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Abstract: Apart from numerous technical challenges, the transition towards a carbon-neutral energy
supply is greatly hindered by limited economic feasibility of renewable energy sources. This results
in their slow and bounded penetration in both commercial and residential sectors that are responsible
for over 40% of final energy consumption. This paper aims to demonstrate that combined application
of sophisticated planning methodologies at building-level and presents incentive mechanisms for
renewables that can result in prosumers, featuring hybrid renewable energy systems (HRES), with
economic performance comparable to that of conventional energy systems. The presented research
enhances existing planning methodologies by integrating appliance-level demand side management
into the decision process and investigates its effect on the planning problem. Moreover, the proposed
methodology features an innovative and holistic approach that simultaneously assess electrical and
thermal domain in both an isolated and grid-connected context. The analyzed hybrid system consists
of solar photovoltaic, wind turbine and battery with thermal supply featuring solar thermal collector
and a ground-source heat pump. Overall optimization problem is modeled as a mixed-integer linear
program, while ranking of all feasible alternatives is made by the multicriteria decision-making
algorithm against several technological, economic, and environmental criteria. A real-life scenario of
energy system retrofit for a building in the United Kingdom was employed to demonstrate overall
cost savings of 12% in the present market and regulation context.

Keywords: hybrid renewable energy systems; energy hub; demand side management; optimization;
multicriteria decision making; energy planning

1. Introduction

Current trends and existing policies related to energy supply aim to alleviate global
dependency on fossil fuels due to their finite nature and proven devastating effect on the
environment. This led to the development of new technologies ranging from alternative
and sustainable energy sources to innovative management solutions for available energy
resources. Considering exploitation of renewable energy resources as the most prominent
of them, many countries adopted suitable regulation and incentive mechanisms to improve
the status quo and increase share of renewables in the overall energy mix. For example, the
previous target set by the European Union (EU), which envisaged at least 20% of renewable
energy sources in the final energy consumption by 2020, was recently updated to reach at
least 32% share of renewables by 2030 (raised from 28% set previously) [1].

As part of this transition and in line with contemporary directives [2], buildings are
increasingly being equipped with local energy sources and granted with capability to
conduct individual energy management strategies, yielding a new entity in energy systems
referred to as prosumer. However, ensuring a widespread transition from consumers
towards prosumers depends on the economic viability of renewable energy sources and
accompanying equipment. Although renewable energy sources are already a relatively
mature technology, prosumers are still facing significant issues regarding upfront invest-
ments, making it hard to level up with the cost-effectiveness of conventional energy supply
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from coal and gas. Aiming to overcome this issue and spark the necessary widespread
adoption of renewable technologies, national governments implemented various incen-
tive programs and mechanisms such as feed-in or generation tariffs, carbon credits, tax
refunds, and procurement subsidies tailored for each type of renewable technology. All
these measures share a common goal to alleviate the economic impact of associated capital
and operational expenditures. In doing so, they intend to make the overall investment
profitable on the long run and render the transition from conventional to renewable sources
viable for consideration. Apart from instantaneous effects to present investments, these in-
centive programs also contribute to a decrease of manufacturing costs of renewable energy
technologies in the long-term by scaling up the overall number of installations. Besides
various financial incentive mechanisms, economic performance of prosumers can also be
improved with application of innovative energy management technologies. They not only
increase operational efficiency of renewables but also contribute to increased reliability
and availability of energy supply in the context of multisource hybrid renewable energy
systems (HRES). Given the intermittent nature of renewable energy sources, the latter
becomes increasingly important as the transition to renewables in urban areas also needs to
meet very high availability and quality of energy supply standards. Therefore, to establish
a cost-effective and reliable prosumer, one would need to asses two fundamental aspects:

(a) The planning/dimensioning problem, which represents an optimal rated power
split of different renewable sources and storage capacities within prosumer systems,
resulting from a multicriteria decision making process against complex objectives
combining maximization of economic performance, environmental neutrality, and
independence from the power grid.

(b) The operation problem, which focuses on optimal energy management strategy for
a given prosumer and its energy assets. Moreover, it considers optimization of pro-
sumer’s energy imports and exports as well as internal power flows between multiple
renewable/conventional energy sources and storages against multiple technological,
economic, and environmental criteria.

As reviewed by [3], there are many commercial software solutions that aim to solve
different individual aspects of these two problems while offering different types of out-
puts (high-level efficiency or economical parameters, dynamic operational values, etc.).
However, although seemingly independent from each other, the two are intrinsically corre-
lated as the decision on optimal prosumer energy assets is impacted by their day-to-day
management and, ultimately, reached through a long-term simulation of its operation.

The considered planning problem was extensively investigated starting from stan-
dalone HRES in isolated rural areas, where there was a lack of conventional energy supply
to those grid-connected, as the penetration of local energy sources in urban areas became
more significant. Following is a brief overview of more recent research efforts dealing
with such planning problems and related optimization approaches. An approach for
both stand-alone and grid-connected modes using the energy filter was discussed in [4],
while [5] proposes a multicriteria decision analysis for PV-WT grid connected systems. A
research effort conducted on HRES in the form of a microgrid system in [6] incorporates
the addition of a battery energy storage systems (BESS) and employs two procedures,
a source sizing and battery sizing algorithms in sequence. Scalfati et al. [7] proposes a
mixed-integer linear programming (MILP) based solution for sizing that can, in its general
form, be used for different microgrid architectures and storage technologies. Sizing with
sensitivity of a microgrid structure specific for a university campus is discussed in [8],
while optimal sizing with implemented DR strategies is discussed in [9] where a HRES
configuration is considered. HRES optimizations with regards to energy, economic, and
environmental indicators can also be found in [10] where a multiobjective optimization
was employed to determine the best system configuration. The authors note that no single
system configuration can simultaneously satisfy the selected three criteria and proposes
the selection of a trade-off Pareto optimal solution. Economic parameters and capital
investment benefit analyses can also be found in [11] where optimal sizing and power man-
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agement of prosumers equipped with PV was considered using a two-step approach, with
the first step analyzing the technical model (short-term assessment resulting in outputs
such as component sizing and battery lifetime), and the second one tackling the long-term
assessment through economic modeling. The authors report that an increase of profitability
by up to 14% was achieved. Finally, a stochastic approach using MILP for determining
optimal sizes of prosumer assets (PV generation capacities and batteries) is proposed in [12].
The authors describe a methodology that minimizes the joint combination of investment,
maintenance, and operational costs in different scenarios that result in varying energy
consumption levels from the grid.

Regarding the optimization problem, various different techniques can be found in
the related literature. As the proposed methodology includes a proactive approach based
on utilization of demand-side management (DSM), and in line with findings from a sys-
tematic review from [13], the most prominent technique for this type of problem is linear
programming (LP) with its mixed-integer variant being the one most commonly used. For
example, ref. [14] proposes a multiobjective mixed integer linear programming (MOLIP)
technique to facilitate residential DSM in a system where effects of storage systems are
specifically analyzed. Also, ref. [15] formulates a MILP model to be used for optimizing
profit on the electricity market of a system with photovoltaic (PV) panels and BESS. These
optimizations are performed for a horizon of 24 h with hourly varying prices. This model
does not consider load to be appliance-based but rather views it as an aggregate value.
Also, since the simulation is performed for a short amount of time, the monetary invest-
ments and maintenance costs of running such a system are not considered. Paper [16]
continues with a MILP model also employed for a 24 h simulation horizon but with a
shorter, 15 min-long sample period. The modeled system considers optimal appliance
scheduling with a PV source present, with load scheduled on a per appliance basis. The
results were obtained and discussed for both single and multiuser scenarios. However,
the investment and maintenance costs related to running a renewable energy source are
also not considered. The framework laid out in [17] also implements a MILP model for
optimal appliance scheduling during a 24 h horizon with a 15 min sampling period. The
chain rule, defining that a given appliance can only be started after another one finishes its
operation, is introduced. The model output is discussed for three scenarios in a specific
use case: a fixed price tariff, a variable price tariff with ripple control (devices that switch
on or off appliances based on the current tariff), and a variable price tariff with optimal
scheduling. Concluding that, because of the insignificant difference in the applied price
tariffs, it would not be viable for an average domestic consumer to look for a solution
more sophisticated than ripple control. The authors also state integrating distributed
generation and storage into the model as a future research point. Finally, ref. [18] focuses
on optimizing energy management of a residential microgrid with the goal of analyzing the
relation between the level of demand flexibility and cost savings. This paper also models
investment, maintenance and replacement costs of BESS as well as distributed PV and
wind turbine (WT) generators, and it introduces a discreetly operated appliance whose
operation can be split into multiple nonconsecutive time periods. Considering that this
system uses a relatively lengthy, one-year-long horizon with a sample rate of 1 h, the model
is designed on an efficient window-based concept. Nonetheless, this approach does not
considered load to be appliance-based, i.e., specific appliance activations cannot be traced
in the final results. Also, a notable addition with this paper is that the sizing problem
is solved simultaneously with scheduling using the appropriate variables implemented
in the model. Although this is a very efficient way to solve such a problem, the linear
programming paradigm constrains those variables in a linear way, and thus, limits the
modeling potential to a certain extent.

Finally, building upon previous research and aiming to improve the current state of
the art, this paper proposes the introduction of a two-step optimization process that jointly
considers the planning and operation problems. As will be described in greater detail in the
following section, the inner loop optimizes operation of individual configurations using
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the available load shifting mechanisms while the outer loop explores key performance
indicators for each of these configurations and selects the one that adheres best to the
desired preferences. The remaining part of the paper is organized as follows. Section 2
presents the proposed planning methodology and description of the optimization process
as a whole. Section 3 unveils the mathematical implementation of both operation and
sizing models supported by Appendix A which outlines the models used for simulation of
renewable technologies (RET). Section 4 describes the employed real-life use case scenario
for methodology testing and verification, while Section 5 discusses the obtained results
depending on the desired criteria. Lastly, Section 6 provides concluding remarks and
conclusions. The paper is also supported by a nomenclature table in Appendix B that
contains the list of all abbreviations and variables used.

2. Proposed Planning Methodology

The overarching objective of this paper is to demonstrate that by combining sophis-
ticated methodologies for planning and operation of prosumers leveraging small-scale
residential HRES and existing governmental incentives for renewable technology, one
can retrofit or even completely replace conventional energy supply without making a
compromise regarding economic viability of such transition. In other words, the pre-
sented research aims to mitigate the economic barrier associated with global uptake of
renewables by demonstrating cost-effectiveness comparable to that of conventional energy
sources. Moreover, the considered real-life use case scenario exhibits the possibility to
even exceed it in the context of existing long-term incentive programs and country-specific
energy regulations.

To reach this objective, a novel planning methodology for future prosumers was estab-
lished by leveraging the benefits of increasingly utilized mechanisms of DSM. In particular,
the underlying approach exploits load elasticity, both in time and intensity, to reduce
capital investment in renewable energy technologies, improve their economic performance
and increasing overall penetration in energy supply portfolio. In addition, the proposed
decision making process simultaneously assesses multiple consumer-defined criteria pre-
sented in Sections 2 and 5. The techno-economic performance of viable configurations is
discussed in the latter section, where the effects of the proposed planning methodology are
evaluated in the most conspicuous way. Moreover, the proposed methodology assumes a
holistic approach for the planning process, which simultaneously considers both electrical
and thermal domains. Although previous research mainly assessed these two domains
separately, they are inevitably cross-correlated, especially in cases when thermal demand is
satisfied through a heat-pump, which combines any available thermal source (e.g., ground,
solar, or air) and a proportional amount of electricity, as described in Appendix A. More-
over, such consideration is even more relevant in cases where thermal demand is satisfied
from several different sources, (e.g., gas, electricity, or solid fuels). Following a theoretical
elaboration, the proposed methodology is demonstrated through its practical application
in a real-life scenario featuring actual technical, economic, and environmental constraints.

The proposed HRES planning methodology, developed to devise an optimal system
topology as well as sizing of its individual components, aims at fundamentally enhancing
existing planning tools and algorithms by combining different approaches and adding new
design aspects. In short, it introduces and brings together the following aspects:

1st. The overall HRES planning process considers simultaneously both electric and
thermal energy demand, while current approaches typically consider electric or thermal
domain, exclusively, with the methods for such optimizations previously discussed in [19].
Employed methodologies therein are focused on balancing the selected demand type
with available energy sources, conversion elements, and storages. However, increased
utilization of devices like heat pumps, which satisfy the thermal demand while contributing
to electricity demand, requires a holistic assessment approach. The differences between the
traditional approach and the one proposed by this paper is illustrated in Figure 1.
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2nd. The most utilized approach to consider isolated (island) HRES deployment
scenarios is extended towards consideration of grid-tied deployment, which brings a more
dynamic context where varying import and export energy prices are applied and unlimited
energy exchange with power grid is enabled.

3rd. The increasing application of DSM programs and, more specifically, DR schemes
in day-to-day operation is considered on an appliance level and corresponding implications
on the planning of HRES and dimensioning of individual components are evaluated.

4th. MCDMA is employed to rank feasible HRES topologies with capabilities of
simultaneously evaluating a wide range of technical, economic, environmental, and societal
design criteria.

In the following elaboration, each design alternative will be referred to as HRES
configuration, which is defined with a set of discrete sizes for each RET components.
Hence, the configuration will consider both the HRES topology and sizing of the energy
assets within.

WT

PV

Grid

GSHP

STC
Thermal loads

Electric loads

(a)

WT

PV

Grid

GSHP

STC
Thermal loads

HP

Electric loads

HP

Electric loads

(b)

Figure 1. Two approaches for demand modeling. (a) Traditional approach. (b) Proposed approach.

The optimization process can be split into use case evaluation and two main distinct
sections: operation optimization and sizing optimization, as presented in Figure 2. Firstly,
in the evaluation stage, the values like demand profiles, financial information and RET
parameters are collected and fed into the model. A set of predefined HRES configurations
deemed fit for the selected use case is defined, and when it comes to the definition of the
search space for the optimal HRES configuration, a set of context-defined and user-defined
constraints is established. The following list summarizes the most influential design
constraints into several categories, which are simultaneously assessed by the proposed
methodology to deliver optimal HRES topology and sizing:

• Renewable energy sources (RES) harvesting potential (solar irradiation data, wind
data, ambient temperature, ground temperatures);

• Building characteristics and space availability constraints (indoor area (basement),
outdoor area, roof, wall facades, surrounding area);

• Energy demand requirements and flexibility (electricity demand, heating/cooling
demand, hot water demand);

• Dynamic energy pricing (dynamic import/export energy prices, feed-in tariffs);
• Financing conditions (budget/loan, cost of capital, governmental incentives, inflation,

increase of energy prices);
• RET equipment characteristics (photovoltaic panel, wind turbine, solar collector,

geothermal heat pump, auxiliaries (DC/DC, DC/AC), battery storage, boiler);
• RET installation parameters (wind turbine installation height, azimuth and elevation

of photovoltaic panels, etc.)

The listed constraints, in fact, define a set of boundaries for the space in which the
optimal design solution is searched for. The operation optimization stage is initiated by
equipping the model iteratively with one of the predefined alternatives.
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Figure 2. Optimization process flowchart.

2.1. Operation Optimization

The underlining structure of the system that was selected for operation optimization
and is implemented in this study is a solution proposed in [20], referred to as the Energy
Hub, with its general structure illustrated in Figure 3. It represents how the input power
vector (Pin) is transformed in several stages (denoted by matrices F−1

in for input transfor-
mation, C for conversion and Fout for output transformation, as discussed in Section 3.1)
while also managing storage charge/discharge rates (Qin for the input storage stage and
Qout for the output storage stage), exported power (Pexp) and loads (L).

Pin

Qin

FinPcin
F−1

in
Pcin

C
Pcout

Pexp

Pout
Fout

Qout

L

Figure 3. General structure of Energy Hub.

Given the variability of generation from renewable sources, energy demand require-
ments, and dynamically determined energy costs, each feasible configuration is modeled
and its long-term operation is simulated and optimized. When deciding on the simulation
time horizon and size of the time step resolution, several factors were taken into account.
Firstly, long-term performance of an HRES is heavily influenced by the renewable energy
harvesting potential, which implies utilization of historical meteorological conditions for
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a given location. Moreover, since the performance should be evaluated for the entire
HRES lifetime, which is typically around 20 years, the so-called typical meteorological
year (TMY) data, which provides hourly data for typical meteorological conditions over a
relatively long period and, thus, objectively characterize the specific geographical location,
was selected. Secondly, given the objective of long-term assessment of HRES operation,
the linear (or mixed integer) models of energy assets running on hourly resolution are
sufficiently complex. Consequently, hourly resolution was chosen as the time step while the
time horizon is one-year- long. However, long-term performances can be extrapolated by
multiplying these results as many times as needed. This is due to the methodology natively
taking into account events such as replacement of an asset (e.g., batteries typically last for
5 years) or time-limited governmental incentives (e.g., payment periods of 7–20 years for
RET subsidies).

The operation aspect of the described model is finished once all the predefined HRES
sizing configurations are optimized and their internal variables saved for later processing
in the sizing segment.

2.2. Sizing Optimization

Finally, when the iterative simulation procedure of the inner loop is concluded, and
the list of evaluation criteria is derived for each configuration, it is necessary to establish ap-
propriate ranking among the configurations, considering multicriteria (multidimensional)
evaluation space. To do so, an existing MCDMA algorithm was employed for this segment,
previously called the outer loop.

At the initial stage, the MCDMA is fed a list of alternatives A, which ought to be
simultaneously ranked across multiple criteria C. Each alternative A, represented by an
individual HRES configuration, is first individually evaluated across the whole range
of criteria C, referred to as evaluation criteria in the dynamic performance assessment
elaboration. Following is the assignment of the weighting factors w to each criterion
C. These weight factors allow for non-uniform distribution of the level of importance
assigned to each criterion, allowing end user to practically steer the selection process
according to desired needs and preferences. Following the findings from [21] noting its
common applications for technology evaluation, the acknowledged performance ranking
organization method for enrichment evaluation (Promethee) II algorithm [22] was utilized
for the purpose of development of MCDMA functionality, as described below.

Firstly, a comprehensive pair-wise comparison is calculated as

dk(ai, aj) = ck(ai)− ck(aj). (1)

Afterwards, those differences are passed through a preference degree function πk(ai, aj)
where Pk can be defined in a variety of ways, with the most common being a linear variant

Pk(x) = min
{

max
{

0,
x− qk
pk − qk

}
, 1
}

(2)

bounded by qk and pk. Every pair of actions is compared using a multicriteria prefer-
ence degree

π(ai, aj) =
q

∑
k=1

wkPk(ai, aj) (3)

where a constant to weights is applied

(∀k)(wk ≥ 0) and
q

∑
k=1

wk = 1. (4)

After calculating
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φ+(a) =
1

n− 1 ∑
α∈A

π(a, α) and φ−(a) =
1

n− 1 ∑
α∈A

π(α, a) (5)

a net value is calculated φ(a) = φ+(a)− φ−(a). Finally, ranking all alternatives according
to φ(a) gives a complete ranking considered as the output of the Promethee II algorithm.

The proposed methodology can easily consider different design criteria, which can
be summarized into four general categories. In the following list, these categories are
out-lined with detailed elaboration of each category that was implemented and its items
following later in the text:

• Technical criteria: Loss of Power Supply Probability (LPSP), Wasted energy
• Financial criteria: Capital Expenditure (CAPEX), Operational Expenditure (OPEX),

Net Present Value (NPV), Internal Rate of Return (IRR), Payback Period (PP)
• Environmental criteria: greenhouse gas emissions (CO2, NOx, SOx)
• Social/Economic/Political criteria: Fuel Reserve Years, Job creation, Inter-country

energy dependence etc.

3. Mathematical Model

The key feature of the proposed methodology is the model implemented to facilitate
the optimization process and, just like the process itself, the mathematical model can
be represented with two sets of parameters, one depicting operation and one depicting
sizing optimization.

3.1. Operation Optimization

Generally, a MILP problem is defined as determining a vector of variables

x =
[

x1 x2 · · · xm
]T (6)

that minimizes a certain objective function f which is usually written as

xopt = argx

{
min

{
f Tx
}}

. (7)

Meanwhile, the vector xopt must also adhere to a set of conditions that are split into
four categories: equality and inequality constraints, lower and upper bounds and integer
constraints. If a subvector xint of x is defined as

xint =
[

xint
1 xint

2 · · · xint
k

]T (8)

and the lower bound lb and upper bound ub vector as

lb =
[

l1 l2 · · · lk
]T , ub =

[
u1 u2 · · · uk

]T (9)

these constraints can be written as

Aeqx = beq
Aineqx ≤ bineq

(∀i)(li ≤ xi ≤ ui)
(∀i)

(
xint

i ∈ Z, Z ∈ Z
) (10)

The vector of variables x is formed by arranging a set of all variables required for the model
at every instance of the simulated time horizon like

x =
[
Pin Pcin Pcout Qin Qout L

Pout Pexp qin Ein qout Eout

y z d+ d− I(d+) I(d−)
]T

(11)
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If Ts is used to denote the sample rate of the model, for any of the variables Vf in x,
Vf(k) may denote the value of Vf at the k-th time sample, i.e., Vf(k) = Vf(kTs). Since some
of these variables should incorporate values for different types of electric energy sources
(WT, PV, and electricity from the grid), they are natively multidimensional. However, for
computational modeling, x must be a row vector, hence these natively multidimensional
variables are flattened out in a predefined order. For example, given a simulation time
horizon of T = NTs , the variable Pf

in(k) holds instantaneous imported power values
for WT if 0 < kTs ≤ T, values for PV if T < kTs ≤ 2T and values for grid electricity if
2T < kTs ≤ 3T. Therefore, for modeling purposes, it may be convenient to think of such
variables as matrices in a reshaped form. Regarding our example variable Pf

in(k), we may
consider a three-by-one native vector Pin(:, k) where Pin(1, k) is the corresponding instanta-
neous imported power from the WT, Pin(2, k) is the corresponding instantaneous imported
power from the PV array and Pin(3, k) is the corresponding instantaneous imported power
from the grid, all calculated at t = kTs. Obviously, every matrix equation that employs
such variables in their native shape can be easily converted to a vector based expression
required for MILP implementation. Thus, for the sake of clarity, variables Vf from the
vector x will, in the remainder of this paper, usually be written in their native form V(:, k)
abbreviated as V(k) with an index k referring to the instance of time at which the variable is
being evaluated. For the sake of clarity, the index k is omitted when a variable is referenced
in text, but is present in all formulas where that variable is used.

3.1.1. Energy Balance

The instantaneous imported power can be from either the WT, PV array, or the grid
and this power can either be stored at the input level or dispatched to the rest of the system
through the appropriate transformers. The law of conservation of input power states that
the balance

(∀k)(Pin(k) = SinQin(k) + FinPcin(k)) (12)

must hold. The power sent to the storage unit is converted into energy via

(∀k)
(
Qin(k) = Sqinqin(k)

)
. (13)

The available energy of the storage unit is determined by an integral expression

(∀k < NTs)(Ein(k + 1) = Ein(k) + qin(k)Ts) (14)

with an initial condition as Ein(1) = Ein1 defining the SOC in the first sample, and is
usually set to zero if optimizations on consecutive time intervals are not being performed
on the same system. The energy not being stored at the input is sent to the conversion stage
defined as

(∀k)(Pcout(k) = CPcin(k)) (15)

The output of the conversion stage can then either be exported back to the grid or further
dispatched to the output stage. This is simply written as

(∀k)
(

Pout(k) = Pcout(k)− Pexp(k)
)

(16)

with exporting power which was previously imported from the grid back to said grid being
directly prohibited by

(∀k)
(

DexpPexp(k) = Rexp
)

(17)

where Dexp is a matrix that determines which carrier is to have a fixed (restricted) export
and Rexp sets those values. The power not being exported is then sent to the output trans-
formation stage that aggregates the carriers into an arbitrary number of values depending
on the number of load types. This operation is performed in the equation

(∀k)(L(k) = FoutPout(k)− SoutQout(k)). (18)
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Analogous to the input, the output can also feature a storage option. The charge/discharge
rate is obtained from

(∀k)
(
Qout(k) = Sqoutqout(k)

)
. (19)

Similarly to the input stage, the output storage SOC is calculated by

(∀k < NTs)(Eout(k + 1) = Eout(k) + qout(k)Ts) (20)

and an initial condition is given as Eout(1) = Eout1 which concludes the set of equations
governing the energy balance of the energy hub system. Furthermore, additional equations
must be added for load management mechanisms.

3.1.2. DSM and Load Variables

To properly allow the model to perform necessary optimizations, some auxiliary
features must be introduced as constraints. First of all, load L can either be attributed
as fixed load Lfix which cannot be optimized in any way or flexible load Lflex which can
used for optimizing by means of time shifting (shiftable load), splitting its operation
into multiple time instances (dispersible load) and adjusting its instantaneous power
consumption (elastic load). Nevertheless, for every appliance i, we define an on/off state
variable that is defined by

yi(k)
∆
=

{
0, appliance i is off at t = kTs
1, appliance i is on at t = kTs

. (21)

The flexible load at the k-th time sample can be written as

Lflex(k) = ∑
i

Pi(k)yi(k), (22)

with the total load being expressed as

L(k) = Lflex(k) + Lfix(k). (23)

However, the product being summed in (22) would represents a nonlinear operation
between two variables and so it must be rewritten. To achieve this, Pi is divided into
three components: nominal power draw, positive power deviation, and negative power
deviation from the nominal value, or in other words

Lflex(k) = Pnom
i yi(k) + d+i (k)yi(k) + d−i (k)yi(k). (24)

Nevertheless, (24) also incorporates a product between variables, however d+i and d−i
will be constrained to having nonzero values only when the appliance is turned on, this
expression can be reduced to

Lflex(k) = Pnom
i yi(k) + d+i (k) + d−i (k). (25)

Finally, total load can be expressed as

(∀k)

(
L(k) = ∑

i
(Pnom

i yi(k))+∑
i

(
d+i (k) + d−i (k)

)
+ Lfix(k)

)
. (26)

Since Pnom
i is set beforehand, this expression is actually a linear combination of

variables (subvectors) from x , and can therefore be implemented as a MILP constraint.
According to the classification laid out in [23], elastic loads can be classified either as being
either energy-based meaning that they must consume a predefined amount of energy
within a specified time window or comfort-based meaning that they must control an
environmental variable within a desired range. With effects of DSM on comfort-based
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appliance being previously investigated in [19], this paper will focus only on energy-based
elastic appliances for DSM with an option to elastically adjust their power within given
bounds. Therefore, for each appliance, a set of windows (activation cycles) is defined with
one of them, a vector

w(n)
i (k) ∆

=

{
0, k is not in the window

n, k is in the window
(27)

defining the n-th window of i-th appliance by having nonzero values equal to n at time
instances that belong to that window. This implementation allows for windows that need
not be continuous, i.e., they can be split into an arbitrary number of segments. Since these
windows are also predefined like the nominal power, they can be used for forming an
energy constraint

(∀i, ∀n)

 ∑
w(n)

i (k)=n

Pnom
i Ts · yi(k) = Pnom

i ∆t(n)i

 (28)

stating that a specified appliance i must only be active a given amount of times so that the
amount of energy it spends during that activation cycle n is equal to the product between
nominal power Pnom

i and the length ∆t(n)i of nominal activation belonging to that window.
Because power deviations also affect the energy consumption, it is also stated that the sum
of power deviations must be equal to zero during a given window, or in other words

(∀i, k, n)

 ∑
w(n)

i (k)=n

(
d+i (k) + d−i (k)

)
= 0

, (29)

thus finalizing the set of equality constraints required for the model. Nonetheless, these
relations are not sufficient for the model and some additional conditions must be applied
in form of inequalities.

3.1.3. Auxiliary Constraints

Because a set appliance should not have a nonzero positive and negative power
deviation at the same time, two variables are introduced to indicate when these deviations
are active by defining

I
(
d+i (k)

) ∆
=

{
0, d+i (k) = 0
1, d+i (k) 6= 0

and I
(
d−i (k)

) ∆
=

{
0, d−i (k) = 0
1, d−i (k) 6= 0

(30)

with the constraint
(∀k, i)

(
I
(
d+i (k)

)
+ I
(
d−i (k)

)
≤ 1

)
(31)

prohibiting simultaneous positive and negative nonzero deviations. Additionally, defining
another constraint

(∀k, i)
(
−yi(k)Pnom

i + d+i (k) ≤ 0 ∧ −yi(k)Pnom
i − d−i (k) ≤ 0

)
(32)

in combination with (31) forces the indicators to have a correct sign. Finally, by specifying

(∀k, i)
(
+d+i (k)− I

(
d+i (k)

)
Pmax

dev+i
≤ 0 ∧ −d−i (k)− I

(
d−i (k)

)
Pmax

dev−i
≤ 0

)
, (33)

a link between the deviations and their respective indicators, and thus, forcing these
variables to uphold the definition set by (30) was provided. To allow for an easier im-
plementation of the results obtained from this model and to facilitate load dispersion
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penalization in the objective function, another variable called the device start indicator is
introduced by

zi(k)
∆
=

{
1, yi(k) = 0 ∧ yi(k + 1) = 1

0, otherwise
(34)

marking that the device i will be turned on in the following time sample. Since this
definition describes a nonlinear relation between yi and zi, the proper values for zi are
obtained by simultaneously enforcing three inequality constraints

(∀k, i)(yi(k + 1)− yi(k) ≤ zi(k))

(∀k, i)(zi(k) ≤ 1− yi(k))

(∀k, i)(zi(k) ≤ yi(k + 1)).

(35)

This same indicator is also used to allow for modeling both dispersible and nondispersible
appliances by specifying

(∀i, k, n)

 ∑
w(n)

i (k)=n

zi(k) ≤
{

∆t(n)i /Ts, i is dispersible
1, i is not dispersible

 (36)

and concluding the primary set of equalities and inequalities for the model.

3.1.4. Variable Bounds

To supplement the equality and inequality constraints stated previously, a set of
bounds in posed for the variable vector x. All of the instantaneous values of power must
be non-negative, and thus, the following bound is imposed

(∀k)
(
0 ≤ Pcin(k), Pcout(k), Pout(k), Pexp(k) ≤ ∞

)
. (37)

On the other hand, the imported power Pin must be equal to the available amount provided
by the renewable sources Prenew at all times if considering those respective elements, or
unbound if considering elements describing the import from the grid. Therefore,

Prenew(k)
0

}
≤ Pin(k) ≤

{
Prenew(k), from renewables

∞, from the grid
(38)

At both the input and output stages, storage levels must be between the lowest possible
(zero) and highest possible (battery capacity) SOC and so

(∀k)
(

0 = SOCmin
in ≤ Ein(k) ≤ SOCmax

in and 0 = SOCmin
out ≤ Eout(k) ≤ SOCmax

out

)
, (39)

with Qin and Qout being limited by

(∀k)(−Qmax
in ≤ Qin(k) ≤ Qmax

in and −Qmax
out ≤ Qout(k) ≤ Qmax

out ) (40)

where Qmax is the highest achievable charge rate, and thus, also bounding qin and qout.
The total load L only has a defined lower bound equal to the value of fixed load since the
flexible load is non-negative, and thus

(∀k)(Lfix(k) ≤ L(k)). (41)

As mentioned before, both deviations d+i (k) and d−i (k) also have bounds equal to a
predefined upper and lower deviation limit, respectively, applied during specified windows
as follows
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(∀k, i, n)

(
0 ≤ d+i (k) ≤

{
0, w(n)

i (k) 6= n
Pmax

dev+i
, w(n)

i (k) = n

)

(∀k, i, n)

(
0, w(n)

i (k) 6= n
Pmax

dev−i
, w(n)

i (k) = n

}
≤ d−i (k) ≤ 0

)
.

(42)

As for the indicator variables, the device start zi has a lower bound of zero and upper
bound of one for all time samples, i.e.,

(∀k, i)(0 ≤ zi(k) ≤ 1) (43)

while the on/off state yi has the same bound within windows and both bounds set to
zero outside

(∀i, k, n)

(
0 ≤ yi(k) ≤

{
0, w(n)

i (k) 6= n
1, w(n)

i (k) = n

)
. (44)

A similar logic is employed as to limit the deviation indicators

(∀i, k, n)

(
0 ≤ I

(
d+i (k)

)
, I
(
d−i (k)

)
≤
{

0, w(n)
i (k) 6= n

1, w(n)
i (k) = n

)
. (45)

Finally, since the indicator variables should only assume a value of either zero or one, thus
rendering this problem to be classified as MILP rather than LP, we specify

(∀k)
(
yi(k), zi(k), I

(
d+i (k)

)
, I
(
d+i (k)

)
∈ {0, 1}

)
. (46)

3.2. Objective Function

Depending on the effect that is desired to be achieved, different objective functions can
be formed. Relevant literature most commonly considers cost minimization, discomfort
minimization, and maximization of on-site generation use. These criteria can also be
combined as to create a mixed objective and so one such possibility is considered

3.2.1. Cost Minimization

One of the most frequently considered parameters when discussing feasibility of
renewable generation systems is the monetary cost that ultimately falls on the end consumer.
To model the effects that running a HRES has over the simulated horizon, the prices of
energy attributed to imports and exports is taken into consideration. The active cost of
running such a system can be calculated with

Jc =
N
∑

k=1
(αWT(k)Pin(1, k) + αPV(k)Pin(2, k) + αgrid(k)Pin(3, k)

)
+

+
N
∑

k=1

(
βWT(k)Pexp(1, k) +βPV(k)Pexp(2, k) + βgrid(k)Pexp(3, k)

)
+ σ.

(47)

Factors αWT and αPV usually represent zero or negative values because the use of renewable
generation is generally subsidized by governments and their values, like the values of
other factors in (47), vary depending on local regulations and acting price tariffs. Therefore,
the parameters of such a cost function are use case dependent, and their exact values will
be discussed later on in the paper.

3.2.2. Dispersion Minimization

Sometimes, splitting one appliance’s operation cycle into several disjointed segments
may be considered as unwanted behavior impacting user’s comfort. To combat this
behavior for dispersible appliances, a criterion is defined as
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Jd = ∑
i

N

∑
k=1

ζi(k)zi(k). (48)

Minimizing such a function by itself would lead to no appliance utilizing dispersion, hence,
a combined criterion Jcd = Jc + Jd may be used and is implemented in the proposed solu-
tion to simultaneously balance minimizing cost and penalizing unwanted load dispersions.

3.3. Sizing Optimization

As mentioned previously, the second part of the proposed methodology, besides the
optimal management of energy resources accomplished by the MILP solver, is determining
the proper configuration of the site, also referred to as the sizing problem. Since multiple
combinations of available renewable generators and storage options are being considered,
a set of criteria is selected to facilitate MCDMA ranking of all available configurations with
the first one being optimal with regards to the specified weights associated with each of
the given criteria.

3.3.1. Total Cost (EMI)

Since the model application considered in this paper will mainly focus on residential
users, the total cost of running a renewable project is one of the most important factors to
be considered when ranking different configurations. The yearly cost relating to importing
and exporting energy is expressed by (47). However, this relation does not take into account
initial investment costs, maintenance and eventual replacement costs associated with using
equipment with a finite life span that may malfunction during its operation. To assess all
of these expenses in a comprehensive way, equated monthly installments and maintenance
costs are calculated. For a piece of equipment labeled i one month’s equated installment
(equivalent to rent) would be equal to

XEMI
i = Biδ ·

(1 + δ)12γi

(1 + δ)12γi − 1
(49)

where δ = 0.42%. The corresponding criterion for the MCDMA can now be written as

CC = Jc + ∑
i∈E

(
XEMI

i + Xmaint
i

)
(50)

with E = {BESS, WT, PV, STC, GSHP} symbolically denoting all of the devices for which
the costs need to be included.

3.3.2. Net-Zero Energy Building Rating

The concept of net-zero energy buildings (NZEBs) gained a lot of prominence lately
and its importance was also recognized by several governments with the EU’s Energy
Performance of Buildings Directive (EPBD) even requiring all new buildings from 2021
to be at least near-zero energy (nZEBs) [2,24]. A NZEB is defined as an energy efficient,
self-sufficient structure which roughly consume the same amount of energy as it produces
on site over the course of a year. With around 40% of global energy consumption being
attributed just to buildings, such a concept of energy management and planning is set to
greatly improve the current environmental effects of powering buildings in the near future.
To facilitate a balance necessary for a NZEB or nZEB rating, we may consider minimizing
the criterion

CNZEB =
N

∑
k=1

(Pout(k)− Pin(1, k)− Pin(2, k))Ts (51)

where Pout(k) is the amount of power consumed or stored and Pin(1, k) + Pin(2, k) is the
amount of power generated on site by either the WT or PV for each time step.
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3.3.3. CO2 Emissions

Finally, to quantify the impact that running the operation of the considered system
has on the environment, the total mass of CO2 may be considered. This criterion can be
simply calculated as

CCO2 = ∑
k

(
f C
WTPin(1, k) + f C

PVPin(2, k) + f C
gridPin(3, k)

)
Ts. (52)

4. Use Case

To display the capabilities of the proposed methodology, a concrete use case is assumed
in form of a simulated residential household property located on the Ravenscliff Road in
Motherwell, Scotland, United Kingdom (GPS coordinates 55.80, −3.96) shown in Figure 4,
located around 25 km from the center of Glasgow.

(a) (b)

Figure 4. Considered building and corresponding installations. (a) Property. (b) STC and PV
installations.

4.1. Energy Hub Model

The considered system, with its appropriate Energy Hub structure presented in
Figure 5, has three different types of input electric energy: WT generated, PV-generated,
and grid-imported. No thermal energy is taken into account because the thermal load is
considered to be met by the STC and GSHP and is observable trough the fixed electric
load generated by these systems as will be described later. Also, the raw imported energy
cannot be stored in any way, and therefore the appropriate matrices required for input
storage modeling are

Sin =

1 0 0
0 1 0
0 0 1

 and Sqin =

0 0 0
0 0 0
0 0 0

 (53)

The imported energy is directly dispatched to the conversion stage so

Fin =

1 0 0
0 1 0
0 0 1

 and C =

ηWT 0 0
0 ηPV 0
0 0 ηgrid

 (54)

Since the user only pays for the active power measured by the local meter, as not to interfere
with the objective function calculation, ηgrid = 100% is assumed while some losses may
incur when converting power from renewables, and thus, ηWT = ηPV = 95% was set,
which is a common inverter efficiency value. Moving on, users with distributed generation
such are WT and PV are allowed to export excess energy back to the grid. However,
exporting electricity imported from the grid is prohibited with

Dexp =

0 0 0
0 0 0
0 0 1

, Rexp =

0
0
0

 while Fout =
[
1 1 1

]
(55)
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performs an aggregation of all three types of energy carriers at the output stage as only
electric loads exist in the model. The output stage features a single storage unit for electric
energy, and therefore

Sout = 1 and Sqout = 1. (56)

GSHP/STC electricity and 
non-DSM appliances

Electric 
energy

Solar 
energy

Wind 
energy

grid

PV

WT

Transformer

Invertor

Invertor

Fixed el. 
loads

inS inF outFC L

expP

outS

BESS DSM appliances

Flexible el. 
loads

Figure 5. Implemented structure of Energy Hub.

4.2. Tariff Information

The address of the proposed use case is located in an area with the supply code
18 named “South Scotland” meaning that its energy is supplied by ScottishPower. Although
several tariffs are provided by ScottishPower with varying prices between them, those
differences are mostly negligible, and Online Fixed Saver December 2019 [25] tariff was
selected with the consumption costs at 19.63 cEUR/kWh and 4.68 cEUR/kWh for electricity
and gas respectively, and daily standing charges at 21.87 cEUR/d for both energy carriers.

Residential users in Great Britain can take advantage of a Feed-in tariff (FIT) scheme
administered by the Office of Gas and Electricity Markets (OFGEM). Although feed-in tar-
iffs usually refer to an amount paid just for exporting energy back to the grid, a generation
tariff is also offered. With related numbers changing every three months, the generation tar-
iff scheme available for new applicants at the time of writing this paper is 4.40 cEUR/kWh
for accredited PV installations smaller than 10 kW and 9.47 cEUR/kWh for WT installations
smaller than 100 kW On the other hand, the export tariff equals 5.97 cEUR/kWh for both
the PV and WT. The generation tariffs are only paid out during the 20 years following the
contract signage.

Furthermore, OFGEM also administers the Domestic Renewable Heat Incentive
(RHI) [26] that pays users that are running environmentally friendly heating and cooling
solutions like the STC and GSHP. Just like the FIT, RHI is also time limited, with payments
limited to 7 years. The current rates are 22.64 cEUR/kWh for heat extracted from the STC
and 23.32 cEUR/kWh from the GSHP, but for the sake of simplicity, both are assumed to
equal the lower value. Because of these time limitations, it would not be fair for a model
with a one-year-long horizon to assume that the RHI payment would be paid out in full for
that year, and then take the output of that model as a metric when discussing long-term
feasibility. Since the future of similar renewable programs is currently unknown and hard
to predict, having in mind the fact that the acquisition costs of renewable sources are sure
to decline when eventual replacements are necessary, the model is modified to scale the
yearly FIT and RHI incentive payments by the ratio of available payment years and the
estimated life span of the device (20/20 years in the case of WT and PV and 7/20 years in
the case of GSHP and STC), thus giving a more fair representation of benefits that can be
obtained by enrolling in the mentioned programs.

4.3. Baseline Consumption

According to the British Department for Business, Energy & Industrial Strategy’s
(BEIS) yearly statistical report titled “Energy Consumption in the UK (ECUK)” [27], the
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average household in the study spent around 3903 kWh of electric energy, 10,930kWh of
thermal energy for space heating and 3017 kWh for domestic hot water (DHW) per year.
Since the use case location is in the northern half of the country where colder climate is
prevalent, the baseline thermal demand for the model is selected to equal 120% of the
national average, meaning Qheat = 13,170 kWh and QDHW = 3620 kWh were set as baseline
loads whilst the total cooling demand is equal to zero. This load is then distributed over
the period of a year according to normalized monthly and daily usage profiles presented
in Figure 6a creating a time series of predicted thermal demand.

(a) (b)

Figure 6. Normalized thermal and electricity usage profiles. (a) Thermal usage. (b) Electricity usage.

(a) (b)

Figure 7. Fixed year-long hourly electric demand. (a) Without STC and GSHP. (b) From STC and GSHP.

On the other hand, as was mentioned previously, the electric load is separated into
two classes: fixed and flexible. The flexible load, available for management trough DSM, is
chosen to encompass the largest energy consumers. The nominal weekly appliance usage
plan with appropriate timeframes for shifting is depicted in Table 1. A notable addition
to the plan was made with the inclusion of an electric vehicle (EV) with its effect on DSM
signified by [28]. As this load accounts for a total of 17,672 kWh in yearly electric energy
consumption, or 3694 kWh when not considering the EV, the remaining portion, attributed
to appliances not listed as flexible (i.e., lighting, refrigeration, etc.), was chosen to equal
550 kWh and is distributed similarly as the thermal load using normalized usage profiles
for electricity depicted in Figure 6b. In this case, four types of daily profiles are considered:
winter work day, winter weekend day, summer work day, and summer weekend day and
so repeating these segments appropriately results in a fixed electric demand time series
as presented in the Figure 7. A thing to note is that both graphs from Figure 7 include
daily and hourly noise in a similar fashion as is contained in popular microgrid software
solutions like HOMER.
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Table 1. Flexible load weekly usage plan.

Appliance Pnom
i [kW] Nominal Usage Shifting Windows

20:00–22:00 TUE 18:00 TUE–16:00 WED
Washing machine 800 20:00–22:00 THU 18:00 THU–16:00 FRI

19:00–22:00 SAT 18:00 SAT–16:00 SUN

22:00–24:00 TUE 20:00 TUE–18:00 WED
Clothes dryer 3000 22:00–24:00 THU 20:00 THU–18:00 FRI

20:00–24:00 SAT 20:00 SAT–18:00 SUN

08:00–09:00 WED 08:00–16:00 WED
Electric iron 1200 08:00–09:00 FRI 08:00–16:00 FRI

19:00–21:00 SUN 10:00–22:00 SUN

Stove/oven 1500 10:00–11:00, 18:00–19:00 workdays 10:00–12:00, 17:00–19:00 workdays
10:00–11:00, 16:00–18:00 weekends 09:00–12:00, 15:00–19:00 weekends

Dishwasher 1000 20:00–22:00 every day 19:00–16:00 (next day) every day

Vacuum cleaner 1200 11:00–12:00 TUE 09:00–16:00 TUE
11:00–13:00 SUN 09:00–16:00 SUN

Electric vehicle 4800 18:00–02:00 (next day) every day 18:00–08:00 (next day) every day

The constructed baseline, having in mind tariff information given in Section 4.2,
equates to a nominal spending of 952.9 EUR/a for gas and 3577.1 EUR/a for electricity
totaling 4530 EUR/a if considering a general use case where the thermal demand is met
with gas. This number, inclusive of standing charges, will be used later on when discussing
feasibility of selected configurations.

4.4. Renewable Technologies

To perform the operation optimization, the models from Appendix A need to be
instantiated with real-word values corresponding to the selected use case site. First of all,
data from TMY records [29] for the given location is obtained to be fed into the RES models
for estimated production and demand calculations. Starting with the WT, a power curve is
assumed after the manufacturer data for the Lely Aircon 10 turbine. The obtained power
curve, normalized for one unit of power of installed capacity, is shown in Figure 8a. When
the specified model is used to estimate the power production of the same normalized WT
over the course of a year, including parameters given at the top of Table 2, the model gives
the results depicted in Figure 8a. Moving on, using the PV parameters from Table 2 for
the Suntech STP250S-20/Wd monocrystalline solar module, we may estimate the yearly
production of the PV array per unit power considering the appropriate weather data for
the use case location, as is presented in Figure 8b.

Finally, the values required for STC and GSHP modeling are given in Table 2. When
applying aforementioned TMY data in conjunction with this data to the appropriate
models, having in mind the thermal demand profiles set in Section 4.3, Figure 7b is
obtained showing the part of fixed electric demand required for running the GSHP, and
thus, meeting the thermal demand of the system.
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(a)

(b)

(c)

Figure 8. RES generation. (a) WT curve. (b) WT generation. (c) PV generation.
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Table 2. Parameters for RET modeling.

Label Value Label Value Label Value Label Value

B 0.0065 K/m zabs
hub 113 m fPV 80% GT,STC 1 kW/m2

T0 288.16 K zanem 10 m aP −0.45%/◦C GT,NOCT 0.8 kW/m2

g 9.81 m/s2 zhub 15 m Tc,STC 25 °C APV 1.63 m2

R 287 J/(kg ·K) z0 0.01 m Ta,NOCT 20 °C β ß/4
a 9 τ 0.1

ρg 0.2

k 1.2 W/(m ·K) ηbase 4 m 182 kg A 5.32 m2

ρ 1.45 g/cm3 Tg 10 °C ηl 1.698 J/K2 Tbase 10 °C
Td,cool −7 °C XS 100 m
Td,heat 37 °C cp 1 kJ/(kg ·K)

As 15 m2 Pnom 13 kW

4.5. Objective Function Parameters

In accordance with the data given in Section 4.2, the tariff related parameters of the
cost function are set to equal

αWT = 9.47 cEUR/kWh, αPV = −4.40 cEUR/kWh, αgrid = 19.63 cEUR/kWh,
βWT = −5.97 cEUR/kWh, βPV = −5.97 cEUR/kWh, βgrid = 0.

(57)

Given the fact that out of the flexible appliances that were modeled, only the EV is
set to be dispersible with maximum power draw deviations of ±50 per cent of its nominal
value, and also having in mind that splitting its charging process into several sections
probably does not impact the user’s comfort in a significant manner, ζi(k) = 0 was set
for all appliances i and all time steps k. As for the CO2 emissions criteria, the carbon
footprint values for energy sources were set to f C

WT = 20 g/kWh, f C
PV = 40 g/kWh and

f C
grid = 310 g/kWh in accordance with the fuel mix data provided by ScottishPower [30]

and median values that can be obtained from renewable production statistics.

4.6. Available Configurations

Since the multicriteria analysis is conceptualized as an exhaustive search over a
preselected domain, that domain must be specified before the optimization is performed.
Therefore, a set of renewable generators and storage options is formulated as depicted
in Table 3. The pricing for the WT is loosely based on extrapolations of market data
from EnergySavingTrust [31], the PV pricing can be found in a detailed statistical sheet
compiled by BEIS [32] and BESS parameters are closely related to those that can be found
in the technical documentation for the LG CHEM RESU [33] battery series and quotes by
renewable technology resellers.

Table 3. WT, PV, and BESS options.

YWT [kW] B [kEUR] γ [a] YPV [kW] B [kEUR] γ [a] SOCmax
out [kWh] Qmax

out [kW] B [kEUR] γ [a]

0.0 0.0 20 0 0.00 20 0 0.0 0.000 10
2.5 11.4 20 2 3.88 20 2 3.0 3.615 10
5.0 22.3 20 4 6.35 20 4 4.2 4.910 10
7.5 33.2 20 6 9.53 20 6 5.0 5.870 10
10.0 44.1 20 8 12.70 20

The rest of the system is not considered within the sizing optimization process. This
includes the installation for the GSHP system (construction work, piping, fittings, etc.), the
pump and the STC. The pump and STC are considered to have an expected life span of
20 years while the GSHP installation generally lasts around 100 years before needing to be
replaced. The initial acquisition costs are considered to be 4500 EUR for the STC, 9500 EUR
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for the GSHP installation and groundwork and 7300 EUR for the pump given that a 13 kW
system is to be installed which is estimated to fulfill the thermal demand of the considered
household. The associated yearly maintenance cost with running all of the aforementioned
renewable technologies is set to 2% of initial acquisition cost.

5. Results

The operational optimization was performed using the CPLEX® Matlab Toolbox for
all 100 selected configurations in both DSM off and on states with a time constraint of five
minutes per configuration and was finished in about 10 hours. An illustrative example
of an optimized operation of a modeled appliance is given in Figure 9a with an overview
of all relevant energy assets for the same time frame presented in Figure 9b. The results
in the (CC, CNZEB, CCO2) space of the proposed criteria for all considered configurations
are presented in Figure 10. The Pareto frontier formed by the set of nondominated so-
lutions depicting the best compromise-free solution set is accented over the rest of the
obtained results.

However, given that the end result of the optimization process is considered to be
only one, best solution, in the context of MCDMA ranking, the final outcome is highly
dependent on the selected weights of each of the criteria that are imposed. Since each user
will have different preferences, the decision space is practically infinite, however a couple
of concrete examples are discussed to showcase the capabilities of the proposed planning
strategy. Four different use cases will be presented to provide illustrative examples of how
the optimum configuration changes in line with the criteria weight selection process. The
first two will place a larger focus on monetary costs with the first one only considering
them while the second introduces concerns for the supply and demand balance as well as
for estimated environmental pollution. On the other hand, the third and fourth use case
place a larger focus on the energy balance and emissions, respectively, while also including,
but reduced, concern for monetary costs of running the system.

5.1. Total Cost as the Only Criterion

For the sake of simplicity, the first considered setup only focuses on minimizing the
estimated total cost criterion CC through the appropriate set of weights

wC = 100%, wNZEB = 0 and wCO2 = 0. (58)

In the optimization process, the results were first obtained without employing DSM
giving a midway baseline, and the five most cost-effective solutions are shown in Table 4.
As can be clearly seen, implementing only raw renewable sources without any additional
optimization, in this case, does not yield significant monetary savings when compared
with the gas and electricity no-renewable baseline, with the best option well below 3%. The
third best, and all following combinations without DSM are not even profitable, with the
fifth one costing over 3% more than the original baseline.

However, when DSM is turned on, the order of best solutions, depicted in Table 5,
changes somewhat, with the best case scenario (using a 5 kW WT) returning savings
slightly above 10% allowing the investment to be considered well worthwhile. A thing
to note is that no PV production is included in this best-case scenario which should not
be surprising since the considered site does not receive a significant enough amount of
sunlight for PV to be cost-effective. However, the absence of BESS in the optimal solution
is of significantly greater interest since the obtained result can be considered to show that
an efficient implementation of a DSM program can lower the requirement for expensive
and potentially environmentally unfriendly solutions like lithium-ion batteries that are
commonly used for storing off-peak electric energy. Slightly less cost-effective then the
best solution is the combination with the 7.5 kW WT, with the fifth best solution finally
including the smallest considered PV panel array, and the sixth including a 3 kWh battery
with the originally selected 5 kW WT.
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(a)

(b)

Figure 9. Single appliance and total load optimization examples. (a) Example appliance (EV).
(b) Total load.
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Figure 10. Considered HRES configurations in criteria space.

Table 4. List of five best configurations when solely focusing on cost with DSM turned off.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] Base. [%]

0 0 2.5 4407.6 14,198.2 5612.2 2.70
0 0 5.0 4430.2 7637.0 5187.8 2.20
0 0 7.5 4544.8 1075.7 4909.3 −0.33
0 0 0 4587.3 20,759.4 6435.4 −1.26
0 2 2.5 4682.2 12,972.9 5548.5 −3.36

5.2. Total Cost as the Primary Criterion

On the other hand, cost need not be considered as the sole criterion when selecting the
optimal configuration. Choosing different weights allows for the user to specify what crite-
ria he deems relevant, and thus, the software adjusts the optimal configuration rankings.
One such mixed case where cost is still the primary focus, but the other two environmental
criteria are also taken into consideration can be defined by selecting appropriate weights
to equal

wC = 60%, wNZEB = 20% and wCO2 = 20%. (59)

After ranking the optimally preforming configurations in accordance with the above-
mentioned weights, the best combination and a list of best alternatives is obtained and
presented in Table 6. The results show that although monetary savings are still the prevalent
considered parameter, this type of selection slightly favors large renewable sources due to
the associated decrease in discrepancy between the spent and produced amount of energy
and the equivalent amount of CO2 emitted.

5.3. NZEB Rating as the Primary Criterion

Also, environmental criteria can be accented if the project is such that the ecological
impact is more of a priority. One possible weight selection that would accomplish this
could be

wC = 20%, wNZEB = 60% and wCO2 = 20%. (60)

Adequate ranking resulted in the list presented in Table 7. Since the monetary aspect is no
longer the primary concern, the best selected solutions are generally not profitable when
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compared to baseline costs. However, they are significantly more ecologically friendly,
with all of them generating significantly more energy on-site than is being consumed and
CO2 being cut by about 40 to 50% when compared with that of the configuration without
WT, PV, and BESS for all the presented alternatives.

Table 5. List of six best configurations when solely focusing on cost with DSM turned on.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs. Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] DSM off [%] Base. [%]

0 0 5.0 3987.5 7634.0 4486.6 9.99 11.98
0 0 7.5 4021.5 1072.7 4080.4 11.51 11.23
0 0 2.5 4144.2 14,195.2 5194.9 5.98 8.52
0 0 10.0 4210.7 −5488.5 3920.0 11.47 7.04
0 2 5.0 4227.6 6408.7 4368.3 10.42 6.68
3 0 5.0 4235.8 7633.2 4036.5 11.25 6.50

Table 6. List of five best configurations when primarily focusing on cost with DSM turned on.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs. Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] DSM off [%] Base. [%]

0 0 7.5 4021.5 1072.7 4080.4 11.51 11.23
0 0 10.0 4210.7 −5488.5 3920.0 11.47 7.04
0 0 5.0 3987.5 7634.0 4486.6 9.99 11.98
3 0 7.5 4021.5 1072.7 4080.4 11.51 11.23
0 2 7.5 4281.2 −152.5 3993.1 11.55 5.49

Table 7. List of five best configurations when primarily focusing on NZEB rating with DSM turned on.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs. Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] DSM off [%] Base. [%]

0 4 10.0 4623.8 −7939.0 3803.4 11.43 −2.13
0 6 10.0 4850.9 −9164.3 3769.6 11.30 −7.08
0 8 10.0 5079.6 −10, 389.6 3744.9 11.13 −12.13
0 0 10.0 4210.7 −5488.5 3920.0 11.47 7.05
0 2 10.0 4482.6 −6713.8 3852.0 11.33 1.04

Table 8. List of five best configurations when primarily focusing on emissions with DSM turned on.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs. Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] DSM off [%] Base. [%]

9 0 7.5 4490.8 1072.0 3454.3 9.18 0.87
6 0 7.5 4409.4 1072.0 3549.3 10.54 2.66
9 4 7.5 4814.0 −1379.6 3190.5 9.85 −6.27
9 0 10.0 4723.1 −5489.3 3362.2 8.67 −4.26
3 0 7.5 4296.9 1072.0 3673.2 12.03 5.14

5.4. CO2 Emissions as the Primary Criterion

Finally, amongst environmentally friendly use cases, the main stressed criterion could
be emissions, as is accomplished by

wC = 30%, wNZEB = 10% and wCO2 = 60%. (61)

The resulting ranking in this case is presented in Table 8. As was expected, the best solu-
tions are, just like in the aforementioned case, not the most profitable, but offer significant
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environmental features. Nonzero BESS units now appear in all of the selected config-
urations because of the need to minimize the emissions trough using locally produced
electricity as opposed to grid imports.

5.5. Use Case without Incentives

In the end, for reference purposes, a use case is assumed where the various incentives
that were previously considered are set to zero. This use case is obtained by specifying

αWT = 0, αPV = 0, αgrid = 19.6 cEUR/kWh,
βWT = 19.63 cEUR/kWh, βPV = 19.63 cEUR/kWh, βgrid = 0.

(62)

and also setting the RHI incentive to zero for both STC and GSHP. Since the process of
energy trading on the wholesale market would certainly include multiple middlemen that
would reduce the benefit that the user exporting energy can make use of, this use case
assumes arguably generous renewable energy export prices at the same value as is the
price of importing electricity from the grid. However, when the operational optimization
is performed for configurations that include batteries with capacities of 0 and 9 kWh, PV
arrays with capacities of 0 and 4 kW and all wind turbine configurations with nonzero
capacities and the resulting results are analyzed with a sole focus on minimizing costs,
the results from Table 9 are obtained. Results show that the event is the best-case scenario
without incentives is more than 35% more expensive than the nonrenewable baseline, thus
reaffirming the conclusion that the renewable installation project in the discussed case
continues to highly depend on the existences of some of the mentioned incentive programs
to be cost-effective.

Table 9. List of five best configurations when optimizing solely for costs without any incentives and
with DSM turned on.

BESS PV WT Total Cost NZEB Rat. CO2 Savings vs. Savings vs.
[kWh] [kW] [kW] [EUR] [kWh] Emiss. [kg] DSM off [%] Base. [%]

0 0 2.5 6130.7 14,166.2 5189.7 4.06 −35.33
0 4 2.5 6422.4 11,715.7 4878.5 5.78 −41.77
0 4 5.0 6589.2 7605.0 4478.3 6.25 −45.46
9 0 2.5 6747.8 14,165.7 4795.0 2.36 −48.96
9 4 2.5 6896.8 11,715.2 4256.2 4.09 −52.25

6. Conclusions

The methodology presented in this paper details a comprehensive optimization pro-
cess with a proposed linear programming-based model for operational optimization and a
multicriteria ranking system for sizing optimization. To illustrate the capabilities of that
process, a use case is assumed and the optimizer was employed to prove that the invest-
ment in renewable sources can be cost-effective when adequate appliance management
techniques are used, resulting in savings just over 10% when only costs are considered as a
primary criterion, in line with findings that could be found in the discussed related litera-
ture. The algorithm also manages to yield configurations with significant environmental
impact improvements when compared to a nonrenewable baseline when the focus is shifted
from costs to ecological factors. Also, in some of the selected cases, the obtained optimal
solutions show an absence of storage solutions, which shows that DSM methods can be
employed to reduce the negative environmental impact of costly chemical-based batteries
that are often associated with HRES systems. Although the selected demonstration site
was not comprehensive in terms of utilization of all energy sources featured by the Energy
Hub methodology, additional sources can effortlessly be integrated into a similar analysis
should the use case differ from the presented one.

A crucial aspect that should be considered for the demonstrated energy efficiency
improvements to be realized in an arbitrary real-world setting are potential policy and
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legislative limitations. With different governments offering different terms for energy
prosumers, local regulations should be, as was the done in the demonstrated use case,
carefully analyzed when approaching both the planning and operation stages of the project.
However, results presented in this paper and related publications can hopefully serve as a
positive use case and aid in policy adjustments for the benefits of energy end users, energy
producers, and grid operators.

Further research in this field is planned to include the implementation of more complex
stochastic models into the production and load profiles as well as nominal appliance usage
to more accurately model day-to-day variances in user demand. Furthermore, the demand-
side management aspect can be extended by also including demand response events that
would facilitate load increases or decreases during predefined periods of time. Also, the
sizing optimization paradigm could be extended to all sustainable sources like the heat
pumps and thermal storage units. However, this extension may involve more detailed
numerical models that would dynamically assess operation of the mentioned components
to ensure long-term efficiency. Finally, the effects of different time step lengths and the
introduction of different new criteria should also be analyzed to provide a holistic view of
solutions that can be obtained in the desired decision space.
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Appendix A. Modeling Renewable Technologies

Including renewable sources like the WT, PV panels as well as heating and cooling so-
lutions like the STC and GSHP into the system requires proper modeling of their operation
to evaluate the model’s performances. Therefore, this section is set to outline the models
used for describing RES behavior.

Appendix A.1. Wind Turbine

Following the methodology depicted in [34], the power of a WT is generally calculated
based upon a power curve which outputs the generated power when the wind speed at
the hub of the generator is vhub in test conditions. However, the actual generated power
values do not exactly match the ones from the test power curve because they need to be
scaled by the installed capacity and adjusted for the difference in air density. This effect is
modeled by

PWT(vhub) = YWT[W] · Ptest
WT(vhub)

ρ

ρ0
(A1)

where the ratio between the air density at the hub and in test conditions (at sea level and
15 ◦C temperature) can be calculated as

ρ

ρ0
=

(
1−

Bzabs
hub

T0

) g
RB
(

T0

T0 − Bzabs
hub

)
. (A2)

Wind speed measurements at heights equivalent to those of turbine hubs are usually not
readily available, and therefore must be estimated. According to [35], a logarithmic profile
can be used to estimate the wind speed at the hub based on the speed at the anemometer
by using
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v(zhub) = v(zanem)
ln(zhub/z0)

ln(zanem/z0)
. (A3)

Appendix A.2. Photovoltaic Panels

Modeling the output of a photovoltaic panel is somewhat more complex that mod-
eling the WT since the output of the panel depends on several different factors. Namely,
according to [36,37], it can be modeled as

PPV(k) = YPV fPV

(
ḠT(k)
ḠT,STC

)
(1 + aP(Tc(k)− Tc,STC)). (A4)

Irradiance can be calculated as

ḠT = (Ḡb + Ḡd Ai)Rb + Ḡd

(
1 + cos β

2

)(
1 + f sin3 β

2

)
+ Ḡρg

(
1− cos β

2

)
(A5)

based on individual components and where

f =
√

Gb(k)
/

G(k) (A6)

The angle 0° ≤ β ≤ 90° determining the slope of the surface with 0° representing a horizon-
tal panel and 90° a vertical panel. Having in mind [38], the components of solar irradiation
required for applying (A4) can either be obtained from a meteorological database or esti-
mated using appropriated models that are beyond the scope of this paper. Furthermore,
the cell temperature is attained from

Tc =

Ta + ∆TckG

(
1− ηmp,STC(1−apTc,STC)

aτ

)
1 + ∆TckG

( apηmp,STC
aτ

) (A7)

where

∆Tc = Tc,NOCT − Ta,NOCT and kG =
GT(k)

GT,NOCT
. (A8)

The maximum power point efficiency is calculated as

ηmp,STC =
YPV

APVGT,STC
. (A9)

Appendix A.3. Solar Thermal Collector

The STC is modeled as a passive system (without a heat pump) based on [37,39] with
two major components: the collector that extracts heat from the environment and the
tank which stores that heat for later use. The temperature of the water in the tank can be
calculated as

Ttank(k) =
Qtank(k)

mc
+ Tbase (A10)

The tank naturally losses heat as is expressed by

Qloss(k) = mc(Ttank(k)− Tamb(k))
(

1− e−
ηl Ts
mc

)
(A11)

Since this model is created for simulations utilizing a sample period equal to one hour,
Ts = 1 h is assumed when modeling STC processes with data for smaller sample periods
available through interpolation. The heat produced by the collector can be obtained with

Qprod(k) = A
(
a1Gb(k)Ts + a2(Tamb(k)− Ttank(k)) +a3). (A12)
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This formula is obtained as a nonlinear fit with experimental data where A is the amount
of times that the area of the collector is greater than 1.33 m2 used in the original experiment
and parameter values a1 = 1.637 m2, a2 = 4.492 kJ/K and a3 = 0.192 MJ are taken from the
original experiment. If the produced value is negative, the collector is detached as not to
further reduce the amount of energy stored in the tank. Otherwise, the additional energy is
injected into the tank, and so the available amount of heat can be expressed as

Qavail(k) = Q(k)−Qloss(k) + max
{

Qprod(k), 0
}

(A13)

However, since the user’s demand Qdemand at the considered time step is be subtracted,
but Qavail may not be sufficient to meet all of the thermal needs. Thus, it is stated that the
amount stored in the tank at the start of the next time step is

Qtank(k + 1) = max{Qmin(k), Q(k)−Qdemand(k)} (A14)

where
Qmin(k) = mc(Tamb(k)− Tbase). (A15)

If the stored heat is limited by (A14) to Qmin, the user’s demand was not fully met, and the
unmet heat

Qunmet(k) = Qmin(k)− (Qavail(k)−Qdemand(k)) (A16)

is passed on to an auxiliary heating system whose role is played by the GSHP in the
considered configuration.

Appendix A.4. Ground Source Heat Pump

The basic premise of the system by which the GSHP operates is utilizing the constant
nature of soil temperature beneath and around the considered property. Following the bin
method outlined in [40], the ground temperature is modeled as

Tg(Xs, t) = Tg − ∆Tg · cos

(
2π

365

(
t− t0 −

Xs

2

√
365
πα

))
(A17)

where
∆Tg = Ase−XS

√
π

365α and α =
k

ρcp
. (A18)

Following this, the minimum and maximum ground temperatures are determined as

Tg, min(Xs, t) = Tg − Ase−XS
√

π
365α and Tg, max(Xs, t) = Tg + Ase−XS

√
π

365α . (A19)

Even though the minimum and maximum temperature of water exiting the ground heat
exchanger is directly influenced by these values, because of practical constraints, it is
limited between

Tewt, min = Tg, min − 15 °F and Tewt, max = min
{

Tg, max + 20 °F, 110 °F
}

. (A20)

Using linear interpolation, the temperature of water at the entrance of the heat pump fed
by a closed-loop ground exchanger can be determined as

Tewt = Tmin +
Tewt, max − Tewt, min

Td,cool − Td,heat
(Tbin,i − Td,heat) (A21)

where Tmin = Tewt,min. A capacity multiplier forces the system to meet either the cooling
demand with

χ =
qd,cool

λ0+λ1Tewt, max+λ2T2
ewt, max

, when cooling

χ =
qd,heat

λ0+λ1Tewt, min+λ2T2
ewt, min

, when heating
(A22)
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with the appropriate cooling/heating capacity and COP of the GSHP being

Qc/h = χ
(

λ0 + λ1Tewt + λ2T2
ewt

)
and η = ηbase

(
k0 + k1Tewt + k2T2

ewt

)
. (A23)

Appropriate values for parameters k and λ used to fit these expressions are summarized in
Table A1. Finally, having in mind that the amount of thermal energy that can be obtained
by this system is limited by the designed power, and thus, may only be less than PmaxTs,
we set the consumed amount of electric energy to

Eelec,GSHP =

{
Qh/c/η, Qh/c ≤ PmaxTs

PmaxTs/η, Qh/c > PmaxTs
(A24)

where in the latter case auxiliary thermal sources must be used to fulfill the remaining part
of the demand.

Table A1. Quadratic polynomial coefficients.

Coefficients Cooling Heating

k0 1.5311× 100 1.0000× 100

k1 −2.2961× 10−2 1.5598× 10−2COP
k2 6.8744× 10−5 −1.5931× 10−4

λ0 1.4119× 100 6.6787× 10−1

λ1 −2.5620× 10−3 2.7989× 10−2Capacity
λ2 −7.2482× 10−5 −1.0636× 10−4

Appendix B. Nomenclature

Appendix B.1. Proposed Planning Methodology

ai i-th alternative in the MCDMA
ck(ai) k-th criterion out of q for ak
dk(ai, aj) pair-wise comparison value for criterion ck
πk((ai, aj)) preference degree function
Pk(ai, aj) preference function
pk, qk lower and upper preference boundaries
wk weight associated with criterion ck
φ+, φ−, φ positive, negative and net preference flow
WT wind turbine
Ptest

WT(vv) nominal power-wind speed WT power curve
YWT rated power (power capacity) of the WT system
PWT(vv) capacity and air density adjusted power-wind speed WT power curve
ρ, ρ0 air density at site and at test conditions
B laps rate
T0 standard temperature
g gravitational acceleration
R universal gas constant divided by the molar mass of air
zabs

hub WT hub height above sea level
zanem/hub anemometer and WT hub height above ground
vanem/hub wind speed at anemometer and WT hub height
z0 surface roughness level
PV photovoltaic
PPV instantaneous power generated by the PV system
YPV rated power (power capacity) of the PV system
fPV derating factor of the PV system
GT solar irradiance incident on the PV array averaged at the current timestamp
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aP temperature coefficient of power
Tc PV cell temperature
STC (at) standard test conditions
Gd/b, G diffuse, beam and global horizontal irradiation
Ai anisotropy index
Rb ratio between beam radiation on a tilted and horizontal surface
f horizontal brightening factor
β PV surface slope
ρg ground reflectance (albedo)
Ta ambient temperature
NOCT (at) nominal operating cell temperature
ηmp maximum power point efficiency
APV surface area of the PV array
a solar absorbance of the PV array cover
τ solar transmittance of the PV array cover
STC solat thermal collector
Qtank/loss available amount of heat in the tank and lost amount of heat
Ttank/amb water temperature in the tank and ambient temperature
m mass of water in the tank
c specific heat capacity of water
ηl storage heat loss coefficient per unit of volume
Ts sample rate
Qprod/avail produced amount of heat and available amount of heat in the tank
GSHP ground source heat pump
Tg ground temperature
Tg mean annual soil temperature
As annual surface temperature amplitude
Xs soil depth
α soil thermal diffusivity
k soil thermal conductivity
ρ soil density
cp soil specific heat
t day of the year
Tewt entering water temperature
Td cooling/heating averaged design temperature
Tbin binned ambient temperature
χ capacity multiplier
qc/d cooling/heating demand
η, ηbase instantaneous coefficient of performance (COP) and at baseline
Pmax maximum design power
Eelec,GSHP electric energy consumed by GSHP

Appendix B.2. Mathematical model

Pin input (imported) power
Pcin/cout input and output power to and from the converters
Qin/out power flow to/from the storage at the input and output stage
L loads
Pout output power to loads
Pexp exported power
qin/out charge/discharge rate for storage at the input and output stages
Ein/out available energy (state of charge, SOC) for storage at the input and output stages
y, z device on/off and device start indicators
d+/− positive and negative power deviations
I(d+/−) indicators for positive and negative power deviations
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Sin/qin input stage energy storage conversion matrices
Fin/qin input and output transformation matrices
C energy conversion matrix
Dexp, Rexp export energy restriction matrices
Sout/qout output stage energy storage conversion matrices
Pi, Pnom

i i-th appliance’s instantaneous and nominal power draw
wnom

i , ∆tnom
i i-th appliance’s n-th activation window indicator and length

Pmax
dev+/−i

maximum absolute positive and negative power deviations
Prenew power produced from renewable sources
SOCmin/max

in/out SOC capaciti limits at input and output stages
Jc/d/cd cost, dispersion and mixed criterion
α, β, σ energy import and export prices and standing charge
ζi i-th appliance dispersion penalization factor
XEMI/maint

i equated monthly installments and maintenance costs
γi estimated lifetime in years for i-th device
δ monthly discount rate
Bi initial acquisition cost for i-th device
CC/NZEB/CO2 cost, net-zero energy building (NZEB) and CO2 emission criterion
f C
WT/PV/grid carbon footprint values for WT, PV and grid imported energy

Appendix B.3. Use Case

Qheat/DHW baseline thermal energy requirements for heating and domestic
hot water (DHW)
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