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Abstract: Microgrid (MG) is a novel concept for a future distribution power system that enables
renewable energy sources (RES). The intermittent RES, such as wind turbines and photovoltaic
generators, can be connected to the MG via a power electronics inverter. However, the inverter
interfaced RESs reduce the total inertia and damping properties of the traditional MG. Consequently,
the system exhibits steeper frequency nadir and the rate of change of frequency (RoCoF), which may
degrade the dynamic performance and cause the severe frequency fluctuation of the system. Smart
loads such as inverter air conditioners (IACs) tend to be used for ancillary services in power systems.
The power consumption of IACs can be regulated to suppress frequency fluctuation. Nevertheless,
these IACs, regulating power, can cause the deviation of indoor temperature from the temperature
setting. The variation in indoor temperature should be controlled to fulfill residential comfort. This
paper proposes a multi-objective decentralized model predictive control (DMPC) for controlling
the power consumption of IACs to reduce MG frequency fluctuation and control the variation in
indoor temperature. Simulation results on the studied microgrid with the high penetration of wind
and photovoltaic generator demonstrate that the proposed DMPC is able to regulate frequency
deviation and control indoor temperature deviation as a user preference. In addition, the DMPC
has a superior performance effect to the proportional-integral (PI) controller in terms of reducing
frequency deviation, satisfying indoor temperature preferences, and being robust to the varying
numbers of IACs.

Keywords: load frequency control; inverter air conditioner; decentralized model predictive control;
microgrid; smart load

1. Introduction
1.1. Motivation

Due to the considerable growth of renewable energy sources (RES) and distributed
generations (DG), the concept of microgrid (MG) has become increasingly interesting
worldwide [1–3]. The MG is generally referred to as a self-sustained small distribution
power system comprised of loads, DG, and/or energy storage systems [3–7]. The MG
can be operated in two modes, i.e., grid-connected or islanded modes [3–8]. The islanded
operational mode of MG is significantly more challenging than the grid-connected mode
because the voltage and frequency regulation of the MG is no longer dominated by the
main grid [1–5]. The balance of power generation and loads in the MG is normally
controlled by the microgrid central controller [1]. The DG, based on RES such as wind and
photovoltaic (PV) generation, is conventionally connected to the MG by a power electronic
inverter [9–11]. The capacity of installed inverter-based DG in power systems is rapidly
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growing [11]; however, the converter-interfaced DG to the power system causes the absence
of rotational masses from synchronous generators (SGs), which leads to a lack of inertia and
damping properties [9,11]. Consequently, the system exhibits steeper frequency nadir and
the rate of change of frequency (RoCoF), which may degrade the dynamic performance,
cause severe frequency deviation, and challenge the operation of sensitive equipment, such
as protective relays in the grid [9,11]. The issue of low inertia has been reported to occur in
various countries with high penetration of RESs. In September 2016, a black out occurred
in South Australia due to the lack of inertia; the system could not accommodate rapid
changes in frequency during sudden load imbalance [11].

1.2. Literature Review

In order to increase the inertial response of inverter-interfaced DG and improve
frequency regulation, various techniques have been proposed in the literature [1,2,9,11].
The virtual synchronous generator (VSG) has been introduced as an effective solution for
increasing system inertia [10]. The VSG mimics the behavior of conventional SGs in large
power systems. VSG controllers have been designed, based on the swing equation, to
imitate the static and dynamic characteristics of the SG [10]. However, the inertia emulator
needs the conventional battery energy storage system (BESS) or other storage devices to
inject power into the power system. Additionally, the BESS has been used for mitigating
power fluctuation from RESs. Nevertheless, the poor life cycle of BESS has been identified
as the key barrier of BESSs which hampers the development of the MG [8]. The controlling
of DG-based RESs, such as wind and photovoltaic (PV) generation, has been proposed to
suppress frequency deviation and increase the MG’s inertial response [10]. However, the
controlling output power of wind and PV generators reduces the output power that the
wind and PV can generate.

As explained above, the mismatch of power generation and load can be reduced by
the generator side control. The studies of generator side controls for improving inertia of
the inverter-based DGs have been studied by various researchers [1–3,8,11]. However, the
ability of the generator side control may limit when the system operates against the severe
frequency fluctuations. Therefore, controlling the power consumption of the controllable
load is an interesting procedure to increase the inertia of the MG. The high penetration of
RESs should have less effect on power system stability.

Recently, controllable loads, such as plug-in hybrid electric vehicles (PHEVs) [12] and
air conditioners (ACs) [13–21] have been used to suppress frequency deviation. The PHEVs
designed for traveling may not be appropriate for solving the severe frequency fluctuation
of the MG. On the other hand, the increase in ambient temperature, remarkably, causes
a high number of ACs in the power system [13–21]. The ACs are encouraged to act as a
thermal battery for providing demand-side management [13–15], operating reserves [16],
compensation for power fluctuations from the PV generator [17], and in primary frequency
regulations (PFR) [18–21].

There are two types of ACs applying for PFR: the regular fixed frequency ACs and in-
verter ACs (IACs). The compressors of the regular ACs can only operate in two modes, i.e.,
on mode or off mode, while the compressors of the IACs can be adjusted continuously [20].
The on/off ACs for PFR work by turning on the ACs when the frequency is high, or the
indoor temperature hits the maximum limit, and turning off the ACs when the frequency is
low, or the indoor temperature hits the minimum limit [18,19]. However, the on/off switch
ACs require the resetting of the indoor temperature to the nominal operating when the
indoor temperature hits the minimum/maximum limit, which may not be appropriate to
suppress severe frequency deviation. In any case, the IACs for PFR work by controlling
the power consumption of IACs to suppress frequency deviation and maintain the indoor
temperature as simultaneously defined [20,21]. The IACs have superior performance to the
on/off ACs because the inverters of IACs can be controlled by frequency adjustment and
temperature set-point changes. In [20], the IACs were used for the mitigating frequency
oscillation of a multi-area interconnected power system. In [21], the coordinated control of
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IACs groups has been proposed. Nevertheless, in [20,21], the number of IACs participating
in frequency regulation is constant for one day, and the control parameters are optimized,
based on the fixed number of participating IACs. Nevertheless, when some IACs have
accidentally stopped participation in PFR, the designed controller may deteriorate and may
not successfully handle the PFR. Therefore, the controller designed for a variable number
of IACs is expected.

Moreover, as proposed in [20,21], the IACs applied for PFR cause a slight temperature
variation, which does not affect user comfort. Nevertheless, the preferable indoor tempera-
ture variation of each person/area is different, depending on the purpose for cooling the
room or area. For example, a home living room tolerates a smaller temperature variation
than a department store. In addition, based on the benefit of frequency ancillary services
of smart loads for the low inertia power system explained in [22–24], the higher ability
of the smart load for PFR can get a higher returned benefit to the owner. Therefore, the
different indoor temperature range, which has a different ability to suppress frequency
deviation, should result in the beneficial difference returned to the IACs owner. In this man-
ner, the power control of IACs must work in problems with multiple objective functions,
i.e., regulating frequency deviation and maintain the indoor temperature varied among
the preference range. Therefore, the multi-objective distributed controller is required for
controlling each IAC.

Model predictive control (MPC) is an efficient control technique with high perfor-
mance [25–29]. Among the different control schemes, MPC demonstrates its success in
several industrial applications for numerous technical constraints that can be included in
the controller design [25–28]. The distributed MPC (DMPC) is also gradually developing
for the control of large-scale systems with the development of communication network
technologies, which allow the control technologies and methodologies to utilize their poten-
tial for improving control [28]. The DMPC is successfully applied for power management
of connected microgrids [30], voltage coordination in multi-area power systems [31], and
load frequency control of multi-area power systems after deregulation [32]. Moreover, the
multi-objective MPC has been proposed for improving the virtual inertia of permanent
magnet synchronous generator (PMSG)-based wind turbines [33].

1.3. Methodology and Contributions

This paper intends to study the multi-objective DMPC for controlling the power
consumption of IACs for PFR. The objectives of the DMPC controller consist of (1) to
reduce the microgrid frequency fluctuation caused by wind and PV power generations,
and (2) to maintain the varied indoor temperatures among IACs owner-acceptable ranges.
The contribution of the proposed method can be summarized as follows:

(1) With multiple objectives (frequency deviation and indoor temperature deviation)
of the controlling, the power consumption of IACs is able to maintain the indoor
temperature inside the preferable range while regulating the frequency deviation.

(2) The temperature weights of multi-objective DMPC are optimized by the firefly algo-
rithm (FA) to minimize the frequency deviation and control the indoor temperature,
which varied inside the preference ranges.

(3) The proposed multi-objective DMPC is able to control the power consumption of a
varied number of IACs and produce various ranges of temperature deviation satisfied
with IACs owner preference.

(4) This is the first paper that deals with controlling indoor temperature and frequency
deviation simultaneously. The proposed method can apply to the microgrid, which
does not have any energy storage system and operates at a severe frequency fluctu-
ation. The IAC owners can decide whether or not to use their IACs for frequency
regulation. Therefore, the power system is more stable by the multi-objective DMPC
control IACs, in comparison to the conventional IAC load in the microgrid.

The organization of this paper is as follows. First, the studied system and its model
are explained in Section 2. Next, the multi-objective DMPC for IACs control is described
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in Section 3. Subsequently, the simulation results are shown in Section 4. Finally, the
conclusions are provided in Section 5.

2. Microgrid and Its Model
2.1. Microgrid

Figure 1 depicts the microgrid with the DMPC for IAC control employed in the study.
System details are diesel generator 25 MW, PV generator 10 MW, wind generator 12.5 MW,
16 MW IACs, and 20 MW load [12,21,34]. The system base is 20 MW. The total number of
IAC is 2000 units, and each unit has a capacity of 8 kW. The communication links connect
the magnitude of electric devices in the distributed locations and exchange their status
information and control instructions [12]. In actual practice, a frequency measurement
device, such as a phase-locked loop (PLL), is used for measuring the feedback frequency
deviation signal [35,36]. The effects of frequency measurements and PLL dynamics should
be added to the system modeling by a second-order model [36]. However, this work does
not consider the effects of frequency measurements and PLL dynamics.
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Figure 1. Microgrid with DMPC for IACs control.

Due to the sudden power change from the intermittent PV power, wind power, and
load fluctuation, the diesel generator may not sufficiently compensate for power because
of its slow dynamic response [12,34]. The fast dynamic response of the IACs is expected to
significantly compensate for real-power imbalance in the system by controlling the energy
consumption of the IACs [20,21].

Conventionally, the IAC has been used to produce indoor temperature for residential
comfort. The actual value of the indoor temperature is crucial. However, for somebody
living in an apartment, it does not matter if the temperature deviation is. Therefore, the
controlling of indoor temperature deviation, i.e., controlling IAC power consumption, is
able to apply for PFR. In this manner, we need two controllers: one for the frequency
variation (upper level) and one for the temperature. In addition, to take advantages of
IAC for PFR, the various indoor temperature variation levels have been considered the
selected choices for the IAC’s owner. Therefore, the IACs have been classified into several
groups to perform the various indoor temperature deviations control. Each group has been
controlled separately to produce desired indoor temperature deviation and simultaneously
maintain system frequency deviation. The temperature controller(s), in this case, works
against their upper and lower limits, and this “flexibility” provides the possibility of using
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IACs in controlling the frequency deviation. The DMPC is used for controlling frequency
and indoor temperature deviations simultaneously, as shown in Figures 1 and 2.
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Figure 2 displays the linearized model of the studied microgrid. The IACs are con-
trolled by the DMPC, as shown in Figure 3. The system parameters are shown in Table 1.
The linearized state equations of the microgrid can be expressed as follows:

•
x = Ax + Bu (1)

y = Cx + Du (2)
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Table 1. System Parameters.

Parameters Value

Reference frequency, fre f (Hz) 50

Inertia constant, H (s) 0.1

Damping characteristic of load, D (pu) 0.12

Governor time constant, Tg (s) 0.1

Turbine time constant, Tt (s) 0.4

Primary droop factor, R (Hz/pu.MW) 0.4

Secondary frequency controller, Ki (s) 0.1

Total number of IAC (units) 2000

Capacity of IAC (kW) 8

Time constant of the compressor of the IACs, Tc (s) 0.02

Compressor of the IACs gain, KP 40

Feedback heat gain of the IACs, KQ 120

A =



−1
Tc

0 0 0 0 0 0 0
−1
2H

−D
2H

1
2H 0 0 −1

2H
1

2H
1

2H
0 0 −1

Tt
1
Tt

0 0 0 0
0 −1

RTg
0 −1

Tg
−1
Tg

0 0 0
0 Ki 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, B =



KP
Tc
0
0
0
0
0
0
0


,

C =
[

0 1 0 0 0 0 0 0
]
, D = [0].

where the state vector x = [∆PIACs ∆f ∆PDS ∆PGov ∆PInt ∆PLoad ∆PWind ∆PSolar]T. y is the
output vector, u is the control signal, ∆f = f − fref is the deviation between the microgrid
frequency f and the reference frequency fre f , ∆PIACs = PIACs − PIACs, re f is the deviation
of the operating power PIACs and the reference power PIACs, re f , of the IACs. ∆PDS =
PDS − PDS, re f is the deviation between the output power PDS and the reference output
power PDS, re f of the diesel turbine, ∆PGov = PGov − PGov, re f is the deviation between the
output power PGov and the reference output power PGov, re f of the diesel governor, and
∆PInt = PInt − PInt, re f is the deviation between the output power PInt and the reference
output power PInt, re f of the diesel integrator.

∆PLoad = PLoad − PLoad, re f is the deviation between the load power PLoad and the
reference load power PLoad, re f , ∆PWind = PWind − PWind, re f , is the deviation between the
wind power PWind and the reference wind power PWind, re f , and ∆PSolar = PSolar− PSolar, re f
is the deviation between the solar power PSolar and the reference solar power PSolar, re f .
Tc is the time constant of IACs, Tg and Tt are the governor and turbine time constants of
the diesel generator, respectively. R is the primary droop factor, and Ki is the secondary
frequency controller. H and D are the inertia constant and damping coefficients of the
microgrid, respectively. This state space is employed as the model in the DMPC calculations.
The saturation block is used to limit the power output of IACs for regulating frequency.

2.2. IAC Model

The linearized model of IAC for PFR is shown in Figure 2 [20,37,38]. The IAC model
composes a room’s thermal model and an electrical model of the IAC.

(1) The thermal model of a room is developed to study the operating characteristics of
IACs. The thermal model of a room is a model, which describes the relationship



Energies 2021, 14, 6969 7 of 22

between the room temperature and the thermal deviation of the room from the
refrigerating capacity of the IACs. The room temperature (Tindoor) can be defined as

Tindoor =
Qg −QIAC

CA ρA VR s
(3)

Qg = (UO,ASR + CA ρA VRξ)(TA − Tindoor) + QDis (4)

where Qg is the total heat gain of the room that comes from the heat transfer between the
indoor and outdoor air. QIAC is the refrigerating capacity of the IACs, and QDis is the heat
radiation from disturbances, such as people, lights, and appliances. CA and ρA are the heat
capacity and the density of the air, respectively, VR is the room’s volume, and SR is the
surface area of the room. s is the frequency variable, and TA is the ambient temperature.
UO,A and ξ are the heat transfer coefficient and air exchange times between the room and
the ambiance.

(2) The electrical model of IACs is provided using inverter interfaced IACs. The IAC’s
compressor can change the speed continuously by adjusting the operating frequency.
The operating power and refrigerating capacity are regulated with the operating
frequency and can be expressed as

∆PIAC =
KP

Tcs + 1
∆ f IAC + µP (5)

∆QIAC =
KQ

Tcs + 1
∆ f IAC + µQ (6)

where ∆PIAC = PIAC − PIAC,re f is the deviation of the operating power PIAC and the
reference power PIAC,re f of the IAC. ∆QIAC = QIAC − QIAC,re f is the deviation of the
refrigerating capacity QIAC and the reference refrigerating capacity QIAC,re f of the IAC.
∆ f IAC = f IAC − f IAC,re f is the deviation of the operational frequency f IAC and the reference
operational frequency f IAC,re f of the IAC. KP, KQ, µP, and µQ are the constant coefficients,
Tc is the time constant of the compressor of the IAC.

The relationship between the operating power PIAC and the refrigerating capacity
QIAC can be described as

QIAC =
KQ

KP
PIAC +

KPµQ − KQµP

KP
(7)

The frequency deviation of the IACs is mainly based on the gap between the tempera-
ture setpoint and the current room temperature and can be expressed as

∆ f IAC = K1 ∆Tindoor (8)

where K1 is the temperature controller of the IACs and ∆Tindoor = Tindoor − Tindoor, set, is the
deviation between the indoor temperature Tindoor and the temperature setpoint Tindoor, set.

If the IACs are used for PFR, the IAC operating frequency would also be influenced
by the system frequency, which can be described as

∆ f IAC = K1 ∆ Tindoor + K2 ∆ f (9)

where K2 is the controller of the IACs for PFR.

2.3. IACs for Primary Frequency Control

The application of IACs for primary frequency control is performed by controlling
the power consumption of IACs. Figure 4 depicts the IACs power control and the related
room temperature against frequency deviation used in this study. The IAC control can be
divided into the five following regions.
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Region (1): The microgrid operates at under-frequency (−∆ f ), and the indoor tem-
perature hits the maximum limit (Tindoor = Tmax

indoor). Therefore, the IACs consume power at
the minimum limit (PIACs = Pmin

IACs) for regulating frequency to the setpoint (∆ f = 0).
Region (2): The microgrid operates at under-frequency, and the indoor temper-

ature varies among the maximum limit and setpoint (Tindoor,set < Tindoor < Tmax
indoor).

The power consumption from IACs varies among the minimum limit and the setpoint
(Pmin

IACs < PIACs < PIACs, set) to stabilize frequency deviation.
Region (3): The microgrid operates at a dead band frequency, and the indoor tem-

perature is at the setpoint (Tindoor = Tindoor, set). The IACs consume power at the set-
point (PIACs,set).

Region (4): The microgrid operates at over-frequency (+∆f ), and the indoor temperature
varies among the setting temperature and the minimum limit (Tmin

indoor < Tindoor < Tindoor, set).
The IACs consume power among the expected power and the maximum limit
(PIACs, set < PIACs < Pmax

IACs).
Region (5): The microgrid operates at over-frequency, and the indoor temperature hits the

minimum limit (Tmin
indoor). Therefore, the IACs consume power at the maximum limit (Pmax

IACs).

3. Multi-Objective DMPC for IACs Control
3.1. MPC Method

The conventional MPC produces a control signal based on the current measurements
and future output predictions. The objective of the MPC is to determine a sequence of the
control moves, i.e., the manipulated input variable so that the predicted response optimally
moves to the setpoint.

The general discrete-time linear time-invariant (LTI) state space can be represented
as [25–29],

x(k + 1)= A x(k) + Bu u(k) + Bd d(k) + Bv v(k)

y(k)= ỹ(k) + z(k)

= C x(k) + Du u(k) + Dd d(k) + Dv v(k) + z(k)

 (10)

where x is the vector of m state variables, u is the manipulated variables, d is the measured
disturbances, v is the unmeasured disturbances, y is the vector of plant output, and z
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is the measurement noise. A, Bu, Bd, Bv, C, Du, Dd, and Dv are the constant matrices
of appropriate size. The variable ỹ represents the plant output before the addition of
measurement noise, and k is the current time index.

The MPC problem is the computation of the control signal u(k) as the solution of the
quadratic program, which is defined as

min
u(k)∈M

M
∑

j=1
[y(k + j)− r(k + j)]T Wy[y(k + j)− r(k + j)]

+[u(k)− u(k− 1)]TWu[u(k)− u(k− 1)]
(11)

Subject to

y(k + 1) = y(k) + A
nT

∑
i=0

δiu(k− i)

− ∆umax + u(k− 1) ≤ u(k) ≤ ∆umax + u(k− 1),

where r(k + j) is the desired profile, nT is the number of impulse response coefficients used
to model the system, δi is the step response coefficient, M is the control horizon, Wy and
Wu are the positive semidefinite weighting matrices. Each weight (Wy, Wu) is assumed to
be a constant multiplied by the identity matrix.

3.2. Decentralized MPC

The decentralized MPC (DMPC) refers to the problem of controlling a multivariable
dynamical process. The DMPC comprises several interacting subsystems and is subject
to constraints in computation and communication in an efficient way [28,29]. The control
problem of DMPC is divided into a set of local MPCs of smaller size. Each controller is
based on a local model of the overall dynamics, possibly neglecting existing dynamical
interactions. The global performance objective is suitably mapped into a local objective for
each of the local MPC problems.

The general discrete-time LTI state space of the nth DMPC can be represented by [28,29],

xn(k + 1)= An xn(k) + Bu,nun(k) + Bd,ndn(k) + Bv,nvn(k)

yn(k)= ỹn(k) + zn(k)

= Cxn(k) + Du,nun(k) + Dd,ndn(k) + Dv,nvn(k) + zn(k)

 (12)

The DMPC solves the following optimization problem,

min
u(k)∈Mn

Mn
∑

j=1
[yn(k + j)− rn(k + j)]T Wy,n[yn(k + j)− rn(k + j)]

+[un(k)− un(k− 1)]TWu,n[un(k)− un(k− 1)]
(13)

Subject to

yn(k + 1) = yn(k) + An

mT

∑
i=0

δi,nun(k− i)

− ∆umax
n + un(k− 1) ≤ un(k) ≤ ∆umax

n + un(k− 1),

where rn(k + j) is the desired profile, mT is the number of impulse response coefficients
used to model the system, δi,n is the step response coefficient, Mn is the control horizon,
Wy,n and Wu,n are the positive semidefinite weighting matrices, of the nth DMPC.

3.3. Multi-Objective DMPC for IACs Control

Typically, the MPC can apply for controlling multiple-input multiple-output (MIMO)
and single-input single-output (SISO) systems [25–29]. However, the MPC may deteriorate
for (reduce to) a single-input multiple-output (SIMO) system (i.e., single control signal
with multi-objective controlling) because it is difficult to find the single optimal control
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signal to produce (satisfy) two objectives. Therefore, the multi-objective MPC has been
proposed in this work, as shown in Figure 5. The multi-objective of MPC sums up the
multiple setpoints to a single setpoint and the system is transferred to be the SISO system.
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As shown in Figure 5, the multivariable MPC is applied for the power control of
IAC groups in order to provide two objectives: (1) to stabilize the frequency deviation
of microgrid (∆ f ), and (2) to maintain the indoor temperature of the IACs oscillating in
the acceptable indoor temperature deviation range (∆Tindoor). The multivariable MPC
for IACs control consists of setpoint one and setpoint two. Setpoint one is the reference
frequency deviation (∆ fre f ), which has the minimum–maximum deviation limits of ∆ f min

and ∆ f max, respectively. Setpoint two is the reference of indoor temperature deviation
(∆Tindoor, re f ) which has the minimum–maximum deviation limits of ∆Tmin

indoor and ∆Tmax
indoor,

respectively. The setpoint one and setpoint two are multiplied by weights wF and wT ,
respectively, before being summed up to be the setpoint of conventional MPC, i.e., yre f =
wF∆ fre f + wT∆Tindoor, re f .

In addition, to control the temperature for the people’s comfort, the IACs are divided
into n groups. Each IAC group has different ranges of acceptable indoor temperature limits.
The DMPC is used to control the consumption power of the IAC group.

Figure 6 displays the details of setpoint one, setpoint two, and control signals of the
IAC group. For setpoint one, the frequency deviation varies between the minimum and
maximum limits. Setpoint one is set at the same desired minimum and maximum limits
for all DMPCs. For setpoint two, the indoor temperature deviations are set based on the
IAC owner preferences. Each IAC group has different desired minimum and maximum
temperature deviation limits. For the control signal, each DMPC has its control signal,
which is used to control the power consumption of the IAC group to produce the desired
frequency deviation (Setpoint 1) and the indoor temperature deviation (Setpoint 2) set
in advance.



Energies 2021, 14, 6969 11 of 22

Energies 2021, 14, x FOR PEER REVIEW 12 of 24 
 

 
Energies 2021, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/energies 

which is used to control the power consumption of the IAC group to produce the desired 

frequency deviation (Setpoint 1) and the indoor temperature deviation (Setpoint 2) set in 

advance. 

max

,1 indoorT

min

,1 indoorT

1u 2u

maxf

tt

t

tt

Control signal

Setpoint 2: Indoor temperature deviation

Setpoint 1: Frequency deviation

DMPC#1

DMPC#2

DMPC#1 DMPC#2

DMPC#1 DMPC#2

DMPC#N

t

DMPC#N

Nu

t

DMPC#N

minf

f

Setpoint 1

,1 indoorT

Setpoint 2,1

,2 indoorT
, indoor NT

Setpoint 2,2 Setpoint 2,3

max

,2 indoorT

min

,2 indoorT

max

, indoor NT

min

, indoor NT

 

Figure 6. Details of setpoints and control signal of DMPCs for IACs control. 

Note that the system in Figure 6 is the MIMO system. However, for the problem of 

controlling one group of IACs, we consider the study system to be the SIMO system (Sin-

gle input: the consumption power of IAC, multiple outputs: indoor temperature variation 

and system frequency deviation). When two outputs sum up to be one output, the SIMO 

system is transferred to the SISO system. This consideration is intended to explain one 

group of IACs. 

The IAC groups are classified based on the preferred indoor temperature deviation 

ranges min max

, ,[ ] indoor n indoor nT T . As shown in Figure 6, when setting the desired frequency de-

viation of the microgrid min max[ ] f f  for all DMPCs and selecting the different ,T n
w  

for each DMPCs can make min max

, ,[ ] indoor n indoor nT T  for each IAC group different. 

In this work, the conventional MPC is applied for the IAC controller with the objec-

tive to control each group of IACs. Therefore, the structure of MPC in this work does not 

change. However, the control signal before summing up is a different signal. Then, the 

different MPCs are used for each IAC group and in this work, is called DMPC. Therefore, 

the state vector         
,

( [ ] )T
n IACs n DS Gov Int Load Wind Solar

x P f P P P P P P  is different for the 

nth IAC group. 

Consider the microgrid with IAC control in Figure 2 and the state space in (1) and 

(2), the multi-objective DMPC for the thn  IAC group can be formulated as 

Figure 6. Details of setpoints and control signal of DMPCs for IACs control.

Note that the system in Figure 6 is the MIMO system. However, for the problem of
controlling one group of IACs, we consider the study system to be the SIMO system (Single
input: the consumption power of IAC, multiple outputs: indoor temperature variation
and system frequency deviation). When two outputs sum up to be one output, the SIMO
system is transferred to the SISO system. This consideration is intended to explain one
group of IACs.

The IAC groups are classified based on the preferred indoor temperature deviation
ranges [∆Tmin

indoor, n ∆Tmax
indoor, n]. As shown in Figure 6, when setting the desired frequency

deviation of the microgrid [∆ f min ∆ f max] for all DMPCs and selecting the different wT, n
for each DMPCs can make [∆Tmin

indoor, n ∆Tmax
indoor, n] for each IAC group different.

In this work, the conventional MPC is applied for the IAC controller with the objective
to control each group of IACs. Therefore, the structure of MPC in this work does not change.
However, the control signal before summing up is a different signal. Then, the different
MPCs are used for each IAC group and in this work, is called DMPC. Therefore, the state
vector (xn = [∆PIACs, n ∆ f ∆PDS ∆PGov ∆PInt ∆PLoad ∆PWind ∆PSolar]

T) is different for
the nth IAC group.

Consider the microgrid with IAC control in Figure 2 and the state space in (1) and (2),
the multi-objective DMPC for the nth IAC group can be formulated as

xn(k + 1)= A xn(k) + Buun(k) + Bddn(k) + Bvvn(k)

yn(k)= ỹn(k) + zn(k)

= Cxn(k) + Duun(k) + Dddn(k) + Dvvn(k) + zn(k)

 (14)

where xn = [∆PIACs, n ∆ f ∆PDS ∆PGov ∆PInt ∆PLoad ∆PWind ∆PSolar]
T. It can be as-

sumed that all IAC groups have the same state space model plant, i.e., A, Bu, Bd, Bv, C, Du, Dd,
and Dv.
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The DMPC solves the following optimization problem,

min
un(k)∈M

M
∑

j=1

[
yn(k + j)− yre f ,n(k + j)

]T
Wy

[
yn(k + j)− yre f ,n(k + j)

]
+[un(k)− un(k− 1)]TWu[un(k)− un(k− 1)]

(15)

Subject to

yn(k + 1) = yn(k) + A
nT

∑
i=0

δi un(k− i)

− ∆umax
n + un(k− 1) ≤ un(k) ≤ ∆umax

n + un(k− 1),

where yn(k + j) = wF,n∆ fn(k + j) + wT,n∆Tindoor, n(k + j) is the output of the system which
is the summation of frequency deviation and temperature deviation multiplied by the
weights. yre f ,n(k + j) = wF,n∆ fre f ,n(k + j) + wT,n∆Tindoor, re f ,n(k + j) is the desired profile,
δi,n is the step response coefficient of the nth DMPC for controlling the nth IACs group.

In addition, weights of the nth IACs group, i.e., wF,n and wT, n, are optimized in
Section 3.4 to minimize ∆ f and produce the desired ∆Tindoor, n with the acceptable deviation
ranges, such as [∆Tmin

indoor, n ∆Tmax
indoor, n].

3.4. Weight Tuning of Multi-Objective DMPC

To produce the effective multi-objective DMPC control, tuning weights (wF,n and wT, n)
of the two setpoints (∆ f and ∆Tindoor, n) is a necessary procedure. Selecting appropriate
weights of each objective can produce different minimum and maximum ranges of the
setpoints ([∆ f min ∆ f max] and [∆Tmin

indoor, n ∆Tmax
indoor, n ]). The objective with significant

weight is more important than the objective with a smaller weight. The significant weight
can produce a flat minimum–maximum range of the setpoint, while a small weight can
produce a wide minimum–maximum range. Moreover, each setpoint has a different
minimum–maximum range, i.e., the frequency deviation has the minimum–maximum
range of ±0.5 Hz. In contrast, the indoor temperature deviation has the minimum–
maximum ranges of ±0.5 ◦C to ±0.3 ◦C. In addition, controlling the indoor temperature
deviation is more accessible than controlling the microgrid frequency deviation. Therefore,
the weighting of frequency deviation is more significant than the weighting of indoor
temperature deviation. For simplicity, in this work, the frequency deviation weights of
each DMPC are set to the same, i.e., wF,n = wF, and the indoor temperature weights are
adjusted to maintain the indoor temperature in the acceptable ranges.

The indoor temperature deviation weights of the N groups of IACs (wT,1, wT,2, , wT,N)
are optimized by the firefly algorithm (FA) [39]. The objective of the optimization is to
minimize the integral absolute frequency deviation and maintain the indoor tempera-
ture deviation varied among the acceptable limits. The optimization problem can be
formulated by

Minimize J1 =
∫ t f inal

tinit

|∆ f (t) |dt (16)

Subject to
∆Tmin

indoor, n ≤ ∆Tindoor, n(t) ≤ ∆Tmax
indoor, n,

wmin
T, n ≤ wT, n(t) ≤ wmax

T, n , n = 1, . . . , N

where t is the time instant, tinit and t f inal are the initial and the final simulation times,
respectively. The procedure of the FA-based temperature weight tuning is shown in
Figure 7. Note that α is the randomization parameter, β0 is the attractiveness at iteration 0,
and γ is the light absorption coefficient of the FA [37].
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4. Simulation Results

The simulation results are conducted by the MATLAB/Simulink program. In the
simulation studies, it is supposed that the studied microgrid in Figure 1, with parameters in
Table 1, is performed under the random load, PV power, wind power, outdoor temperature,
and number of IACs, of the three case studies, as shown in Figure 8. In this work, the
DMPCs have been used to control the IAC groups in order to stabilize the frequency of
MG and maintain the indoor temperature in acceptable ranges.

As shown in Figure 8, in case 1, the PV power is perfect, the wind power is smooth,
the load and the number of IACs are high, and the outdoor temperature is low. This
case assumes that the frequency fluctuates little in a typical case. In case 2, the PV power
significantly fluctuates, the wind power fluctuates, but with a lower magnitude around mid-
day (10.00–16.00 h), the load and the number of IACs are low, and the outdoor temperature
is high. In case 3, the PV and wind power significantly fluctuate; the load, the number
of IACs, and the outdoor temperature are high. The variation in the number of IACs
shown in Figure 8 implies that the total consumption power of IAC participation in PFR
varies among daytime hours. Therefore, the MPC controller should successfully handle the
variation in the IAC number.

Furthermore, the parameters of the thermal and electrical model of IACs are provided as
follows [20]: the heat capacity Ca = 1.005 kJ/kg/◦C, the density of the air ρa = 1.205 kJ/m3,
the room’s volume VR = 250 m3, the surface area of the room SR = 100 m2, the ambient
temperatures TA set as in Figure 8d, the heat transfer coefficient UO,A = 3.6 W/m3/◦C, and
the air exchange times between the room and the ambiance ξ = 0.5 h−1.

In addition, the IACs are assumed to be classified into six groups. For simple simula-
tion, the number of IACs in each group are the same, i.e., the number of IACs in Figure 8e
are divided by 6. For each IAC group, the minimum and maximum ranges of indoor tem-
perature deviations are set as ±0.5 ◦C, ±1.0 ◦C, ±1.5 ◦C, ±2.0 ◦C, ±2.5 ◦C, and ±3.0 ◦C, as
shown in Table 2. The IAC owner selects these indoor temperature deviation ranges. For
example, if the IAC owner selects the indoor temperature deviation range ±0.5 ◦C and sets
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the indoor temperature as 25 ◦C, when the IAC is turned on, the indoor temperature varies
between 24.5 ◦C and 25.5 ◦C. The frequency deviations of all DMPCs are set as ±0.5 Hz,
which is consistent with the allowance frequency of the studied microgrid.
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Table 2. Weighs of indoor temperature deviations for DMPCs.

[∆Tmin
indoor, n ∆Tmax

indoor, n]

(◦C)

wT

00.01–07.00 h
07.01–18.00 h

(Perfect
PV/Non-Perfect PV)

18.01–24.00 h

DMPC 1 [−0.5 0.5] 0.486 0.504/0.819 0.347
DMPC 2 [−1.0 1.0] 0.293 0.301/0.502 0.283
DMPC 3 [−1.5 1.5] 0.299 0.223/0.305 0.166
DMPC 4 [−2.0 2.0] 0.161 0.167/0.235 0.115
DMPC 5 [−2.5 2.5] 0.031 0.029/0.115 0.043
DMPC 6 [−3.0 3.0] 0.012 0.023/0.105 0.014

In the design of DMPCs, some parameters are selected based on [12], and the others
are set based on trial and error to produce frequency deviation and temperature deviation
as defined. The parameters of DMPC controllers are set as follows: P = 10, M = 3,
sampling time interval = 0.1 s, Wy = 1, Wu = 0.1, range of control signal u = [0 1], range
of output y = [−0.01 0.01], reference frequency deviation ∆ fre f = 0, and the reference
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indoor temperature deviation ∆Tindoor,re f = 0. Note that all six IAC groups use the same
DMPCs parameters.

In the optimization of weights of multi-objective DMPC, the frequency deviation
weight is set to 50 (i.e., wF = 50), and the indoor temperature deviations weights are
optimized by FA, as displayed in Figure 7. The parameters of FA and search parameters
are provided as follows: the number of fireflies = 20, maximum iteration = 100, α = 0.5,
β0 = 0.1, γ = 1, and [wmin

T, n wmax
T, n ] = [0.001 1]. [∆Tmin

indoor, n ∆Tmax
indoor, n] are provided

in Table 2.
Moreover, the weights of indoor temperature are optimized based on the time of day,

00.01–07.00 h, 07.01–18.00 h, and 18.01–24.00 h. Between 07.01–18.00 h, two temperature
weights are used based on the PV power generation pattern, i.e., perfect PV (case 1) and
non-perfect PV (cases 2 and 3). As a result, the convergence curve of the objective function
of FA is shown in Figure 9. Table 2 shows the weight of indoor temperature deviations.
The weights of non-perfect PV are higher than the weights of perfect PV due to the high
fluctuation of frequency caused by the non-perfect PV.
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Figure 9. Convergence curve of FA for the indoor temperature weight tuning.

To evaluate the effectiveness of the proposed multi-objective DMPC performance, the
DMPC is compared to “PI” and “No PFR” controllers. The “PI” is the centralized propor-
tional integral (PI), which is used to control the power consumption of the IACs for PFR.
Figure 10 shows the PI controllers for IAC control. The PI1 is used to control the indoor tem-
perature, while the PI2 is used to control the microgrid frequency deviation. The PI param-
eters are optimized by FA, the same as the DMPC, to produce the minimum of integral ab-
solute frequency deviation and maintain the indoor temperature deviation, the same as the
average temperature of the DMPC, i.e., ±(0.5 + 1.0 + 1.5 + 2.0 + 2.5 + 3.0)/6 = ±1.75 ◦C.
The problem of PI parameter optimization can be formulated by

Minimize J2 =
∫ t f inal

tinit

|∆ f (t) |dt (17)
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where ∆Tmin
indoor = −1.75 ◦C and ∆Tmax

indoor = 1.75 ◦C are the minimum and maximum of
indoor temperature deviation. Consequently, the optimal PI parameters obtained from the
FA optimization are KP1 = 3.251, KI1 = 0.037, KP2 = 4.982, and KI2 = 0.473.

Moreover, the “No PFR” is the IAC that acts as a conventional load and does not
participate in PFR. Referred to in Figure 10, only the PI1 is used to control the indoor
temperature. Therefore, the PI1 parameters are set as KP1 = 0.527 and KI1 = 0.032 to
produce minimum temperature deviation.

Figure 11 displays the indoor temperature deviation by DMPCs of case 1. The setting
temperature is 25 ◦C. For DMPC 1, the user minimum–maximum temperature deviation
preferences are ±0.5 ◦C. Therefore, the indoor temperature of DMPC 1 varies between
24.5 ◦C and 25.5 ◦C. Similarly, for DMPC 2–6, due to the user preference temperature,
deviations are ±1 ◦C, ±1.5 ◦C, ±2 ◦C, ±2.5 ◦C, and ±3 ◦C, and the indoor temperatures of
DMPCs 2–6 vary between [24 ◦C–26 ◦C], [23.5 ◦C–26.5 ◦C], [23 ◦C–27 ◦C], [22.5 ◦C–27.5 ◦C],
and [22 ◦C–28 ◦C], respectively. The DMPCs can successfully regulate the indoor tempera-
ture for each IAC group, as defined in advance.
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Figure 11. Indoor temperature deviation of the DMPCs for IAC control of case 1 (the blue line
is the indoor temperature, and the red dash lines are the minimum and maximum limits of the
indoor temperature).

Figure 12 exhibits the frequency deviation, indoor temperature, IAC power consump-
tion, and diesel power of case 1. As shown in Figure 12a, the frequency deviation of No
PFR is higher than the frequency limit of ±0.5 Hz, while the frequency deviations of PI
and DMPC are lower than the frequency limit. This wider frequency band for steady-
state operation (±0.5 Hz) may be applied without adversely impacting the quality of
supply expected by the connected customers and improving the economic efficiency of the
associated investment [4,5].

Figure 12b shows the indoor temperature of No PFR, PI, and DMPC. The case of No
PFR can keep the indoor temperature at the setting temperature (25 ◦C), while the PI and
DMPC can successfully regulate the indoor temperature near the setting temperature with
acceptable variation ranges (±1.75 ◦C).

Figure 12c displays the IACs consumption power of No PFR, PI, and DMPC. The IACs
consumption power in the case of No PFR is very smooth, while the IACs consumption
power of PI and DMPC oscillates across the smooth line of the No PFR. The variation in IAC
power consumption of PI and DMPC is used for regulating system frequency. Figure 12d
displays the diesel power of No PFR, PI, and DMPC. The diesel power of No PFR oscillates
more than that of PI and DMPC.

Figures 13 and 14 depict the simulation results of case 2. In this case, PV generation
fluctuates between 7.00–18.00 h. Therefore, the frequency deviation significantly fluctuates
between 7.00–18.00 h. However, the frequency reduction in the case of the DMPCs is higher
than that of the PI controller.
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Figure 12. Simulation results of case 1 (a) frequency deviation (green dash lines are the fre-
quency minimum and maximum limits), (b) indoor temperature, (c) IACs power consumption,
and (d) diesel power.

Figures 15 and 16 show the simulation results of case 3. In this case, the indoor temper-
ature setting is changed during simulation time, i.e., 22 ◦C, 23 ◦C and 24 ◦C, respectively.
The DMPC can maintain frequency deviation in the acceptable range as well as produce
temperature as the user-defined, successfully. In addition, the DMPC can produce a smaller
frequency deviation than the PI controller.
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Figure 13. Indoor temperature deviation of the DMPCs for IAC control of case 2.
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Figure 14. Simulation results of case 2 (a) frequency deviation, (b) indoor temperature, (c) IACs
power, and (d) diesel power.

Figure 17 displays the standard deviation (STD) of the frequency deviation of cases
1–3. For case 1, the STD of frequency deviation of No PFR is 0.5541. This means that
most of the frequency spread (around 80%) from the reference frequency is ±0.5541 Hz.
Similarly, the frequency spreads from the reference’s frequency of the PI and the DMPC
are ±0.1337 Hz and ±0.0505 Hz, respectively. For case 2, the frequency spreads from
the reference’s frequency of No PFR, PI, and DMPC are ±1.9378 Hz, ±0.2311 Hz, and
±0.0879 Hz, respectively. For case 3, the frequency spreads from the reference’s frequency
of No PFR, PI, and DMPC are ±2.7330 Hz, ±0.3382 Hz, and ±0.1078 Hz, respectively. As
shown in the three cases, the DMPC has the lowest STD, which indicates that the frequency
in the case of DMPC is more adjacent to the reference frequency than that of No PFR and PI.
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consumption power, and (d) diesel power.
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Figure 17. Standard deviation of frequency deviation.

To confirm the robustness of the control method against the changing number of IACs
from nominal number to−50%, and the change in ambient temperature from 0 ◦C to 2.5 ◦C,
as shown in Figure 18, it can be observed that the change in ambient temperature does not
change the variation of maximum frequency deviation. In contrast, the decreasing number
of IAC causes the variation of maximum frequency deviation. However, the variation of
maximum frequency deviation in the case of DMPC is lower than that of PI. These results
imply that the DMPC is superior to PI in terms of the number of IAC variations.
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The simulation results of the three case studies confirm that the DMPC is superior to
No PFR and PI. The system’s frequency, which is controlled by the DMPC, oscillates in
terms of the acceptable limits, while some parts of the frequencies in the cases of No PFR
and PI oscillate out of the frequency limits. Moreover, the DMPC can change the indoor
temperature according to the user’s preference and is robust to temperature and number
of IACs variations over the PI controller.

5. Conclusions

In this paper, we propose a multi-objective decentralized model predictive control
(DMPC)-based inverter air conditioner (IAC) power consumption control for stabilizing
frequency deviation and maintaining varied indoor temperature in a preferred range. The
study can be concluded as follows:

(1) The controlling of IAC power consumption is used to suppress the frequency devia-
tion of microgrid with high penetration of wind and PV generators.

(2) The multi-objective DMPC is used to control the power consumption of the six IAC
groups classified by acceptable variation of the indoor temperature range.

(3) In the multi-objective DMPC design procedure, the weights of temperature deviation
of the six IACs groups are optimized using the firefly algorithm (FA) to minimize the
integral absolute frequency deviation and maintain the indoor temperature inside the
acceptable ranges.

(4) Simulation results on the studied microgrid demonstrate that the DMPC is able to
suppress the frequency variation and control the temperature deviation concurrently
when the temperature setting is constant and adjusted.
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(5) The DMPC is able to reduce frequency deviation, satisfying indoor temperature
preferences, and is robust to the various number of IACs, over the proportional-
integral PI controller.

In addition, in future work, the IACs will be used for virtual inertia emulator control
of the microgrid with high penetration renewable energy resources.
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Nomenclature

AC Air conditioner
BESS Battery energy storage system
DG Distributed generation
DMPC Decentralized model predictive control
FA Firefly algorithm
IAC Inverter air conditioner
MG Microgrid
MPC Model predictive control
PFR Primary frequency regulation
PHEV Plug-in hybrid electric vehicle
PI Proportional integral
PMSG Permanent magnet synchronous generator
PV Photovoltaic
RES Renewable energy sources
RoCoF Rate of change of frequency
SG Synchronous generator
VSG Virtual synchronous generator
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