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Abstract: The focus of this work is to computationally obtain an optimized neural network (NN)
model to predict battery average Nusselt number (Nuavg) data using four activations functions. The
battery Nuavg is highly nonlinear as reported in the literature, which depends mainly on flow velocity,
coolant type, heat generation, thermal conductivity, battery length to width ratio, and space between
the parallel battery packs. Nuavg is modeled at first using only one hidden layer in the network
(NN1). The neurons in NN1 are experimented from 1 to 10 with activation functions: Sigmoidal,
Gaussian, Tanh, and Linear functions to get the optimized NN1. Similarly, deep NN (NND) was also
analyzed with neurons and activations functions to find an optimized number of hidden layers to
predict the Nuavg. RSME (root mean square error) and R-Squared (R2) is accessed to conclude the
optimized NN model. From this computational experiment, it is found that NN1 and NND both
accurately predict the battery data. Six neurons in the hidden layer for NN1 give the best predictions.
Sigmoidal and Gaussian functions have provided the best results for the NN1 model. In NND, the
optimized model is obtained at different hidden layers and neurons for each activation function. The
Sigmoidal and Gaussian functions outperformed the Tanh and Linear functions in an NN1 model.
The linear function, on the other hand, was unable to forecast the battery data adequately. The
Gaussian and Linear functions outperformed the other two NN-operated functions in the NND

model. Overall, the deep NN (NND) model predicted better than the single-layered NN (NN1) model
for each activation function.

Keywords: neural network; battery; heat transfer; activation functions; hidden layers

1. Introduction

In modern electric cars, the battery thermal management system (BTMS) is a promi-
nent aspect in the efficient design and long life of a lithium-ion module. To carry out
a comprehensive analysis of this system, a large number of experiments are necessary.
Owing to the complex nature of BTMS and a wide range of operating conditions, experi-
mental investigations are both expensive and time-consuming. Artificial neural network
(ANN) techniques, on the other hand, can be used to forecast performance based on a
set of operational conditions. In the recent past, ANN have been frequently employed
by a number of researchers to represent complex and nonlinear BTM (battery thermal
management) systems because of their general approximation abilities [1–6].

Energies 2021, 14, 7370. https://doi.org/10.3390/en14217370 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2961-6186
https://orcid.org/0000-0001-7985-2502
https://doi.org/10.3390/en14217370
https://doi.org/10.3390/en14217370
https://doi.org/10.3390/en14217370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14217370
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14217370?type=check_update&version=2


Energies 2021, 14, 7370 2 of 19

Using ANN with feed-forward (FF) architecture, Arora et al. [7] estimated the heat
production for several battery modules under various operating situations. To predict
the of the battery module, Afzal et al. [8] employed ANN where FF-network was used to
increase the accuracy of the temperature prediction. Xie et al. [9] employed ANN with
an FF architecture to forecast the battery module ohmic and polarization resistances as a
function of SOC. Fang et al. [6] used an FF network to create an ANN to predict the surface
temperature of a Ni–MH battery. To reduce the number of battery temperature sensors in
the system, Kim et al. [10] employed an FF-net to anticipate the battery pack temperature.
Farzad et al. [5] built an ANN model for battery pack temperature prediction using a BTMS.
The model was trained, verified, and checked using a total of two thousand data points.
The findings demonstrated that ANN can forecast battery temperature in a variety of BTMS
operation circumstances. The battery surface temperature was predicted using an ANN
model by Chen et al. [11]. The backpropagation model was used in their investigation
with Levenberg–Marquardt as the learning algorithm. They found the network’s R2 nearly
equal to 1 so suggested that the ANN can correctly anticipate the temperature of the
battery surface. YuHeng et al. [12] used a recurrent ANN to estimate the temperature
of Li-ion battery packs. Various operating parameters, comprising charge, discharge,
and rest operations, were fed into their network at various operating conditions. They
obtained R value close to one for their model and concluded that the RNN (recurrent NN)
may be used to forecast Li-ion battery performance. The ANFIS (adaptive neuro-fuzzy
inference system) based model, which is a combination of fuzzy inference system and
ANN is another AI (artificial intelligence)-based model that has been used to predict Li-ion
battery temperature [13]. The ambient temperature, current rate, and state of charge were
used as inputs to this model. They found a good prediction of temperature using this
model. Kleiner et al. [2], used a novel Nonlinear AutoRegressive with eXogenous (NARX)-
network for the prediction of large battery packs. In terms of training and validation
behaviour, the NARX is compared to a feedforward using the same general structure and
input data. During a 10-h long-term forecast, both ANN techniques prove to be adequate
for temperature prediction with an accuracy of within 1K. Park et al. [14] developed a
supervised learning technique for optimising the TM (thermal management) system’s
performance in an EV (electric vehicle). Several ANNs are implemented and tested using
features extracted during typical EV driving conditions for TM systems. The case study
findings show that the ANN-based model accurately represents the TM system’s working
features, allowing for accurate battery temperature prediction.

Using ML (machine learning) algorithms, Warey et al. [15] predicted and analysed
the impact of the AC (air conditioning) system on passenger thermal comfort. Tang
et al. [16] developed an automated calibration model for the liquid-cooled BTMS to forecast
cooling capacity and power utilization using support vector regression (SVR). The PSO
(particle swarm optimization) method was used to optimize the hyperparameters of the
SVR model in order to generate better results. The correlation coefficient of cooling load
and power utilization for the envisaged PSO-SVR model is found to be improved when
compared to the SVR model, implying that the PSO-SVR model can be utilised as a new
technique to fit the complicated non-linear correlation between the power utilization,
cooling capacity, and other influential variables of the BTMS system. Ruixin et al. [17]
developed an extreme learning machine based thermal model (ELMT) to portray battery
pack temperature behaviour under ESC (External short circuit) using the experimental
results. They also compared this model to a multi-lumped-state thermal (MLT) model
optimized by using the evolutionary algorithm to illustrate the efficiency of the proposed
model. They found that the ELMT model has higher computational efficiency and better
fitting and prediction accuracy than the MLT model. A spatiotemporal model entitled
KL (Karhunen–Loève)-MLP (multilayer perceptron)-LSTM (long short-term memory) was
created by Yajun et al. [18] for predicting the temperature distributions in a nonlinear
distributed system of battery operation using a 3 step procedure. They found that the
developed model was reliable for predicting temperature distributions during the thermal
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process, as evidenced by the reasonable agreement between the current model results and
those of another standard model. Wen et al. [19] developed a physics-driven machine
learning (PD-ML) algorithm to predict temperature, stress, and deformation behaviour
of Li-metal. They found that the PD-ML model, when provided with minimal test data,
can accurately predict the mechanical characteristics of Li-metal over a wide range of
temperature and distortion rate, and can aid in the creation of a Li-metal deformation
map. The PD-ML modelling approach was also integrated with the FEM (finite element
method) model. In analyzing temperature, stress, and mechanical behaviour of Li-metal,
the coupling of PD-ML with FEM gives the advantages of FE (finite element) analysis
and the precision of PD-ML. An electrochemical model integrated with a neural network
(ETNN) was developed by Feng et al. [20] to predict the SOC (state of charge) and state
of temperature (SOT). Based on rigorous testing, they found that this model can reliably
predict battery voltage and core temperature at room temperatures with a 10-C rate.
The multi-physics model can effectively predict temperature; however, it requires higher
computational time and is hard to implement to the optimization processes. To address
this problem, a DNN (deep NN) model trained using a small set of simulation data was
applied to the BTMS by Park et al. [21]. They found that the DNN model produced an
accurate estimate with a total error of less than 1%. By decreasing the computation time for
the response of the multi-physics model, the DNN model provided a sufficient increase in
system efficiency.

The discussed modelling of BTMS data using different algorithms indicates the impor-
tance of data prediction as the battery data depends upon a massive number of parameters.
Thermal modelling is quite challenging as they are sentitive to change in operating factors.
The variety of battery characteristics reported in the literature are highly sentitive and
nonlinear which makes the predictions slightly complicated. Various algorithms such as
SVR, ANN, LSTM, ANFIS, etc. are commonly reported in literature. These algorithms
are sometimes combined to make a hybrid algrorithm to model the battery characteristics.
However, no detailed investigation on NN with single and deep layered networks to find
an optimized model for a particular set of data is missing. Hence, the prime objective is
to computationally analyze NN models which are optimal in predictions using different
activation functions available. This study reports the use of single and deep layered NN
models exploring four activations functions’ potential. The NN model has experimented
with different numbers of neurons and hidden layers to obtain an optimized model with
fewer predictions errors. The rest of the work starts with Section 2 where the modelling of
the battery system is explained briefly. Section 3 is provided with in detail discussion of
use of ANN modelling of the BTMS data. The results of single-layered NN and deep NN
modelling using different activation functions is provided in detail in Section 4. The work
is concluded with insights of the work in Section 5.

2. Battery Modelling

An effective numerical model is created to get insights into the thermal features of
Li-ion battery packs and cooling systems by incorporating the continuity of heat flux at the
junction. The physical model employed for the coupled analysis of battery packs is depicted
in Figure 1. A battery unit, in general, is made up of a layer of battery module (Figure 1a)
whose temperature goes up as heat is produced during charging and discharging. As
seen in Figure 1b, the prismatic battery module features a rectangular shape that transfers
heat into the nearby coolant. It is worth noting here that the flow and thermal fields in
the computational domain are also symmetric about the y-axis of the battery plate, in
addition to geometric symmetry. As a result, just the left or right half of the physical
domain can be used for computing in order to save the computation cost and time. So
only 50% of the physical system is included for investigation (Figure 1b), with very few
assumptions. According to the cell zone [22], heat produced is thought to be uniform. In
the literature, steady heat analysis has been widely published, in which the heat produced
while continuous charging and discharging for a longer duration is unchanged. The fluid
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flow varies from 0.01 m/s to as high as 12 ms1 in a laminar flow coolant region. An
air pump/fan is used to circulate the air flow, which requires more energy constantly.
Thermal impacts are limited to a 2D model to reduce processing time and prevent needless
complexity in modelling a practical 3D model. Further details of CPU-time, or memory
requirements for this simulation required, can be referred to in [23,24].
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Figure 1. Proposed BTMS: (a) Battery cooling system; (b) Simplified model for numerical analysis.

The Finite volume method is used to evaluate the cooling ability of the proposed
fluid-based battery cooling system. The governing equations describing the heat transport
mechanism during discharging/charging a Li-ion battery pack.

The following extra approximations and assumptions are made in order to convert
the physical model of the battery element provided above into a mathematical model:

(i) The battery element’s substance is homogeneous and isotropic.
(ii) The battery element’s conductivity is temperature independent.
(iii) The temperature gradient in the x–y plane is insignificant.
(iv) The flow is 2D, laminar, and incompressible.
(v) The coolant is viscous and Newtonian.
(vi) The coolant’s thermophysical characteristics are constant.

Using these assumptions, the equations governing the steady, two-dimensional heat
conduction in the battery element with non-uniform heat generation can be obtained as [22]

(kr∇2Tr) + qm
r = ρc

∂Tr

∂t
(1)

To solve the energy conservation of the fluid domain using a SIMPLE algorithm, the
continuity and momentum equations in 2-D considered are given below by
Equations (2)–(4) [25],

∇um = 0 (2)

∂um∗
∂t

(um ∗ ∇um∗) = −
1
ρ
∇p + µ∇2um∗ (3)

ρc
∂Tm∗

∂t
+ um∇Tm∗ = α∇2Tm∗ (4)

In the above Equations (1)–(4) in the vector form, the term r represents a battery, and
m represents the coolant domain. T is for the temperature of fluid and battery, u is the



Energies 2021, 14, 7370 5 of 19

velocity in the x direction, ρ, c represents density and heat capacity of the fluid. α is the
thermal diffusivity, and t is the time. The detailed non-dimensionalization, application
of boundary conditions, grid independence study, validation, and in detail procedure
have been reported in literature recently [22,25–29]. The input paramters that affect the
conjugated thermal behaviour of the battery are shown in Figure 2, considered in this study
for modelling the average Nusselt number.
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3. Artificial Neural Network (NN) Modelling

Figure 2a depicts the proposed NN model with a single hidden layer used in this
study to predict the battery pack’s temperature with the number of neurons experimented
with from 1 to n. The six inputs to the NN and one output from it are also clearly shown.
At first, a single layer model (NN1) is used, as shown in Figure 2a. In this NN1 model, the
number of neurons is tested from 1 to 10. Then, as shown in Figure 2b the NN is analyzed
for multiple deep hidden layers (NND) where the neurons in each layer are also varied
simultaneously, and hidden layers are also varied from 3 to 10.

A hidden layer has a particular number of nodes in addition to the input and output
layers. Each neuron’s inputs are weighted according to its edge weight and the weighted
inputs are added together. Each neuron also has a bias added to it. An activation function
‘f ’ maps the whole sum of weighted inputs and the bias non-linearly to the neuron output.
In this study, the activation function employed in the hidden layer is the sigmoid function:
tanh, Gaussian, and linear function [30]; however, the sigmoid function produced the
optimum results for this application. A simple linear function is used in the output layer
to modify the weights: direction close to the error minimum. The Levenberg–Marquardt
(LM) Algorithm [31], which is a mixture of gradient descent and the Newton technique, is
used in the present distribution as this method is the one that converges the fastest.

An artificial neural network model, as depicted in Figure 2, is made up of
nodes/neurons that are organised into many layers: an input layer, one or more hid-
den layers, and an output layer. Each neuron has an activation function that calculates
how much stimulation is applied to each neuron. The input variables are transformed at
each layer by collecting neurons, which are then disseminated to its next layer, defined by
Equations (5)–(7).

An
j = ∑

(
m(1)

pq xn−1 p + m(1)
q0

)
(5)

bn
1 = ∑

(
m(2)

1q An−1 p + m(2)
10

)
(6)

yn
1 = F(bn

1 ) (7)

where x is the 1st layer’s input; A is the 1st layer’s output; p and q are the NN node indexes;
n is the layer’s index; mpq (l) is the weight between the qth node in the 1st layer and the pth
node in the input layer; b is the output layer’s input; F(bp

n) is the output value of pth node
in (n + 1)th layer after activation.

The weight and bias in between the synapses, which evaluate the relevance of the data
transmitted across the link, are represented by m and m0, respectively. F(b) is the activation
function, which uses the combined output of the hidden layer to produce the output y.

The starting weights and biases are allocated at random, and the training cycle repeats
till the required result is achieved, as determined by Equation (8) of the cost function.

E(m) =
1
2

p

∑
p=1

y(xp, mi)− o2
p (8)

where o is the intended output, E(m) denotes the cost function utilized to assess the training
operation, m denotes the weight, and i denotes the cost function calculation index.

The weight and bias of the NN model are modified throughout the training procedure,
as shown in Equation (9), to reduce the error.

mn = mn−1 −
(

JT J + µI
)−1

Jen−1 (9)

where J = ∂E/∂m is the Jacobian matrix connected to m, I is the identity matrix, µ is the
combining coefficient, and e is the prediction error.
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The forward calculation via Equation (10) is the 1st step in the LM method.
Equation (10) is used to determine the output and hidden layer forecast errors.

e(3)1 = y1 − 0
δ
(3)
1 = e(3)1

δ
(2)
q = m1qδ

(3)
1

(10)

The Jacobian is determined using a backpropagation technique, as indicated by the
following Equation (11).

∂E
∂mpq

= δ
(2)
q xp

∂E
∂wm1j

= δ
(3)
1 Aq

(11)

The deep learning model is a NN model having deep hidden layers, as shown in
Figure 2b. As explained earlier, the fundamental foundation is the same as the NN model,
which is based on the brain’s operation and biological architecture, allowing machines to
reach human-like intelligence. The most basic kind of NND is hierarchical synapses that
send information to adjacent neurons based on input, building a complicated system that
learns from feedback. The input data is supplied into the 1st layer’s non-hidden synapses,
and the outcome of this layer is fed as an input for the next phase, and so on, till the
outcome is attained. The outcome is expressed as a probability, resulting in a forecast of
either “Yes” or “No”. Each layer’s synapses calculate a small function called an “activation
function” that aids in transmitting the relevant neurons. Weights link the synapses of 2
sequential layers together. These weights govern the feature significance in forecasting the
targeted value. The NND with multiple hidden layers is shown in Figure 2b. The weights
are initially random, but adjusted iteratively as the model is trained to learn and anticipate
the outcome.

As shown in Figure 2, six operating parameters: flow velocity, coolant type, heat
generation, thermal conductivity, battery length and width ratio, and space between the
parallel battery packs were set as input parameters of the neural network models. The
output parameter of the two neural network models (NN1 and NND) was set to the average
Nusselt number. The training data is derived entirely from numerical experiments. For
the training procedure, a total of 1750 sets of numerical data were gathered. Each model
has at least 3 layers and is designed to have some activation function during the training
phase. A hidden layer follows each input layer, which is comprised of input variables.
Each of the input layers has an effect on the output parameter prediction. The number
of nodes in the input layer indicates how many input variables were used in the model.
The hidden levels feed into another aggregation layer, which mixes the findings from
the preceding layers and feeds them to the output layer, resulting in a continuous result.
Several nodes/neurons in the hidden layer were tested to attain the desired regression
efficiency to reduce overfitting and underfitting.

A total of 85% of sets of numerical data were used for training and the remaining 15%
of sets of numerical data were used for testing. The neural network regression training
process was given 1000 epochs. For a more accurate prediction of the output, the root mean
square error (RMSE) must be as low as possible. In Table 1, the four activation functions
used for the NN1 and NND models are provided.
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Table 1. Activation functions used in this work.

Activation Function Equation Graph

Sigmoid F(q) = 1
1+exp−kq
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4. Results and Discussion

The modelling of Nuavg, which indicates the heat transfer from the conjugated battery
(generating heat) surface, is shown and discussed in detail. A neural network (NN) with
a single hidden layer (NN1) is analyzed thoroughly initially. The RMSE and R-squared
are investigated for this NN1 to get an optimized model that predicts the battery Nuavg
by experimenting with several neurons in the hidden layer having different activation
functions. Later NND (deep NN) model is also analyzed with different hidden layers and
neurons in each layer to obtain the optimized network for different activation functions. As
reported in a few works, the Nuavg data pertinent to battery thermal management is highly
nonlinear [8,22,25,28,32,33]. The entire data is sorted carefully and compiled to enable the
intelligent algorithms to predict an essential aspect of battery systems. The optimized
model is obtained in this work when the RMSE and R-squared values are at their best.
These values are taken from the average of 5 computational cycles for each output, which
counts for massive calculations and data generations. However, selected data is presented
in this section to avoid too much length in this article.

4.1. NN1 Modelling of Nuavg

At first, the convergence of RMSE with increasing iterations is demonstrated for the
NN1 model during training and testing for different activation functions. In Figure 3 the
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epochs which represent each iteration of data passed for computation by the algorithm is
set equal to 1000 that leads to converged RMSE for all cases, with the NN1 model having
six neurons in the hidden layer are shown. Compared to training sessions, the testing
RMSE is converged at higher values. Except for the linear function, the remaining three
functions converge more or less at the same RMSE while the linear function gives a higher
RMSE value. The Linear testing functions have converged at higher values compared to
the rest of all scenarios. Between Sigmoidal and Gaussian, the Sigmoidal function did
not provide much better testing convergence than the Gaussian function. However, the
difference between RMSE of the testing of these two is not very high.
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Figure 3. Convergence of RMSE after 1000 epochs having six neurons in the hidden layer.

In Figure 4, the RMSE of the trained and tested NN1 model after completing more
than 1000 epochs with increasing neurons in the hidden layer is shown. All the activations
are employed to get the optimized model. From Figure 4a it is seen that the RMSE for
Sigmoidal function reduces when neurons are increased from 1 to 6 in the hidden layer.
From 6 neurons onwards, the RMSE for Sigmoidal function shows slight increments. For
Tanh function, also similar trend can be noted. The Gaussian function has also given
a comparatively less RMSE at six neurons in the hidden layer; The linear function has
shown a higher and consistent error at all neurons. Hence, with six neurons in the hidden
layer, the model training is optimized. Very similar behaviour is also found for the tested
model (Figure 4b).

The rest of the computations are provided using the above optimized NN1 model
with 6 neurons in the hidden layer. The Sigmoidal activation function in the hidden layer is
trained for the battery Nuavg data, whose training and predictions are depicted in Figure 5.
The network predictions during both sessions show that the values are close to the actual
(true) values as the data is denser towards the centre trendline. A slight outlier in the
testing region can be noted because the R2 and RMSE are slightly more significant than the
training provided values. As the R2 value is above 0.9, the modelling can be successful and
capable of predicting well. The RSME value for training is 0.029, better than the RMSE of
testing (0.04).
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Figure 4. RMSE was obtained for neurons in a single hidden layer varying from 1 to 10 using four activation functions
during (a) training (b) testing.
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Figure 5. (a) Training (b) testing of NN1 using Sigmoidal function indicating the R2 and RMSE for the optimized model.

The optimized NN1 model with six neurons using tanh as the activation function
is used for training the data. It is noted from Figure 6a,b that the network calculated
battery output data is in line with the actual battery values. The highly sensitive Nuavg
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has significant outliers, as indicated in Figure 6b, slightly underfitting with the NN1
network. The trained computations are accurate as the R2 and RMSE are above 0.9 and
close to zero, respectively. However, during testing, this model has slightly under-predicted
the data because the orientation towards the centerline is not seen. Using the Gaussian
function for NN1 model calculations has shown some improved predictions than the Tanh
function calculations. Figure 7a,b provides an accessible analysis of the network predictions
compared to the actual battery values. The 45◦ line drawn for the mapping of both the
data indicates that the NN1 model with Gaussian function is excellent in battery Nuavg
data. The training is in line with the Tanh function, but the testing is far better than the
Tanh function as the R2 is above 0.9 during both sessions. In Figure 8, the NN1 model
calculations using the Linear activation function are depicted. Both Figures 8a and 9b
clearly show that the Linear function cannot help the neural model to depict the sensitive
data of the battery system based on thermal parameters. Figure 8a shows how the Nuavg
values are out of bounds in the training session leading to R2 and RMSE to just 0.68 and
0.099, respectively, which is unacceptable. The predictions in testing also have high errors,
as shown in Figure 8b as the R2 and RMSE values are nearly 0.8 and 0.073 which are very
high compared to the other three activation functions explained earlier.
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Figure 6. Network calculated battery data using Tanh as the activation function during (a) training and (b) testing of the
NN1 model.
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Figure 7. Gaussian function operated NN1 model in (a) training and (b) testing.
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Figure 8. Linear activation function used to calculate the battery output data for the NN1 model in (a) training and
(b) testing.
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Figure 9. The trend of battery Nuavg data for the selected pattern (data points) was obtained from
(a) training and (b) testing using four activation functions.

The overall trend of actual battery Nuavg data from four activation functions applied
to the optimized NN1 model is given in Figure 9a,b for training and predictions, respec-
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tively. The actual trend in the black line is almost overlapped with the Sigmoidal and
Gaussian function NN1 model. The Tanh function has some difference from the other
two, followed by the Linear function, which has shown a more significant difference than
others. Figure 9b illustrates the predictions made by the trained NN1 model where the
actual values and Sigmoidal and Gaussian are very close to the Tanh and Linear function
data points.

4.2. NND Modelling of Nuavg

The RMSE variations for different deep layers varying from 3 to 10 in the back-
propagating NN model are shown in Figure 10a,b. The neurons in each deep layer are
simultaneously varied from 4 to 10 for each activation function. In brief, analyses of RMSE
from NND applying the Sigmoidal activation function is illustrated for the shortness of
the article. R2 values are also avoided for the same. However, optimized values of R2 are
directly shown in the optimized model (in the graphs) achieved after experimentations.
From Figure 10a,b, the RMSE from the trained model shows that the six neurons in each
six-layered deep NN model are the best from the entire set of computations. This is also
confirmed with the R2 values which are added in the forthcoming graphs as they are
the optimal value. Though nine neurons have shown some promising results, it is not
considered the best because its value is too fluctuating for different hidden layers, and the
computational cost is also involved. From the similar set of experiments for Tanh, Gaussian,
and Linear functions, it is concluded that 8-neurons in 4-deep layers each, 6-neurons in
5-deep layers each, and 7-neurons in 3-deep layers each respectively provided the best
RMSE and R2.

The application of the Sigmoidal function for deep NN (NND) to train and predict
the Nuavg data is shown in Figure 11. The least (optimized) R2 and RMSE value was
obtained for NN with six deep hidden layers having six neurons each. The respective
R2 and RMSE are 0.97 and 0.018 obtained from the trained model and 0.93 and 0.045 for
the tested model. This deep model has proved to be much more efficient than the earlier
model accuracy as the error is less and the mapping with actual value is much more closer.
The training is more accurate while the tested model gives slightly more error, which is
highly acceptable but may concern the difference in terms of percentage. This is again
tested for other functions, which shows much less difference in the error between the
training and testing model. Figure 12a,b shows the deep network predictions during the
training/testing sessions using Tanh as the activation functions. The optimized error was
obtained for this function applied to NN model having four hidden layers with eight
neurons each. The R2 and RMSE are 0.98 and 0.013 from this optimized model, which
matches the actual values excellently. The training R2 and RMSE are 0.91 and 0.048 during
the testing, which is equally good as Sigmoidal function operated NND.



Energies 2021, 14, 7370 14 of 19

Energies 2021, 14, x FOR PEER REVIEW 14 of 20 
 

 

directly shown in the optimized model (in the graphs) achieved after experimentations. 
From Figure 10a,b, the RMSE from the trained model shows that the six neurons in each 
six-layered deep NN model are the best from the entire set of computations. This is also 
confirmed with the R2 values which are added in the forthcoming graphs as they are the 
optimal value. Though nine neurons have shown some promising results, it is not 
considered the best because its value is too fluctuating for different hidden layers, and the 
computational cost is also involved. From the similar set of experiments for Tanh, 
Gaussian, and Linear functions, it is concluded that 8-neurons in 4-deep layers each, 6-
neurons in 5-deep layers each, and 7-neurons in 3-deep layers each respectively provided 
the best RMSE and R2. 

The application of the Sigmoidal function for deep NN (NND) to train and predict the 
Nuavg data is shown in Figure 11. The least (optimized) R2 and RMSE value was obtained 
for NN with six deep hidden layers having six neurons each. The respective R2 and RMSE 
are 0.97 and 0.018 obtained from the trained model and 0.93 and 0.045 for the tested model. 
This deep model has proved to be much more efficient than the earlier model accuracy as 
the error is less and the mapping with actual value is much more closer. The training is 
more accurate while the tested model gives slightly more error, which is highly acceptable 
but may concern the difference in terms of percentage. This is again tested for other 
functions, which shows much less difference in the error between the training and testing 
model. Figure 12a,b shows the deep network predictions during the training/testing 
sessions using Tanh as the activation functions. The optimized error was obtained for this 
function applied to NN model having four hidden layers with eight neurons each. The R2 
and RMSE are 0.98 and 0.013 from this optimized model, which matches the actual values 
excellently. The training R2 and RMSE are 0.91 and 0.048 during the testing, which is 
equally good as Sigmoidal function operated NND. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3 4 5 6 7 8 9 10

R
M

SE

Number of hidden layers

(a) Training

Neurons = 4

Neurons = 5

Neurons = 6

Neurons = 7

Neurons = 8

Neurons = 9

Neurons = 10

Energies 2021, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 10. RMSE for the different number of neurons in each hidden layer. The number of hidden 
layers in deep NN are analyzed from three to 10 to get the optimized model during (a) training and 
(b) testing. 

 

Figure 11. Actual vs. NND (deep NN) was obtained using the Sigmoidal function, having six hidden layers with six 
neurons each during (a) training and (b) testing. 

The Gaussian function operated deep NN model is optimal with six neurons each in 
5 hidden layers. The R2 and RMSE are 0.97 and 0.023 from the output of trained model 
numerals, while in the testing R2 and RMSE are 0.94 and 0.036, as shown in Figure 13. This 
has indicated that the Gaussian function is far better than the previous two models. 
Another interesting point to note is the less difference obtained in the trained and tested 
R2 and RMSE value which was not obtained from many previous regressions. Next, 
unexpectedly, the Linear function, which was not accepted in the single NN model earlier, 
has provided better results than the Sigmoidal and Tanh function. Figure 14 depicts the 
same for the Linear function having near R2 and RMSE values as Gaussian function. 

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

3 4 5 6 7 8 9 10

R
M

SE

Number of hidden layers

(b) Testing

Neurons = 4

Neurons = 5

Neurons = 6

Neurons = 7

Neurons = 8

Neurons = 9

Neurons = 10

R² = 0.9798

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(a) Training

R² = 0.9303

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(b) Testing

RMSE = 0.018 RMSE = 0.045 

Figure 10. RMSE for the different number of neurons in each hidden layer. The number of hidden
layers in deep NN are analyzed from three to 10 to get the optimized model during (a) training and
(b) testing.
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Figure 11. Actual vs. NND (deep NN) was obtained using the Sigmoidal function, having six hidden layers with six neurons
each during (a) training and (b) testing.
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Figure 12. Tanh function applied deep NN having four hidden layers with eight neurons each as the optimized model for
Nuavg prediction during (a) training and (b) testing.

The Gaussian function operated deep NN model is optimal with six neurons each in
5 hidden layers. The R2 and RMSE are 0.97 and 0.023 from the output of trained model
numerals, while in the testing R2 and RMSE are 0.94 and 0.036, as shown in Figure 13. This
has indicated that the Gaussian function is far better than the previous two models. Another
interesting point to note is the less difference obtained in the trained and tested R2 and
RMSE value which was not obtained from many previous regressions. Next, unexpectedly,
the Linear function, which was not accepted in the single NN model earlier, has provided
better results than the Sigmoidal and Tanh function. Figure 14 depicts the same for the
Linear function having near R2 and RMSE values as Gaussian function.



Energies 2021, 14, 7370 16 of 19

Energies 2021, 14, x FOR PEER REVIEW 16 of 20 
 

 

 

Figure 12. Tanh function applied deep NN having four hidden layers with eight neurons each as the optimized model for 
Nuavg prediction during (a) training and (b) testing. 

 

Figure 13. Deep NN optimized model with six neurons each in 5 hidden layers using Gaussian function in each neuron 
during (a) training and (b) testing. 

 

R² = 0.9827

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(a) Training

R² = 0.9173

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(b) Testing

R² = 0.9722

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(a) Training

R² = 0.9497

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(b) Testing

R² = 0.9699

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(a) Training

R² = 0.9411

0

10

20

30

40

50

0 10 20 30 40 50

D
ee

p 
ne

tw
or

k 
pr

ed
ic

te
d

Actual

(b) Testing

RMSE = 0.013 RMSE = 0.048 

RMSE = 0.023 RMSE = 0.036 

RMSE = 0.024 RMSE = 0.037 

Figure 13. Deep NN optimized model with six neurons each in 5 hidden layers using Gaussian function in each neuron
during (a) training and (b) testing.
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Figure 14. R2 and RMSE value of optimized deep NN model using Linear activation function at seven neurons each in 3
hidden layers during (a) training and (b) testing.

In Figure 15, a combined trend of a deep NN model optimized with their neurons in
hidden layers as mentioned earlier and the actual values are shown. The closeness between
actual values and different activation functions is indicated for training and testing. The
empty circles represent the trained values, and empty squares are for tested values. The
scattered data points indicate that the actual Nuavg and predictions from the optimized
models which are close enough for the forecasting. Though all are acceptable, except
Tanh function, the rest have provided very close predictions and are highly useful in this
enormously sensitive data of battery thermal system.



Energies 2021, 14, 7370 17 of 19

Energies 2021, 14, x FOR PEER REVIEW 17 of 20 
 

 

Figure 14. R2 and RMSE value of optimized deep NN model using Linear activation function at seven neurons each in 3 
hidden layers during (a) training and (b) testing. 

In Figure 15, a combined trend of a deep NN model optimized with their neurons in 
hidden layers as mentioned earlier and the actual values are shown. The closeness 
between actual values and different activation functions is indicated for training and 
testing. The empty circles represent the trained values, and empty squares are for tested 
values. The scattered data points indicate that the actual Nuavg and predictions from the 
optimized models which are close enough for the forecasting. Though all are acceptable, 
except Tanh function, the rest have provided very close predictions and are highly useful 
in this enormously sensitive data of battery thermal system. 

 
Figure 15. Training (circles) and testing (squares) made by the deep NN models optimized from four activations functions 
compared to actual battery data. 

5. Conclusions 
Battery thermal management is crucial in the high capacity and longer life of Li-ion 

modules; careful modelling of heat transfer phenomena is required. An attempt was made 
to model the highly sensitive battery data to predict the heat transfer character, namely, 

34

35

36

37

38

39

40

41

42

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10
N
u a
vg

N
u a
vg

Pattern

Actual Sigmoid Tanh Gaussian Linear

Actual Sigmoid Tanh Gaussian Linear

Figure 15. Training (circles) and testing (squares) made by the deep NN models optimized from four activations functions
compared to actual battery data.

5. Conclusions

Battery thermal management is crucial in the high capacity and longer life of Li-ion
modules; careful modelling of heat transfer phenomena is required. An attempt was
made to model the highly sensitive battery data to predict the heat transfer character,
namely, average Nusselt number (Nuavg) depending on six operating parameters, including
the battery heat generation, coolant properties, and battery spacing. A single layer and
deep layer NN model with different activation functions was employed. A massive
computational experiment (around 800 cycles of computations) was performed to obtain
the optimized NN models for each activation function. The optimized NN model was
obtained with 6 neurons in the hidden layer for all activation functions in a single layer. At
the same time, the optimized model was in a deep NN model with 6 hidden layers having
6 neurons each for Sigmoidal. For Tanh, 8-neurons in 4-deep layers each, for Gaussian;
6-neurons in 5-deep layers each, and for Linear function; 7-neurons in 3-deep layers each
was the optimized model. The RMSE and R2 were accessed for all the models during the
training and testing of the networks. In a single NN model, the Sigmoidal and Gaussian
function outperformed the Tanh and Linear functions. Linear function, however, failed
to predict the battery data sufficiently. In the deep NN model, the gaussian and Linear
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functions outperformed the other two functions operated NN. Overall, deep NN provided
a much better prediction than the single-layer NN model.
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Nomenclature

Ar Aspect ratio of a battery cell Greek symbols
c Specific heat in J/kgK α Thermal diffusivity of fluid m2/s

kr
Thermal conductivity of battery ν Kinematic viscosity of fluid m2/s
in W/MK

Nuavg Average Nusselt number ρ Density of fluid kg/m3

qm
r Volumetric heat generation W/m3 Acronyms

Q
Dimensionless volumetric heat BTMS battery thermal management system
generation

Pr Prandtl number NN Neural network
Re Reynolds number NN1 Single layered neural network
Tr Temperature of battery in K NND Deep neural network
Tm Temperature of fluid in K SIMPLE Semi-implicit pressure linked equation
t Time in seconds LM Levenberg–Marquardt
um Velocity along the axial direction m/s AI Artificial intelligence
p Pressure in N/m2 ML Machine learning
x Axial direction ANN Artificial Neural network
y Transverse direction Li-ion Lithium-ion

R2 R-squared
RMSE Root mean square error
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