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Abstract: The price of electricity is an important factor in the electricity market. Accurate electricity
price forecasting (EPF) is very important to all competing electricity market parties. Decision-making
in the electricity market is highly dependent on electricity prices, making an EPF model an important
part of the orderly and efficient operation of the electricity market. Especially during the COVID-19
pandemic, the prices of raw materials for electricity production, such as coal, have risen sharply.
Forecasting electricity prices has become particularly important. Currently, existing EPF prediction
models face two main challenges: First, how to integrate multiscale electricity price data to obtain
a higher prediction accuracy. Second, how to solve the problem of data noise caused by the fusion
of EPF samples and multiscale data. To solve the above problems, we innovatively propose a
tensor decomposition method to integrate multiscale electricity price data and use L1 regularization
and wavelet transform to remove data noise. In general, this paper proposes a deep learning
EPF prediction model, named the WT_TDLSTM model, based on tensor decomposition, a wavelet
transform, and long short-term memory (LSTM). Among them, the LSTM method is used to predict
electricity prices. We conducted experiments on three datasets. The experimental results of three data
prove that the WT_TDLSTM model is better than the compared EPF model. The indicators of MSE
and RMSE are 33.65–99.97% better than the comparison model. We believe that the WT_TDLSTM
model is a good supplement to the EPF model.

Keywords: electricity price forecasting (EPF); wavelet transform; tensor fusion; long short-term
memory (LSTM)

1. Introduction

The price of electricity is an important factor in the electricity market [1]. Accurate
electricity price forecasting (EPF) is very important to all parties in power market competi-
tion [2–4]. Decision-making in the electricity market is highly dependent on the electricity
price, making an EPF model an important part of the orderly and efficient operation of the
electricity market. EPF has a certain periodicity, as well as a high degree of randomness
and time-varying characteristics [5]. Therefore, building a model for forecasting electricity
prices is a very challenging task. The accuracy of EPF in the power market affects the
efficiency and rationality of energy resource optimization [6]. Especially for enterprises, it
is important to accurately predict the price of electricity to control their production costs. In
addition, accurate electricity price forecasting can achieve a balance between the electricity
supply and demand, which is conducive to stable electricity market operation. At present,
with the global pandemic of COVID-19, the cost of raw materials in the power industry
have risen sharply [7]. This exacerbates the fluctuation of electricity prices and further
makes electricity price forecasting more important.

Existing EPF methods can be divided into three categories, namely, physical methods,
statistical methods, and machine learning methods (Figure 1). Physical methods are based
on safety constrained unit commitment (SCUC) and safety constrained economic dispatch
(SCED) models to simulate the day-to-day power market situation based on boundary
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conditions and physical theory [8,9]. Although physical methods are effective from the
perspective of predictive logic, their main problem is that the SCUC and SCED models
require a large amount of real-time operating data, such as line transmission capacity,
electricity load, and competitors’ bids, which leads to very complicated calculations. Sta-
tistical methods aim to use curve fitting to reveal the dynamic trends between historical
electricity price series. These methods have the advantages of high-speed performance,
simple modelling and convenience. Statistical models include the autoregressive mov-
ing average (ARMA) [10,11], generalized autoregressive conditional heteroscedasticity
(GARCH) [12], and chaos theory [13]. Machine learning methods can be roughly divided
into two categories: shallow learning models and deep learning models [14,15]. Shallow
learning models are based on the principle of error minimization and generally have
better performance than physical and statistical methods [16]. Due to their remarkable
ability to extract features, they have been one of the most commonly used methods for
electricity price forecasting. Shallow learning models include support vector regression
(SVR) [17], artificial neural networks (ANNs) [18], and regression trees [19]. After 2021,
some researchers have also proposed a kernel-based extreme learning machine power price
prediction model [20,21]. Recently, with the development of deep learning, electricity price
prediction models based on deep learning have been continuously proposed, including
BP, CNN, RNN, etc. [22–24]. Recently, the LSTM-based electricity price prediction method
has received widespread attention because of its excellent performance. For example,
Huang et al. proposed an LSTM-based electricity price prediction model [25]. Memarzadeh
et al. proposed an improved LSTM model named LSTM-NN to achieve a better short-term
electricity price prediction model [26].

Figure 1. Overview of current research methods for EPF problem.

However, the existing EPF machine learning prediction models still faces two main
limitations. First, most of the existing EPF models are single-scale models. Existing research
has proven that compared with a single-scale training model, a multiscale EPF model can
obtain increasingly comprehensive data features, and thus, it is possible to achieve better
prediction accuracy [27]. The feature length of multiscale time series data is inconsistent
and contains noise. This leads to difficulty in establishing an end-to-end prediction model.
The second limitation is that the existing data denoising methods are still not perfect, and
the results of the model still have room for improvement. Electricity price data have high
dimensionality and high noise characteristics. Especially after the data are segmented
using a sliding window, the sample quality problem of each sliding window becomes more
prominent. In addition, the multiscale fusion process of a model may bring additional
noise problems. Therefore, it is difficult for researchers to obtain an ideal model based on
all samples and features.

In this paper, we propose an EPF prediction model based on tensor decomposition,
wavelet transform and long short-term memory. The method of using tensors for feature
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fusion has been widely used in various artificial intelligence fields and has achieved good
results [28–30]. This paper proposes a tensor decomposition method based on L1 to fuse
multiscale power data. Among them, the L1 regularizer is used to solve the data noise
problem caused by the fusion of the EPF sample itself and the multiscale tensor. We also
used the wavelet transform method for data denoising. A wavelet transform (WT) is a
new transform analysis method that inherits and develops the idea of localization of a
short-time Fourier transform while overcoming the shortcomings of the window size not
changing with frequency by using a WT’s “time-frequency” window that changes with
frequency. This method has been widely used in the denoising of time series data [31–33].
Finally, we use a long short-term memory (LSTM) model on the processed features for data
prediction.

The contributions of this study can be summarized as follows:

• We innovatively propose a tensor decomposition method based on L1 regularons,
which can effectively fuse multiscale electricity price data and remove the noise
generated during data fusion.

• To the best of our knowledge, WT_TDLSTM is the first multiscale integration model that
incorporates wavelet transform and tensor fusion into a computational framework.

• The experimental results show that, compared with a neural network model that does
not perform denoising and fusion of multiscale data, the prediction performance of
the WT_TDLSTM model achieves significantly better results.

2. Datasets and Methods
2.1. Datasets

In this study, the monthly electricity price sample we adopted for validating the
priority of the proposed method was selected from the Energy Information Administra-
tion (EIA) (U.S.) (https://www.eia.gov accessed: October 2021) and included residential,
commercial, and industrial monthly electricity price samples (see Table 1). The number of
samples for which residential, commercial, and industrial monthly electricity prices are all
245 (January 2001/May 2021). Before training, we preprocess the data of the residential
monthly electricity prices as follows. First, we segment the data samples. For example,
electricity price data from January to November 2001 are used to predict electricity prices
in December 2001, and electricity price data from February to December 2001 are used to
predict electricity prices in January 2002. Based on the above preprocessing strategy, we
developed a new dataset with 234 samples. Next, we divide these data into multiple scales,
and the time lengths are 12, 8, and 5 months.

Table 1. Statistical description of three types of electricity price data samples in this study.

Sample Statistic Value

residential

Length 245
Max 13.76
Min 7.13

Average 11.28

commercial

Length 245
Max 11.93
Min 7.25

Average 9.78

industrial

Length 245
Max 8.15
Min 4.71

Average 6.38

2.2. Tensor Fusion

In this paper, we divide the electricity price data on multiple scales and obtain a matrix
A ∈ Rm×12 with a scale length of 12, a matrix B ∈ Rm×8 with a scale length of 8, and a

https://www.eia.gov
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matrix C ∈ Rm×5 with a scale length of 5. To perform tensor fusion on multiscale data, we
transform matrices A, B and C into tensors A ∈ Rm×12×1, B ∈ Rm×1×8 and C ∈ Rm×1×5.
Figure 2 shows the process of tensor fusion for multiscale data. Next, we briefly describe
the tensor fusion strategy, and the result is shown using the following formula:

D = A ⊗ B. (1)

where D ∈ Rm×12×8 and ⊗ denote the matrix multiplication of two dimensions of
the tensor.

Figure 2. The process of tensor fusion for electricity price data on multiple scales.

To be able to further merge with the tensor C, we convert the size of D to m× 96× 1
and use the following formula:

E = D ⊗ C. (2)

where E ∈ Rm×96×5 and is our final multiscale fusion tensor.

2.3. Tensor Decomposition
2.3.1. Tucker Decomposition

We can regard Tucker tensor decomposition as a form of higher-order PCA [34]. Tucker
tensor decomposition factorizesX into N factor matrices and the core tensor that constitutes
a compressed version of X . If we assume that X is a tensor of size I1 × I2 × · · · × IN , then
the optimization problem to be solved to calculate the Tucker decomposition is

min‖X − JG; U1, U2, · · · , UNK‖2
F. (3)

we can easily find an exact Tucker decomposition of rank (R1, R2, · · · , RN), where
Rn ≤ rank(X ), G ∈ RR1×R2×···×RN ; factor matrices Un ∈ RIn×Rn and column-wise or-
thogonal for n = 1, 2, · · · , N, ‖·‖2

F. denotes the L2 (or Frobenius) norm.
If the solution of Equation (3) is at the optimal solution, then the core tensor G

must satisfy
G = X ×1 UT

1 ×2 UT
2 · · · ×N UT

N . (4)

Substituting Equation (4) into Equation (3), the optimization goal can be recast as a
series of subproblems involving the following maximization problem:

max‖X ×1 UT
1 ×2 UT

2 · · · ×N UT
N‖2

F. (5)

We can use the alternating least squares (ALS) method to solve (5); if U∗n is a solution
to (5), then

G∗ = X ×1 U∗1
T ×2 U∗2

T · · · ×N U∗N
T . (6)
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G∗ is the corresponding Tucker core of X , and X is “low-rank” approximated by

X̂ = G∗ ×1 U∗1 ×2 U∗2 · · · ×N U∗N = X ×1 U∗1 U∗1
T ×2 U∗2 U∗2

T · · · ×N U∗NU∗N
T . (7)

where X̂ is the reconstructed tensor. The exact solution to (5) remains unknown and can be
commonly approximated by means of HOSVD algorithms based on the ALS method.

2.3.2. L1-HOSVD

As noise will inevitably be introduced in the process of tensor fusion of multiscale
data, we use the L1-HOSVD [35] decomposition method based on Tucker decomposition
to denoise the fused tensor. L1-HOSVD derives by simply replacing the L2-norm in (5) by
the corruption resistant L1-norm as follows:

max‖X ×1 UT
1 ×2 UT

2 · · · ×N UT
N‖1. (8)

We find that to solve Equation (8), it is necessary to continuously iteratively solve the
factor matrix Un. For the solution of the factor matrix Un, the objective function Equation (9)
needs to be optimized:

Un = argmax ‖UTX(n)‖1. (9)

where U ∈ RIn×Rn ,UTU = IRn ; IRn refers to the identity matrix of size Rn × Rn. X(n) are
the mode-n matricization of tensor X .

We pursue the solution to (9) approximately by means of a fixed-point iteration (FPI)
algorithm. According to [36], we can obtain the solution process as follows:

max‖UTX(n)‖1 = maxTr(UTX(n)B) (10)

where B ∈ {±1}Pn×Rn is an indicator variable. We develop an alternate updating rule to
optimize the objective function of Equation (10) as follows:

Bn,t = argmax
B∈{±1}Pn×Rn

Tr(UT
n,t−1X(n)B)

= sgn(X T
(n)Un,t−1).

(11)

Un,t = argmax
U∈RIn×Rn ,UTU=IRn

Tr(UTX(n)Bn,t)

= Φ(X(n)Bn,t).
(12)

where sgn(·) returns the ±1 signs of the entries of its argument (sgn(0) = 1), and t refers
to the t-th iteration. Moreover, it holds that Φ(H) = argmax

U∈Rm×n
Tr(UT H) = argmin

U∈Rm×n
‖U − H‖2

F

by the Procrustes Theorem [37].
To simplify the updating process, we integrate Equations (11) and (12) as follows:

Un,t = Φ(X(n)sgn(X T
(n)Un,t−1)). (13)

Finally, we randomly initialize the factor matrices Un,1 and update the factor matrices
by Equation (13) until the model converges. In this paper, we replace tensor X with
multiscale fusion third-order tensor E ∈ Rm×96×5 for denoising.

2.4. Wavelet Transform

A wavelet transform is a new transform analysis method that inherits and develops the
idea of the localization of a short-time Fourier transform and simultaneously overcomes the
shortcomings of the window size not changing with frequency by using a “time-frequency”
window that changes with frequency. This makes it an ideal tool for signal time-frequency
analysis and processing.
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The main feature of a WT is that it can fully highlight the characteristics of certain
aspects of a problem through transformation and can localize the analysis of time (space)
frequency. It gradually refines the signal (function) at multiple scales through expansion
and translation operations and finally achieves time subdivision at high frequencies and
frequency subdivision at low frequencies. It can automatically adapt to the requirements
of time-frequency signal analysis so that it can focus on any detail of the signal.

The basic formula of a wavelet transform is as follows:

WT(α, τ) =
1√
α

∫ ∞

−∞
f (t)× ψ(

t− τ

α
)dt. (14)

where α is the scale and τ is the displacement.

2.5. Long Short-Term Memory

A long short-term memory network is a special type of RNN that can learn long-term
dependence information. The LSTM method was proposed by Hochreiter and Schmidhuber
(1997) [38] and was recently improved. LSTM has achieved considerable success and has
been widely used [39–41].

The key to LSTM is the state of the cell. The first step in the LSTM method is to decide
what information the model will discard from a cell state. This decision is made through
a layer called the forget door. Suppose the cell state after the last cycle is Ct−1. The gate
will read the result ht of the last cycle of the model and the current input xt and output a
value between 0 and 1 for each cell state parameter in Ct−1, where 1 means “completely
reserved” and 0 means “completely discarded”.

We define a function ft to determine the information discarded by the model in
this cycle:

ft = σ(Wt[ht−1, xt] + b f ). (15)

where σ represents an activation function and Wt and b f are the weight and bias informa-
tion, respectively.

The next step is to determine what new information is stored in the cell state. There
are two parts here. First, the input gate layer determines the value that the model needs to
be updated. Second, a new candidate variable C̃t is created, which is added to the state.

it = σ(Wi[ht−1, xt] + bi), (16)

C̃t = tan h(WC[ht−1, xt] + bC). (17)

Finally, the cell state is updated using the following formula:

Ct = ft × Ct−1 + it × C̃t. (18)

Although the LSTM maintains a similar structure to the standard RNN, the cell
composition is different. The LSTM introduced above can effectively solve the problem of
gradient disappearance and gradient explosion in the RNN training process because of its
unique structure. Figure 3 illustrates the schematic diagram of LSTM network training.

In this paper, we construct an LSTM deep learning model with two hidden layers, the
activation functions are sigmoid and tanh, and the hidden layer neurons are set to 5.
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Figure 3. The training process of LSTM.

2.6. WT_TDLSTM

To overcome the influence of noise caused by multiscale data fusion and establish a
high-precision regression model, we innovatively combine wavelet transform and tensor
decomposition with LSTM (see Figure 4). The specific workflow is as follows:

Figure 4. (A) A wavelet transform is used for denoising and tensor fusion in multiscale data fusion. (B) LSTM is used for
regression prediction, and matrix M is transformed from the reconstruction tensor.

Step 1: We divide the electricity price data into multiscale and use a wavelet transform
to denoise data of different scales;

Step 2: We integrate multiscale data into a tensor and use L1-HOSVD based on Tucker
decomposition to decompose the tensor to obtain factor matrices of different dimensions
and the compressed version of the core tensor;
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Step 3: We use the factor matrices and the core tensor to obtain the reconstructed
tensor, which is the denoised tensor. Then, the denoised tensor is converted to a matrix,
and the matrix is normalized;

Step 4: Based on the normalized matrix, we take advantage of the LSTM model for
the final electricity price prediction.

3. Results

In this section, we first show how to preprocess residential, commercial, and industrial
monthly electricity price samples. Then, we introduce the evaluation metrics of the model
and the adjustment of hyperparameters. Finally, we compare and analyze the performance
of our model with other models.

3.1. Data Preprocessing

Considering that activation functions such as ReLu in the neural network will map
all negative values to 0, all sample data are normalized before network training to reduce
training time and improve the training effect. In this paper, we use the minmax normal-
ization method to preprocess the electricity price data. The normalization formulation is
as follows:

X∗ =
X−min(X)

max(X)−min(X)
. (19)

where X∗ denotes the result of normalizing the input data and max(X) and min(X) refer
to the maximum and minimum values of the input data, respectively.

3.2. Performance Metrics

In this study, four evaluation indicators, the mean squared error (MSE), root mean
square error (RMSE), and mean absolute error (MAE), are applied in this subsection. The
calculations of these indices are shown in Equations (20)–(22).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (20)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (21)

MAE =
1
n

n

∑
i=1
|yi − ŷi|. (22)

3.3. The Effects of the Hyperparameters

In our model, some hyperparameters have different effects on the experimental per-
formance. We take the residential monthly electricity price dataset as an example to show
the process of adjusting hyperparameters. Here, we focus on two specific hyperparameters,
i.e., the number of neurons and the learning rate λ in the WT_TDLSTM model. To better
evaluate the influence of hyperparameters on the model, we use the MSE and MAE to
select hyperparameters. First, we fix the value of the learning rate at 0.001 and search
for the optimal values of the other parameters. Then, we vary the number of neurons in
the hidden layer within {3, 5, 10, 20} to find the best parameter. From Table 2, we can see
that when the number of hidden neurons is 5 in the WT_TDLSTM model, the values of
MSE and MAE are the smallest (MSE = 0.001973, MAE = 0.033888). Finally, after the above
hyperparameters are determined, we can change the value of the learning rate within
{1, 0.1, 0.01, 0.001, 0.0001} to find the optimal parameter. In Figure 5, we find that when the
learning rate is 0.001, the values of MSE and MAE are the smallest. It is worth noting that
commercial and industrial monthly electricity price datasets in this paper should also use
the above steps for hyperparameter selection.
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Table 2. Performance of the WT_TDLSTM model with different values of neurons in the hidden
layers on the residential monthly electricity price dataset.

MSE MAE

3 0.002130 0.034939
5 0.001973 0.033888
10 0.002026 0.034724
20 0.003464 0.047668

Figure 5. Performance of the WT_TDLSTM model with different learning rates on the residential
monthly electricity price dataset.

3.4. The Results on the Dataset

Tables 3–5 show the prediction performance of different models on the residential,
commercial and industrial monthly electricity price datasets, respectively. In this paper, we
choose five deep learning-based models as our baseline models, including BP, CNN, RNN,
LSTM, and LSTM-NN. For our model, we can see that the average values of the MSE, RMSE,
and MAE in five randomized experiments are 0.001985, 3.940309 × 10−6, and 0.035024,
respectively, as shown in Table 3. The values of the evaluation metrics of the WT_TDLSTM
model are 98.25%, 99.97%, and 87.55% better than those of the BP model; 71.04%, 91.61%,
and 51.21% better than those of the CNN model; 98.09%, 99.96%, and 85.35% better than
those of the RNN model; 98.04%, 99.96%, and 85.33% better than those of the LSTM model;
and 97.83%, 99.95%, and 84.50% better than those of the LSTM-NN model. Similarly,
from Tables 4 and 5, we can also find that the average values of MSE, RMSE, and MAE of
the WT_TDLSTM model are significantly better than those of the baseline models in five
randomized experiments. More specifically, in terms of MSE and RMSE, the prediction
performance of the WT_TDLSTM model is better than that of the baseline models by
33.65–93.18% and 40.71–88.40%, respectively, as shown in Tables 4 and 5. Furthermore,
compared with the LSTM_NN and LSTM models, we can see that the WT_TDLSTM model
achieves better fitting ability on the residential monthly electricity price test datasets,
as shown in Figure 6a–c. All these results demonstrate that the WT_TDLSTM model is
significantly better than the existing electricity price prediction models.
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Table 3. Five randomized experimental average results of all the models on the residential monthly
electricity price dataset.

Model MSE RMSE MAE

BP 0.113129 0.012798 0.281345
CNN 0.006854 4.697257 × 10−5 0.071783
RNN 0.104034 0.010823 0.239140
LSTM 0.101310 0.010264 0.238800

LSTM-NN 0.091435 0.008360 0.225945
WT_TDLSTM 0.001985 3.940309 × 10−6 0.035024

Table 4. Five randomized experimental average results of all the models on the commercial monthly
electricity price dataset.

Model MSE RMSE MAE

BP 0.120919 0.014621 0.277841
CNN 0.125190 0.015673 0.327035
RNN 0.203747 0.041513 0.394502
LSTM 0.307191 0.094366 0.445847

LSTM-NN 0.253752 0.064390 0.437149
WT_TDLSTM 0.080231 0.006437 0.263357

Table 5. Five randomized experimental average results of all the models on the industrial monthly
electricity price dataset.

Model MSE RMSE MAE

BP 0.085263 0.007270 0.217354
CNN 0.091712 0.008411 0.255854
RNN 0.088921 0.007907 0.229501
LSTM 0.148374 0.022015 0.296279

LSTM-NN 0.124202 0.015426 0.283735
WT_TDLSTM 0.050549 0.002555 0.207223

Figure 6. Cont.
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Figure 6. Fitting effect of different models on test datasets: (a) fitting effect of WT_TDLSTM model on residential monthly
electricity price test dataset; (b) fitting effect of LSTM_NN model on commercial monthly electricity price test dataset; (c)
fitting effect of LSTM model on industrial monthly electricity price test dataset. The solid line and the dashed line refer to
the true value and the predicted value, respectively.

3.5. Comparison of Convergence Curves

Figure 7a–c show the comparison of convergence curves of different models on the
residential, commercial, and industrial monthly electricity price test datasets, respectively.
By comparing the convergence process between LSTM, LSTM-NN, and WT_TDLSTM, we
can see that the convergence curve of the WT_TDLSTM model has no obvious fluctuations
on the three electricity price datasets. More specifically, we find that the greater the number
of iterations is, the greater the fluctuation range of the convergence curve of the LSTM
and LSTM-NN models in Figure 7a,b. Moreover, the convergence curves of the LSTM
and LSTM_NN models fluctuate significantly in Figure 7c. However, as the number
of iterations increases, the convergence curve of the WT_TDLSTM model, especially in
Figure 7a,b, gradually flattens. The above results illustrate that the denoising ability of the
WT_TDLSTM model is better, and the model is more robust.

Figure 7. Cont.
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Figure 7. Comparison of convergence curves of the different models: (a) the change of the convergence curve for LSTM,
LSTM-NN, and WT_TDLSTM models on residential monthly electricity price dataset; (b) the change of the convergence
curve for LSTM, LSTM-NN, and WT_TDLSTM models on commercial monthly electricity price dataset; (c) the change of
the convergence curve for LSTM, LSTM-NN, and WT_TDLSTM models on industrial monthly electricity price dataset.

4. Discussion and Conclusions

In this paper, we propose an electricity price prediction model based on tensor decom-
position, a wavelet transform and a long short-term memory. We innovatively propose
a tensor decomposition method based on L1 regularization for multiscale data fusion
denoising. We have also integrated wavelet transform and LSTM model in the model
framework, where wavelet transform is used to remove the noise of the data itself, and the
LSTM model is used to achieve high-precision power prediction effects. In the experiment,
we fused the data of three time scales and built a 2-layer LSTM model.

The experimental results of these three datasets show that the model proposed in this
paper is better than the existing model by 33.65–99.97% in terms of MSE and RMSE. To
be more specific, the prediction performance of the WT_TDLSTM model is significantly
better than that of the LSTM model, which shows that the use of multiscale data, a wavelet
transform, and a tensor for fusion are very helpful to the improvement in the prediction per-
formance of the model. Meanwhile, compared with the baseline models, the WT_TDLSTM
model still achieves better prediction performance.

In conclusion, the WT_TDLSTM model can serve as a powerful tool to forecast short-
term multiscale electricity prices. If the model can be used in practice, it will play an
important role in the operation of the electricity market. Although the model has achieved
good results, the WT_TDLSTM model still has some limitations: due to tensor decomposi-
tion, the time complexity of the model is relatively high, the tensor operation requires many
computing resources, and the memory usage is large. In the future, we plan to further
improve the steps of tensor calculation so that it can reduce memory usage and speed
up calculations.
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