global Proportional Scheme under given minimal expected rewarding
rate by analysis. Two theorems will be established to state the relation between the Global
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Proportional Scheme and Fifty-Fifty Scheme in terms of the number of acceptable shared
rides. One theorem characterizes the situation in which the number of acceptable shared
rides under the Global Proportional Scheme dominates that under the Fifty-Fifty Scheme.
The other theorem characterizes the situation in which the number of acceptable shared rides
under the Global Proportional Scheme is dominated by that under the Fifty-Fifty Scheme.

Theorem 4. If rewarding rate under the Global Proportional Scheme is greater than the minimal
expected rewarding rate, the number of acceptable shared rides under the Global Proportional Scheme
is greater than or equal to that of the Fifty-Fifty Scheme.

Proof of Theorem 4. Under the condition that rewarding rate under the Global Proportional
Scheme is greater than the minimal expected rewarding rate for all winning drivers and
winning passengers, it follows from Theorem 2 that the number of acceptable shared
rides under the Global Proportional Scheme is greater than or equal to that of the Local
Proportional Scheme. According to Theorem 1, the number of acceptable shared rides of the
Fifty-Fifty Scheme is not greater than that of the Local Proportional Scheme. Therefore, the
number of acceptable shared rides under the Global Proportional Scheme is greater than or
equal to that of the Fifty-Fifty Scheme under the condition that rewarding rate under the
Global Proportional Scheme is greater than the minimal expected rewarding rate. �

Theorem 5. If the rewarding rate under the Global Proportional Scheme is less than the minimal
expected rewarding rate, the number of acceptable shared rides under the Fifty-Fifty Scheme is
greater than or equal to that under the Global Proportional Scheme.

Proof of Theorem 5. According to Property 2, the Global Proportional Scheme is an all or
nothing cost savings allocation scheme. Under the condition that the rewarding rate under
the Global Proportional Scheme is less than the minimal expected rewarding rate for all
drivers and passengers, the number of acceptable shared rides of the Global Proportional
Scheme is zero for the solution (x, y). As the number of acceptable shared rides of under the
Fifty-Fifty Scheme must be non-negative, the number of acceptable shared rides under the
Fifty-Fifty Scheme is greater than or equal to that under the Global Proportional Scheme.

To show that the number of acceptable rides may be greater than that under the Global
Proportional Scheme, we characterize the number of acceptable shared rides under the
Fifty-Fifty Scheme. We decompose the set of shared rides into two disjoint subsets: R1
and R2, where the original travel distance of the passenger is not greater than the original
travel distance of the driver for each ride in R1 and the original travel distance of the
passenger is greater than the original travel distance of the driver for each ride in R2. The
set R1 can be further decomposed into two disjoint subset, i.e., R1 = R11 ∪ R12, where

R11 = {γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
≥ r} and R12 = {γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
< r} . That is,

R11 is the set of shared rides in which the rewarding rate for the driver in each ride is
greater than or equal to the minimal expected rewarding rate.

The set R2 can be further decomposed into two disjoint subset, i.e., R2 = R21 ∪ R22,

where R21 = {γdj

∣∣∣γdj ∈ R2,
(1−α)Fdj(x,y)

2 fp
≥ r} and R22 = {γdj

∣∣∣γdj ∈ R2,
(1−α)Fdj(x,y)

2 fp
< r} .

That is, R21 is the set of shared rides in which the rewarding rate for the passenger in
each ride is greater than or equal to the minimal expected rewarding rate.

We show that the number of acceptable shared rides under the Fifty-Fifty Scheme is
|R11 ∪ R21|.

(i) We first show that all the rides in R12 are not acceptable rides and all the rides in
R11 are acceptable rides.

As R12 ={γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
< r} , the rewarding rate for the driver in each ride in

R12 is less than the minimal expected rewarding rate. Thus, all the shared rides in R12 are not

acceptable. Next, we show that all the shared rides in R11 = {γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
≥ r}
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are acceptable. To show this, we must show that the rewarding rate for the driver and the
rewarding rate for the passenger in each ride are greater than or equal to the minimal expected

rewarding rate. By definition, R11 = {γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
≥ r} . The rewarding rate

for the driver in each ride in R11 is obviously greater than or equal to the minimal expected
rewarding rate r. As R11 ⊆ R1 and the original travel distance of the passenger is not greater
than the original travel distance of the driver for each ride in R1, therefore fp ≤ cdj. Therefore,
(1−α)Fdj(x,y)

2 fp
≥ (1−α)Fdj(x,y)

2cdj
. That is, the rewarding rate for the passenger in each ride in

R11 is greater than or equal to the rewarding rate for driver d. Thus, all the shared rides in

R11 = {γdj

∣∣∣γdj ∈ R1,
(1−α)Fdj(x,y)

2cdj
≥ r} are acceptable.

(ii) Similar to the proof of (i), we can show that all the rides in R22 are not acceptable
rides and all the rides in R21 are acceptable rides.

Based on (i) and (ii), the set of acceptable shared rides under the Fifty-Fifty Scheme
is R11 ∪ R21. Therefore, the number of acceptable rides under the Fifty-Fifty Scheme is
|R11 ∪ R21|.

If |R11 ∪ R21| is greater than zero, the number of acceptable shared rides under the
Fifty-Fifty Scheme is greater than that under the Global Proportional Scheme.

This completes the proof. �

7. Results

The theoretical results presented in the previous sections will be verified by examples
in this section. In this section, we conduct experiments by apply different schemes to
allocate cost savings for several test cases. The test cases are generated based on a geo-
graphical area in Taiwan. For the given number of drivers and passengers in each test
case, we create the test case data by randomly selecting the origins and destinations for
drivers and passengers in Taichung City. The area of Taichung City is 2215 km2. Eight test
cases (Case 1 through Case 8) are generated to verify the theoretical results. Let us use
one test case (Case 2) to illustrate a typical application scenario. For Case 2, there are
three drivers and ten passengers. The origins and destinations generated for three drivers
and ten passengers are shown in Table 2. The travel distance of the three drivers’ routes
fall within the range of 15 to 25 kilometers. The bids of passengers are shown in Table 3,
where all the IDs of passengers are numbered from 1 to 10 and only s1

pk and s2
pk with

nonzero values are shown. The bids of drivers are shown in Table 4, only q1
djk and q2

djk with
nonzero values are shown. The results obtained by the decision model are displayed on
a map in Figure 1, where the origin and destination of the route for driver i are denoted
by Di+ and Di-, respectively, and the origin and destination of the route for passenger
i are denoted by Pi+ and Pi-. Temporal data of itineraries are not shown in the tables
to avoid occupying too much space in this paper. All test cases are randomly gener-
ated. The data of all test cases are available for download from the following link: https:
//drive.google.com/drive/folders/1No2d0lMwZz8zV5mF0yjfmKbSCCgON-38?usp =
sharing (accessed on 20 August 2021).

The algorithm of the software used in the decision model is described in [13]. It is im-
plemented in Java. We apply the algorithm to solve the ridesharing optimization problem
to maximize the overall cost savings first and then apply the Fifty-Fifty Scheme, Local Pro-
portional Scheme and Global Proportional Scheme to allocate cost savings. The cost savings
optimization algorithm only determines the set of rides and relevant drivers/passengers
for ridesharing. The rewarding rates due to cost savings allocated by the Fifty-Fifty Scheme,
Local Proportional Scheme and Global Proportional Scheme for α = 0 are summarized in
Tables 5–8.

https://drive.google.com/drive/folders/1No2d0lMwZz8zV5mF0yjfmKbSCCgON-38?usp
https://drive.google.com/drive/folders/1No2d0lMwZz8zV5mF0yjfmKbSCCgON-38?usp
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Table 2. Origins and destinations of participants.

Participant Origin Destination

Driver 1 24.23115, 120.57268 24.161486, 120.7313603
Driver 2 24.110586, 120.6839043 24.20659, 120.62886
Driver 3 24.06212, 120.69823 24.2223294, 120.690032
Passenger 1 24.17428, 120.64454 24.17337, 120.6714
Passenger 2 24.11314, 120.66166 24.1790507, 120.6657476
Passenger 3 24.09888, 120.70233 24.14285, 120.73275
Passenger 4 24.11637, 120.66388 24.13536, 120.70114
Passenger 5 24.14891, 120.66295 24.1142, 120.65267
Passenger 6 24.11666, 120.66595 24.152798, 120.6640863
Passenger 7 24.11308, 120.65914 24.13704, 120.67637
Passenger 8 24.114, 120.69139 24.118, 120.62749
Passenger 9 24.07937, 120.67911 24.14891, 120.66295
Passenger 10 24.16471, 120.66779 24.12877, 120.66223

Table 3. Bids submitted by passengers.

Passenger ID (p) s1
pk, s2

pk fp

1 s1
p1 = s2

p1 = 1 8.4775
2 s1

p2 = s2
p2 = 1 23.1125

3 s1
p3 = s2

p3 = 1 18.002499
4 s1

p4 = s2
p4 = 1 13.3575

5 s1
p5 = s2

p5 = 1 11.47
6 s1

p6 = s2
p6 = 1 11.885

7 s1
p7 = s2

p7 = 1 9.8725
8 s1

p8 = s2
p8 = 1 22.4225

9 s1
p9 = s2

p9 = 1 24.3375
10 s1

p10 = s2
p10 = 1 12.9475

Table 4. Bid submitted by Driver 1.

Driver ID (d) q1
djk, q2

djk od1 cd1

1 q1
d11 = q2

d11 = 1 59.1025 59.1025
2 q1

d16 = q2
d16 = 1 39.8075 39.8075

3 q1
d19 = q2

d19 = 1 59.0225 59.0225

For Test Case 1, there is only one shared ride and only one driver–passenger pair. The
rewarding rates for the driver and the passenger are the same for the Local Proportional
Scheme and Global Proportional Scheme in Test Case 1. The rewarding rates for the driver
and the passenger are different for the Fifty-Fifty Scheme. For Test Case 2, the rewarding
rates for all drivers and passengers are the same in the Global Proportional Scheme. The
rewarding rates for the driver and passenger in a shared ride are the same under the
Local Proportional Scheme. However, the rewarding rates for the driver and passenger in
different rides are different under the Local Proportional Scheme. The rewarding rates for
the driver and passenger in the same ride are different under the Fifty-Fifty Scheme.
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Figure 1. A ridesharing scenario.

Table 5. Rewarding rate of Case 1 and Case 2 for α = 0, where FF: Fifty-Fifty Scheme, LP: Local Proportional Scheme and
GP: Global Proportional Scheme.

Case 1 Participant FF LP GP Case 2 Participant FF LP GP

Ride 1
D1 0.072 0.12 0.12 Ride 1 D1 0.072 0.125 0.221
P1 0.358 0.12 0.12 P1 0.5 0.125 0.221

Ride 2 D2 0.149 0.23 0.221
P2 0.5 0.23 0.221

Ride 3 D3 0.206 0.292 0.221
P3 0.5 0.292 0.221

Table 6. Rewarding rate of Case 3 and Case 4 for α = 0.

Case 3 Participant FF LP GP Case 4 Participant FF LP GP

Ride 1
D1 0.127 0.199 0.175 Ride 1 D1 0.162 0.245 0.22
P1 0.461 0.199 0.175 P1 0.5 0.245 0.22

Ride 2
D2 0.064 0.103 0.175 Ride 2 D2 0.036 0.057 0.22
P2 0.271 0.103 0.175 P2 0.139 0.057 0.22

Ride 3
D3 0.128 0.204 0.175 Ride 3 D3 0.295 0.371 0.22
P3 0.5 0.204 0.175 P3 0.5 0.371 0.22

Table 7. Rewarding rate of Case 5 and Case 6 for α = 0.

Case 5 Participant FF LP GP Case 6 Participant FF LP GP

Ride 1
D1 0.194 0.279 0.217 Ride 1 D1 0.129 0.202 0.21
P1 0.5 0.279 0.217 P1 0.457 0.202 0.21

Ride 2
D2 0.085 0.145 0.217 Ride 2 D2 0.072 0.126 0.21
P2 0.5 0.145 0.217 P2 0.396 0.126 0.21

Ride 3
D3 0.217 0.234 0.217 Ride 3 D3 0.181 0.266 0.21
P3 0.5 0.234 0.217 P3 0.5 0.266 0.21

Ride 4 D4 0.183 0.268 0.21
P4 0.5 0.268 0.21
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Table 8. Rewarding rate of Case 7 and Case 8 for α = 0.

Case 7 Participant FF LP GP Case 8 Participant FF LP GP

Ride 1
D1 0.181 0.254 0.246 Ride 1 D1 0.163 0.233 0.21
P1 0.422 0.254 0.246 P1 0.409 0.233 0.21

Ride 2
D2 0.168 0.251 0.246 Ride 2 D2 0.153 0.235 0.21
P2 0.5 0.251 0.246 P2 0.5 0.235 0.21

Ride 3
D3 0.089 0.151 0.246 Ride 3 D3 0.204 0.29 0.21
P3 0.5 0.151 0.246 P3 0.5 0.29 0.21

Ride 4
D4 0.096 0.161 0.246 Ride 4 D4 0.142 0.221 0.21
P4 0.5 0.161 0.246 P4 0.5 0.221 0.21

Ride 5
D5 0.268 0.349 0.246 Ride 5 D5 0.09 0.152 0.21
P5 0.5 0.349 0.246 P5 0.5 0.152 0.21

Ride 6 D6 0.02 0.031 0.21
P6 0.65 0.031 0.21

Ride 7 D7 0.123 0.211 0.21
P7 0.5 0.211 0.21

For Test Case 3 through Test Case 8, the rewarding rates for all drivers and passengers
are the same under the Global Proportional Scheme. The rewarding rates for the driver and
passenger in a shared ride are the same under the Local Proportional Scheme. However,
the rewarding rates for the driver and passenger in different rides are different under the
Local Proportional Scheme. The rewarding rates for the driver and passenger in the same
ride are different under the Fifty-Fifty Scheme.

To compare the effectiveness of cost savings allocation schemes, we need to find the
number of acceptable rides under the minimal rewarding rate, r, for drivers and passengers.
Suppose α = 0 and r = 0.1. In this case, a ride will be accepted as a successful shared ride
only if the rewarding rates for the driver and the passenger are jointly greater than or equal
to 0.1. For the results in Tables 5–8, the numbers of acceptable rides are summarized in
Table 9 for α = 0 and r = 0.1.

Table 9. Number of successful share rides for (α = 0, r = 0.1) and (α = 0, r = 0.2).

α = 0, r = 0.1 α = 0, r = 0.2

Case Participant FF LP GP Case Participant FF LP GP

1 D1 0 1 1 1 D1 0 0 0

2 D2 2 3 3 2 D2 1 2 3

3 D3 2 3 3 3 D3 0 1 0

4 D4 2 2 3 4 D4 1 2 3

5 D5 2 3 3 5 D5 0 2 3

6 D6 3 4 4 6 D6 0 3 4

7 D7 3 5 5 7 D7 1 3 5

8 D7 5 6 7 8 D7 1 6 7

According to Table 9, the numbers of acceptable rides under the Local Proportional
Scheme are greater than or equal to those under the Fifty-Fifty Scheme for all test cases.
These results are consistent with Theorem 1 from our previous analysis. The numbers of
acceptable rides of the Global Proportional Scheme are greater than or equal to those under
the Fifty-Fifty Scheme according to Table 9. These results are consistent with the theoretical
result of Theorem 4 in this paper. Additionally, the numbers of acceptable rides of the
Global Proportional Scheme are greater than or equal to those under the Local Proportional
Scheme according to Table 9. These results are consistent with the theoretical result of
Theorem 2.
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To compare the performance of all test cases for α = 0 and r = 0.1 under the three
schemes, a bar chart based on the experimental results is shown in Figure 2a. It clearly
indicates that the Global Proportional Scheme either performs as well as or the same as the
other two schemes for all cases.

Figure 2. A comparison of the number of acceptable rides for different schemes under (a) α = 0, r = 0.1 and (b) α = 0, r = 0.2.

Suppose α = 0 and r = 0.2. The numbers of acceptable rides are summarized in Table 9.
According to Table 9, the numbers of acceptable rides of the Local Proportional Scheme
are greater than or equal to those of the Fifty-Fifty Scheme for all test cases. These results
are consistent with Theorem 1 from our previous analysis. For Case 2, Case 4, Case 5,
Case 6, Case 7 and Case 8, the numbers of acceptable rides of the Global Proportional
Scheme are greater than zero. Therefore, the numbers of acceptable rides of the Global
Proportional Scheme are greater than or equal to those of the Fifty-Fifty Scheme according
to Table 9. These results are consistent with the theoretical result of Theorem 4 in this paper.
For Case 2, Case 4, Case 5, Case 6, Case 7 and Case 8, the numbers of acceptable rides of
the Global Proportional Scheme are greater than zero. Therefore, the numbers of acceptable
rides of the Global Proportional Scheme are greater than or equal to those of the Local
Proportional Scheme according to Table 9. These results are consistent with the theoretical
result of Theorem 2 in this paper.

For Case 1 and Case 3, the numbers of acceptable rides of the Global Proportional
Scheme are zero. Therefore, the numbers of acceptable rides of the Global Proportional
Scheme are less than or equal to those of the Fifty-Fifty Scheme according to Table 9. These
results are consistent with the theoretical result of Theorem 5 developed in this paper. For
Case 1 and Case 3, the numbers of acceptable rides of the Global Proportional Scheme are
zero. Therefore, the numbers of acceptable rides of the Global Proportional Scheme are less
than or equal to those of the Local Proportional Scheme according to Table 9. These results
are consistent with the theoretical result of Theorem 3 in this paper.

To compare the performance of all test cases for α = 0 and r = 0.2 under the three
schemes, a bar chart based on the experimental results is shown in Figure 2b. It clearly
indicates that the Global Proportional Scheme either performs as well as or the same as the
other two schemes for Case 2, Case 4, Case 5, Case 6, Case 7 and Case 8 (Theorem 2 and
Theorem 4). The Global Proportional Scheme, however, is not better than the other two
schemes for Case 1 and Case 3 (Theorem 3 and Theorem 5).

Suppose α = 0.2 and r = 0.1. In this case, a ride will be accepted as an acceptable
shared ride only if the rewarding rates for the driver and the passenger are jointly greater
than or equal to 0.1. For the results in Tables 10–13, the numbers of acceptable rides are
summarized in Table 14 for α = 0.2 and r = 0.1. According to Table 14, the numbers of
acceptable rides under the Local Proportional Scheme are greater than or equal to those
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under the Fifty-Fifty Scheme for all test cases. These results are consistent with Theorem 1
from our previous analysis. The numbers of acceptable rides under the Global Proportional
Scheme are greater than or equal to those under the Fifty-Fifty Scheme according to Table 14.
These results are consistent with the theoretical result of Theorem 4 developed in this paper.
Additionally, the numbers of acceptable rides under the Global Proportional Scheme are
greater than or equal to those under the Local Proportional Scheme according to Table 14.
These results are consistent with the theoretical result of Theorem 2.

Table 10. Rewarding rate of Case 1 and Case 2 for α = 0.2.

Case 1 Participant FF LP GP Case 2 Participant FF LP GP

Ride 1
D1 0.058 0.096 0.096 Ride 1 D1 0.057 0.1 0.176
P1 0.286 0.096 0.096 P1 0.4 0.1 0.176

Ride 2 D2 0.119 0.184 0.176
P2 0.4 0.184 0.176

Ride 3 D3 0.165 0.234 0.176
P3 0.4 0.234 0.176

Table 11. Rewarding rate of Case 3 and Case 4 for α = 0.2.

Case 3 Participant FF LP GP Case 4 Participant FF LP GP

Ride 1
D1 0.102 0.159 0.14 Ride 1 D1 0.13 0.196 0.176
P1 0.369 0.159 0.14 P1 0.4 0.196 0.176

Ride 2
D2 0.051 0.082 0.14 Ride 2 D2 0.029 0.045 0.176
P2 0.217 0.082 0.14 P2 0.111 0.045 0.176

Ride 3
D3 0.102 0.163 0.14 Ride 3 D3 0.236 0.297 0.176
P3 0.4 0.163 0.14 P3 0.4 0.297 0.176

Table 12. Rewarding rate of Case 5 and Case 6 for α = 0.2.

Case 5 Participant FF LP GP Case 6 Participant FF LP GP

Ride 1
D1 0.155 0.224 0.174 Ride 1 D1 0.103 0.161 0.168
P1 0.4 0.224 0.174 P1 0.365 0.161 0.168

Ride 2
D2 0.068 0.116 0.174 Ride 2 D2 0.058 0.101 0.168
P2 0.4 0.116 0.174 P2 0.397 0.101 0.168

Ride 3
D3 0.122 0.187 0.174 Ride 3 D3 0.145 0.213 0.168
P3 0.4 0.187 0.174 P3 0.4 0.213 0.168

Ride 4 D4 0.146 0.214 0.168
P4 0.4 0.214 0.168

The numbers of acceptable rides are summarized in Table 14 for α = 0.2 and r = 0.2.
According to Table 14, the numbers of acceptable rides under the Local Proportional
Scheme are greater than or equal to those under the Fifty-Fifty Scheme for all test cases.
These results are consistent with Theorem 1 from our previous analysis.

For all cases, the numbers of acceptable rides under the Global Proportional Scheme
are zero. Therefore, the numbers of acceptable rides under the Global Proportional Scheme
are less than or equal to those under the Fifty-Fifty Scheme according to Table 14. These
results are consistent with the theoretical result of Theorem 5 in this paper. For all cases,
the numbers of acceptable rides under the Global Proportional Scheme are zero. Therefore,
the numbers of acceptable rides under the Global Proportional Scheme are less than or
equal to those under the Local Proportional Scheme according to Table 14. These results
are consistent with the theoretical result of Theorem 3 in this paper.
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Table 13. Rewarding rate of Case 7 and Case 8 for α = 0.2.

Case 7 Participant FF LP GP Case 8 Participant FF LP GP

Ride 1
D1 0.145 0.203 0.197 Ride 1 D1 0.131 0.187 0.152
P1 0.337 0.203 0.197 P1 0.328 0.187 0.152

Ride 2
D2 0.134 0.201 0.197 Ride 2 D2 0.123 0.188 0.152
P2 0.4 0.201 0.197 P2 0.4 0.188 0.152

Ride 3
D3 0.071 0.121 0.197 Ride 3 D3 0.163 0.232 0.152
P3 0.4 0.121 0.197 P3 0.4 0.232 0.152

Ride 4
D4 0.077 0.129 0.197 Ride 4 D4 0.114 0.177 0.152
P4 0.4 0.129 0.197 P4 0.4 0.177 0.152

Ride 5
D5 0.214 0.279 0.197 Ride 5 D5 0.072 0.122 0.152
P5 0.4 0.279 0.197 P5 0.4 0.122 0.152

Ride 6 D6 0.016 0.025 0.152
P6 0.052 0.025 0.152

Ride 7 D7 0.107 0.169 0.152
P7 0.4 0.169 0.152

Table 14. Number of successful share rides for (a) α = 0.2, r = 0.1 and (b) α = 0.2, r = 0.2.

α = 0.2, r = 0.1 α = 0.2, r = 0.2.

Case Participant FF LP GP Case Participant FF LP 0

1 D1 0 0 0 2 D2 0 1 0

2 D2 2 3 3 3 D3 0 0 0

3 D3 2 2 3 4 D4 1 1 0

4 D4 2 2 3 5 D5 0 1 0

5 D5 2 3 3 6 D6 0 2 0

6 D6 3 4 4 7 D7 1 3 0

7 D7 3 5 5 8 D7 0 1 0

8 D7 5 6 7

To compare the performance of all test cases for α = 0.2 and r = 0.1 under the three
schemes, a bar chart based on the experimental results is shown in Figure 3b. It clearly
indicates that the Global Proportional Scheme either performs as well as or the same as the
other two schemes.

Figure 3. A comparison of the number of acceptable rides for different schemes under (a) α = 0.2, r = 0.1 and (b) α = 0.2, r = 0.2.
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To compare the performance of all test cases for α = 0.2 and r = 0.2 under the three
schemes, a bar chart based on the experimental results is shown in Figure 3. It clearly
indicates that the Global Proportional Scheme is either the worst among all three schemes
or not better than the other two schemes as the number of acceptable rides is zero for all
cases (Theorems 3 and 5).

8. Discussion

The number of acceptable shared rides is an important performance index for assessing
shared mobility systems. In a shared mobility system, drivers and passengers will share
rides only if they can benefit from cost savings significantly. Depending on the scheme
used to allocate cost savings, the benefits of individual participants vary. Adoption of
different schemes to allocate cost savings will not only influence the cost savings for drivers
and passengers but also the number of acceptable shared rides, which is closely related
to the number of ridesharing passengers. An important issue is to study the influence of
different schemes to allocate cost savings on the number of acceptable shared rides.

Development of a decision support system for shared mobility is usually broken
down into two subproblems: (a) a ridesharing optimization subproblem to match potential
drivers and passengers and (b) a cost savings allocation subproblem. In the literature,
although the ridesharing optimization problem has been studied extensively and there are
many schemes to allocate cost savings in ridesharing systems, the effectiveness of different
schemes to allocate cost savings is less explored. In practice, simple rules have been used to
solve the cost savings allocation problem based on proportional methods [11–13] to reduce
computational complexity. Improper allocation of cost savings may lead to dissatisfaction
of drivers and passengers and reduce the number of shared rides that can be accepted
by the drivers and passengers. However, effectiveness of these proportional cost savings
allocation schemes in a shared mobility system needs to be studied. The influence of
applying different schemes to allocate cost savings on the number of acceptable shared
rides is an important issue in the design of shared mobility systems.

In this study, we explore effectiveness of the three different proportional schemes
proposed in [11–13] by theoretical analysis. Shared rides recommended by shared mobility
systems are typically optimized for objective functions such as overall travel distance.
Therefore, not all recommended shared rides are satisfactory or acceptable for drivers and
passengers. The analysis in this paper characterizes several properties and conditions
under which one proportional cost savings allocation scheme outperform another in terms
of the number of rides acceptable by the drivers and passengers. These properties provide
a foundation for selecting the proper proportional scheme to allocate cost savings. These
properties are supported by experimental results of several test cases provided in this
paper. Our theoretical analysis and properties are consistent with the experimental results.
Although our analysis indicates that, among the three schemes analyzed in this study,
none always dominates the other two under any situation, but a dominating property
does exist under a specific situation. These properties provide the information about the
influence of cost savings allocation schemes on the number of acceptable shared rides.
If the minimal expected rewarding rate can be satisfied under the Global Proportional
Scheme, then the Global Proportional Scheme is the best scheme among the three schemes
studied in this paper. Otherwise, the Local Proportional Scheme is the best scheme among
the three schemes. The Fifty-Fifty Scheme should not be used due to its poor performance.

The properties and results presented in this study are based on the assumption that
drivers and passengers will not accept ridesharing in case the minimal expected rewarding
rate cannot be attained. Several studies [31,32] indicate that cost savings are one important
factor for ridesharing. Therefore, the results of these studies justify this assumption of this
paper. The theory presented in this study does not hinge on the assumption that “travel
cost is proportional to distance”, which is used in [11,12]. The decision model adopted
in this study consists of a practical general framework and procedures that consider
spatial, time, capacity and detour ratio [13], and can consider even social factors [22]. The
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discussions above indicate that theory developed in this study is based on a problem setting
in actual practice and also illustrate the validity and practicality of the theory developed in
this study.

The results of this study generate interesting and important research questions: Do any
other rules exist that are similar or dissimilar to the ones uncovered in this paper among
other cost allocation schemes? Do any other rules exist among other cost allocation schemes
and the three schemes studied in this paper? These open problems call for further studies.

9. Conclusions

Shared mobility is a transportation mode motivated by sharing vehicles to reduce
the cost of journey, fuel consumption, emissions and air pollution. As cost savings are the
primary incentive for the shared mobility mode, most studies on shared mobility focus on
optimization of the travel distance to reduce cost. Due to computational complexity, the
issue to allocate cost savings among stakeholders is often done by applying proportional
methods such as the Fifty-Fifty Scheme, Local Proportional Scheme and Global Proportional
Scheme, which are easy to implement in shared mobility systems. However, effectiveness
of these proportional methods has not been analyzed and compared in the literature. In
addition, there is no guideline on how to select the proper proportional method to allocate
cost savings and how different proportional methods to allocate cost savings influence
performance or acceptance of shared rides. This study provides a theoretical study on
comparison of three different proportional methods in the literature for allocation of cost
savings. Our study is based on the fact that potential drivers and passengers may reject
the shared rides recommended by the shared mobility system if the rewarding rates are
lower than their expectations. As the proportional method used to allocate cost savings
among drivers and passengers directly influences the rewarding rates, the number of
acceptable rides will be influenced by the method used to allocate cost savings. Therefore,
we focus on comparing the number of acceptable rides under given minimal expected
rewarding rate of the potential drivers and passengers. Through our analysis, we find
several useful properties that can serve as a guideline for selecting a proper method from
the Fifty-Fifty Scheme, Local Proportional Scheme and Global Proportional Scheme. These
properties indicate that if the rewarding rate under the Global Proportional Scheme is
greater than or equal to minimal expected rewarding rate, the Global Proportional Scheme
is the best among the three proportional methods. Otherwise, the Fifty-Fifty Scheme
and Local Proportional Scheme will be better than the Global Proportional Scheme. The
properties established in this study also indicate that the Local Proportional Scheme is
better or no worse than the Fifty-Fifty Scheme. These properties provide insights into which
proportional method should be used to achieve more acceptable shared rides. Although
the three schemes studied in this paper are often adopted in industry and academia,
practitioners and researchers using these three schemes in ridesharing systems are not
aware of their influence on acceptance of shared rides. The results of this study uncover
some useful rules for selecting the three schemes to allocate cost savings. These results can
be applied by policy makers and service providers to use the correct scheme to achieve
more acceptable shared rides by following the rules: (1) the Fifty-Fifty Scheme should
not be used, (2) choose the Global Proportional Scheme if the rewarding rate under the
Global Proportional Scheme is greater than or equal to the minimal expected rewarding
rate and (3) choose the Local Proportional Scheme if the rewarding rate under the Global
Proportional Scheme is less the minimal expected rewarding rate. These rules can be
easily implemented. An interesting future research direction will be to study and analyze
effectiveness of other methods used for allocation of cost savings in the context of shared
mobility systems to discover other useful rules to achieve more acceptable shared rides.
Results call for further studies in this interesting and challenging research direction.
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Appendix A

Proof of Lemma 3. To show the minimal rewarding rate for passengers under the Local
Proportional Scheme is less than or equal to that of the Global Proportional Scheme, we
must show that
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j=1
yp(1− α)Fdj(x, y) = yp(1− α)F(x, y),

yp(1− α)F(x, y)[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≥ D

∑
d=1

Jd

∑
j=1
{

yp(1− α)Fd∗ j∗(x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗cd∗ j∗

][(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]}
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Note that

D
∑

d=1

Jd
∑

j=1
{

yp(1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]} =
yp(1−α)Fd∗ j∗ (x,y)

D
∑

d=1

Jd
∑

j=1
{

 ∑
p∈Γdj

yp fp

+xdjcdj

} ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]

=
yp(1−α)Fd∗ j∗ (x,y)

[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]
 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] =
yp(1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗



Hence yp(1−α)F(x,y)[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≥ yp(1−α)Fd∗ j∗ (x,y) ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗

 .

Therefore, the minimal rewarding rate for passengers under Local Proportional
Scheme is less than or equal to that of Global Proportional Scheme. �

Appendix B

Proof of Lemma 4. We first show that the minimal rewarding rate for drivers under the
Local Proportional Scheme is less than that of the Global Proportional Scheme. To show
the minimal rewarding rate for drivers under the Local Proportional Scheme is less than or
equal to that of the Global Proportional Scheme, we must show that

(1− α)xdjF(x, y)[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≥ xd∗ j∗(1− α)Fd∗ j∗(x, y)[(
∑

p∈Γd∗ j∗
yp fp

)
+ xd∗ j∗cd∗ j∗

] .

Let d∗, j∗ be the winning bid j∗ of driver d∗ such that

(d∗, j∗) = arg min
(d,j)

(1−α)xdj Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 .

It follows that
(1−α)xdj Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 ≥
xd∗ j∗ (1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

 .

(1− α)xdjFdj(x, y) ≥
xd∗ j∗ (1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗


D
∑

d=1

Jd
∑

j=1
(1− α)xdjFdj(x, y) ≥

D
∑

d=1

Jd
∑

j=1
xd∗ j∗ (1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗


D
∑

d=1

Jd
∑

j=1
(1−α)xdj Fdj(x,y)[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≥
D
∑

d=1

Jd
∑

j=1
xd∗ j∗ (1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]
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As
D
∑

d=1

Jd
∑

j=1
(1− α)xdjFdj(x, y) = (1− α)F(x, y),

(1− α)F(x, y)[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≥
D
∑

d=1

Jd
∑

j=1
xd∗ j∗ (1− α)Fd∗ j∗ (x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗ cd∗ j∗

][(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] .

Note that

D
∑

d=1

Jd
∑

j=1
xd∗ j∗ (1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] =

xd∗ j∗ (1−α)Fd∗ j∗ (x,y)
D
∑

d=1

Jd
∑

j=1

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]

=

xd∗ j∗ (1−α)Fd∗ j∗ (x,y)
D
∑

d=1

Jd
∑

j=1

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] =
xd∗ j∗ (1−α)Fd∗ j∗ (x,y)

[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]
 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]

=
xd∗ j∗ (1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗


Therefore the minimal rewarding rate for drivers under the Local Proportional Scheme is less than or equal

to that of the Global Proportional Scheme. �

Appendix C

Proof of Lemma 5. Let r∗ be the ride corresponding to the winning bid j∗ of driver d∗ such that (d∗, j∗) =

arg max
(d,j)

yp(1−α)Fdj(x,y) ∑
p∈Γdj

yp fp

+xdjcdj

 .

To show the maximal rewarding rate for passengers under the Local Proportional Scheme is greater than or
equal to that of the Global Proportional Scheme, we must show that

yp(1−α)Fd∗ j∗ (x,y) ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗

 ≥
(1−α)yp F(x,y)[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] .

Note that
yp(1−α)Fdj(x,y) ∑

p∈Γdj
yp fp

+xdjcdj

 ≤
yp(1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗



yp(1− α)Fdj(x, y) ≤
yp(1− α)Fd∗ j∗(x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗cd∗ j∗

]

D

∑
d=1

Jd

∑
j=1

yp(1− α)Fdj(x, y) ≤
D

∑
d=1

Jd

∑
j=1
{

yp(1− α)Fd∗ j∗(x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗cd∗ j∗

] }

D
∑

d=1

Jd
∑

j=1
yp(1− α)Fdj(x, y)[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≤ D

∑
d=1

Jd

∑
j=1
{

yp(1− α)Fd∗ j∗(x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗cd∗ j∗

[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]]}
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As
D
∑

d=1

Jd
∑

j=1
yp(1− α)Fdj(x, y) = yp(1− α)F(x, y),

yp(1− α)F(x, y)[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≤ D

∑
d=1

Jd

∑
j=1
{

yp(1− α)Fd∗ j∗(x, y)

[(
∑

p∈Γdj

yp fp

)
+ xdjcdj

]
[(

∑
p∈Γd∗ j∗

yp fp

)
+ xd∗ j∗cd∗ j∗

][(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]}

Note that

D
∑

d=1

Jd
∑

j=1
{

yp(1−α)Fd∗ j∗ (x,y)

 ∑
p∈Γdj

yp fp

+xdjcdj


 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]}

=

yp(1−α)Fd∗ j∗ (x,y)
D
∑

d=1

Jd
∑

j=1
{

 ∑
p∈Γdj

yp fp

+xdjcdj

} ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]

=
yp(1−α)Fd∗ j∗ (x,y)

[(
P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]
 ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

[( P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)]

=
yp(1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗


yp(1−α)F(x,y)[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] ≤ yp(1−α)Fd∗ j∗ (x,y) ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗


Therefore the maximal rewarding rate for passengers under the Local Proportional

Scheme is greater than or equal to that of the Global Proportional Scheme.

As the rewarding rate for driver d∗ is
yp(1−α)Fd∗ j∗ (x,y) ∑

p∈Γd∗ j∗
yp fp

+xd∗ j∗ cd∗ j∗

 and

yp(1−α)Fd∗ j∗ (x,y) ∑
p∈Γd∗ j∗

yp fp

+xd∗ j∗ cd∗ j∗

 ≥
yp(1−α)F(x,y)[(

P
∑

p=1
yp fp

)
+

(
D
∑

d=1

Jd
∑

j=1
xdjcdj

)] , the maximal rewarding rate for

the drivers under the Local Proportional Scheme is greater than or equal to that of the
Global Proportional Scheme. �
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