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Abstract: This paper presents a robust optimization model to find out the day-ahead energy and
reserve to be scheduled by an electric vehicle (EV) aggregator. Energy can be purchased from, and
injected to, the distribution network, while upward and downward reserves can be also provided
by the EV aggregator. Although it is an economically driven model, the focus of this work relies on
the actual availability of the scheduled reserves in a future real-time. To this end, two main features
stand out: on one hand, the uncertainty regarding the EV driven pattern is modeled through a robust
approach and, on the other hand, a set of non-anticipativity constraints are included to prevent from
unavailable future states. The proposed model is posed as a mixed-integer robust linear problem
in which binary variables are used to consider the charging, discharging or idle status of the EV
aggregator. Results over a 24-h case study show the capability of the proposed model.

Keywords: EV aggregator; energy and reserve schedule; robust optimization; non-anticipativity
constraints

1. Introduction

Due to environmental concerns, an increasing interest in the deployment of distributed
energy resources (DERs) and electric vehicles (EVs) is expected [1]. These new participants
in electric systems will be a high number of small users modifying the traditional load
curves and, in many cases, able to provide energy to the power system, for instance,
through photovoltaic generation or vehicle-to-grid (V2G) capability. In addition, the energy
storage capacity of EVs enables them to provide ancillary services [2], regardless of the
different operational structures of the reserve markets. However, these new players bring
new sources of uncertainty, such as the intermittency in the DERs or the driving patterns
and availability of the EVs. Consequently, this changing situation poses new challenges for
the optimal operation of future electricity systems from a technical and economic point of
view, as well as in the establishment of an adequate regulatory framework. Smart grids
and microgrids, energy communities and, in the scope of this paper, aggregators [3], have
emerged as concepts or participants to respond to this new reality.

The technical literature includes a wide variety of studies addressing the topic of
optimal operation of an EV aggregator and several review papers have been published.
In [4], a review of the literature on business models for smart grid services and some pilot
projects is provided, while the review paper in [5] addresses several works focusing the
multilevel control and management of EVs integrated in a microgrid. Regarding EVs,
the work in [6] presents a discussion of different optimization approaches to face the EV
charging, and [7] presents the framework, benefits, and challenges of V2G technology. An
insight in operational and financial aspects of aggregator’s business models is provided
in [8], and the potential of a fleet of EVs, managed by an EV aggregator, to provide ancillary
services is described in [9]. A thorough analysis of the value of the aggregators in a power
system may be found in [10], where the authors conclude that regulators or policy makers
should remove barriers to aggregation in those cases in which it creates a fundamental or
transitory value.
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Regarding this regulation issue, the work in [11] performs an analysis of the current
regulation in European countries and identifies several necessary changes to foster the po-
tential of DERs to provide flexibility. The technical, regulatory and economical drawbacks
faced by a fleet of EVs to provide secondary reserve in the German wholesale electricity
market are highlighted in [12]. In the same sense, the economic analysis developed in [13]
concludes that, under the current regulation in the German market and even ignoring the
investment costs, the opportunity costs arising from not immediately charging vehicles at
the parking are higher than the revenues from frequency regulation.

The optimal operation of EVs without the provision of ancillary services has been
also widely addressed. Some of these works are described next. In [14], the energy
charging scheduling problem is solved by means of a generalized Stackelberg game in
which the aggregator is the leader and EVs are the followers. The work in [15] presents a
deterministic non-linear optimization model to analyze different strategies for the optimal
day-ahead operational planning of a microgrid integrating a EV fleet with V2G capacity.
In [16], a stochastic robust optimization model in which uncertainties in the day-ahead
market prices and in the driving requirements of EVs are modeled through scenarios and
confidence bounds, respectively. A robust optimization procedure is presented in [17] to
handle the uncertainty associated to the energy market price. The work in [18] proposes a
decentralized model to the coordinate operation of a smart distribution network and a set
of EV aggregators in which a robust approach is used to handle the uncertainty sources
considered: wind generation and wholesale market price. A stochastic programming model
to optimize the charging and discharging operation of an EV aggregator participating in
the day-ahead energy market is proposed in [19] in which uncertainties, DA market price,
and driving requirements are modeled through scenarios. The work in [20] presents a
model to optimize the amount of electricity to be purchased in the day-ahead market by a
residential aggregator of a fleet of EVs, in which a bilevel problem is proposed to perform
a robust formulation of the driving pattern uncertainty. In [21], both the day-ahead and
real-time stages are considered to determine the optimal charging and discharging strategy
in a multilevel hierarchical approach.

A selection of works addressing the optimal operation of an aggregator able to provide
ancillary services is provided next. A sequential optimization procedure is presented
in [22], where the day-ahead is based on forecasted values while the real-time stage aims at
minimizing deviations from scheduled bids; this work was later adapted in [23] to consider
secondary reserves in both directions. The work in [24] proposes a sequential bidding and
repairing procedure for an aggregator trading energy and reliable negative reserve in a
multi-market environment, but it does not consider vehicle to grid capability. Additionally,
including the capacity of providing reserve in the day-ahead market, a sequential three-
stage strategy is developed in [25] to determine an optimal strategy mutually beneficial
for EV owners and the aggregator; this model is reformulated in [26] as a stochastic
programming problem. These two works consider both the day-ahead and the real-time
stages, and the later stage includes a penalization term for deviations between two stages.
A model for the participation of EVs in secondary frequency response through an EV
aggregator that takes into account EV user’s preferences is presented in [27]. The mixed-
integer programming problem proposed in [28] shows the valuable flexibility introduced
in a system-wide framework by a large number of EVs providing spinning reserve. A
probabilistic model is proposed in [29] to assess the expected profit an EV aggregator
may reach by participating in both the energy and regulation markets. The paper in [30]
describes a risk-constrained two-stage stochastic programming model for the participation
of an EV aggregator in the day-ahead energy and reserve markets in which an hourly
probability is set to each scenario in which the EV aggregator has to provide reserve energy.
In [31], two models are presented: on one hand, a two-stage stochastic programming model
to determine the energy demand and supply bids in the day-ahead market and, on the
other hand, a model predictive control intended for the optimal operation of flexible loads
in the real-time; this work is extended in [32] to trade energy and reserve in both day-
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ahead and reserve markets. The stochastic model presented in [33] aims at optimizing the
operation of an EV aggregator in the day-ahead and reserve markets, taking into account
the uncertainty in the driving patterns of EV owners and in market prices. In [34], a
sequential procedure based on receding time horizon is proposed to determine the optimal
charging and reserve provided by the EVs located in a car park; in this paper, a robust
approach is used to consider the uncertainty of energy and reserve prices and an ageing
model is presented to estimate the EV battery degradation. A multi-stage approach is
presented in [35] to provide voltage support to the distribution network. The work in [36]
presents a long-term planning model to compare two investment alternatives to provide
ancillary services and dynamic support services: EV aggregators versus energy storage
systems. The study in [37] proposes a scenario-based procedure in which a mixed-integer
non-linear programming problem, solved by a gravitational search algorithm, is formulated
to maximize the spinning reserve an aggregator can provide to the system. Finally, some
other papers propose a bilevel formulation to face the problem of the optimal operation of
an aggregator providing ancillary services. The study in [38] proposes a bilevel model in
which the optimal operation of an aggregator controlling a set of flexible loads is included
in the upper level, while the clearing of the day-ahead energy and reserve markets is in the
lower-level problem. The work in [39] proposes a bilevel model to formulate the day-ahead
optimal operation of an aggregator, in the upper level, while the set of problems faced
by EV owners is included as lower level problems; in this paper, only upward reserve is
considered, as spinning reserve, and the feasibility of the solution is not ensured in the
real-time.

However, previously discussed models may result in a day-ahead scheduling solution
that might be infeasible in the real-time, depending on whether reserves committed in the
day-ahead are deployed or not in the real-time. Some of these models, in accordance with
the multi-stage structure of most markets, handle this eventual situation by means of a set
of penalty costs.

In this work, we propose a mixed-integer linear robust optimization model to deter-
mine the energy and reserve to be committed by an aggregator of EVs in the day-ahead
stage. The uncertainty related to the driving pattern of EV owners is included in the model
through a robust approach [40]. In addition, a set of non-anticipativity constraints [41] is
included to ensure that reserves committed in the day-ahead stage are actually available
in the future real-time whether they are required. Although this model is economically-
driven, the focus is put on the availability of the reserves that these limited-energy devices
(EVs) may provide to the system. In the current framework of concern about reliability on
distribution networks, where most of the EV aggregators are expected to be connected,
it seems clear that the ability to provide a reliable reserve should be specially taking into
account.

The main contribution of this paper is the development of a mixed-integer robust
lineal model through which an aggregator of EVs can find out the optimal joint scheduling
of the energy and reserve to be committed in the day-ahead, ensuring the availability of
the committed reserve whether it is required in the future real-time. To the best of our
knowledge, the actual availability of the reserve committed by an aggregator has not been
previously formulated. The uncertainty in the driving pattern of EV owners is included
through a robust approach. It is also worth mentioning that the proposed model explicitly
considers the ability of the EV aggregator to commit reserve under the idle status, i.e., the
status in which the aggregator is not charging or discharging.

The remainder of this paper is organized as follows. Section 2 provides an overall
description of the model. In Section 3, the mixed-integer linear problem is formulated and
the robust approach is described. Results over a 24-h case study are presented in Section 4
and discussed in Section 5. Finally, conclusions in Section 6 close the paper.
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2. Model Description

In the proposed model, the aggregator performs a simultaneous optimization of the
energy to charge (or discharge) from (or to) the grid, as well as the upward or downward
reserve power that will be available in a future real-time. The amount of energy committed
as reserve depends on the type of reserve provided. For the sake of simplicity, this work
considers the same time interval for energy and reserve, which is one hour. As previously
stated, the main goal of this study is the development of a model in which the availability
of the reserve committed by the aggregator in the day-ahead stage can be ensured in a
future the real-time. To this end, two main features are included in the proposed model:
on one hand, a set of non-anticipativity constraints prevent from unavailable future states,
and, on the other hand, the uncertainty related to the driving pattern of EV owners is
modeled through a robust approach. Mathematically, the proposed model is posed as a
mixed-integer robust linear problem in which binary variables are used to consider the
charging, discharging or idle status of the aggregator.

This work assumes a population–based EV aggregation [42] in which all EVs have
the same battery and efficiency. Although it would be straightforward to include several
models of EV cars merged by battery type, as in [35], only one is considered in order to
present a clear formulation. In the same sense, battery degradation is ignored, although it
could be easily included as an additional cost in the objective function, as in the stochastic
model in [30]. On the other hand, some constraints usually considered in the literature,
such as the users’ preferences, in terms of a lower bound on the departure state of charge,
are then considered in an aggregated formulation.

Two main uncertainty sources are usually modeled in previous published studies: the
energy and reserve prices and the EV owners driving behavior. In this work, energy and
reserve prices are assumed as exogenous parameters. Several previously published papers
make this assumption, for instance in [39], where the aggregator represents an EV parking
lot included in a smart grid in which the grid operator handle all the uncertainty sources
in the grid. An alternative to this simplifying assumption could be a robust approach to
this objective function values, as proposed in [43]. However, in order to meet the goal of a
reliable profile of committed reserve, an appropriate modeling of the uncertainty regarding
the EV driving pattern is required. In this work, we propose a cardinality-constrained
robust optimization formulation [44]. Three uncertain parameters are included in the
model: The number of EVs plugged into the parking lot at each time and available to
follow the aggregator operation schedule, the total amount of energy leaving the parking
at each time, and the total amount of energy arriving at the parking at each time. The two
latter parameters correspond to the aggregated amount of energy of those cars departing
from, and arriving at, the parking at each time, respectively. It should be noted that, unlike
other models focusing the optimal operation of an aggregator, in the proposed model EV
car owners are not constrained to only charge at the parking managed by the aggregator.
Note that a set of cars may arrive at the parking with a higher amount of energy than they
had when leaving it if they are, for instance, recharged at work before commuting back
home. Several works may be found in the literature modeling the uncertainty regarding
the EV driving pattern, for instance in [45]. Although a precise modeling of the parameters
defining this uncertainty source is beyond the scope of this paper, it seems clear that the
proposed robust approach fits fine with the goal of formulating a solution procedure to
determine the optimal operation of an aggregator providing reliable reserve to the system.

3. Model Formulation

In this section, we describe the formulation of the proposed model. In Section 3.1, the
formulation of the decision-making problem faced by the EV-aggregator is presented as a
mixed-integer linear problem. In Section 3.2, the robust formulation of those constraints
including uncertain parameters is provided. Finally, in Section 3.3, we recap the complete
robust mixed-integer linear problem.
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3.1. Decision-Making Problem

The mixed-integer linear problem to find out the energy and reserve to be committed
by an EV aggregator in the day-ahead stage is formulated below. A wide tilde (∼) denotes
those parameters subject to uncertain values. Variables are expressed in lowercase and
parameters in uppercase. In this formulation, all continuous variables are non-negative.

The objective function (1) includes a first term related to the profits from energy
trading while the second term represents the profit for providing reserve.

Minimize ∑
T

∆t ·
[
CCh

t · pCh
t − CDch

t · pDch
t

]
− ∆t ·

[
CUP

t · rUP
t + CDN

t · rDN
t

]
(1)

where variables pCh
t and pDch

t are the charging and discharging powers, and rUP
t and rDN

t
are the upward and downward reserves, respectively. The parameter multiplying each
variable is the corresponding price, and ∆t is the time duration of each period in the time
horizon (T).

The constraints bounding this optimization problem follow.
The total amount of upward reserve rUP

t in (2), or downward reserve rDN
t in (3), is

achieved by taking into account the EV aggregator status; i.e., upward reserve at time t may
be provided while charging (rcUP

t ), discharging (rdUP
t ) or idle (riUP

t ) status, and downward
reserve at time t may be provided while charging (rcDN

t ), discharging (rdDN
t ) or idle (riDN

t )
status. Parameters RUP,max

t and RDN,max
t limit the upward and downward reserves at time

t in (4) and (5), respectively.

rUP
t = rcUP

t + rdUP
t + riUP

t , ∀t (2)

rDN
t = rcDN

t + rdDN
t + riDN

t , ∀t (3)

rUP
t ≤ RUP,max

t , ∀t (4)

rDN
t ≤ RDN,max

t , ∀t (5)

Due to physical or contractual reasons, the power exchanged between the EV aggrega-
tor and the grid is bounded. These limits must be met under any possible status: charging
in (6), discharging in (7) and idle in (8) and (9).

pCh
t + rcDN

t ≤ CAPCh · vCh
t , ∀t (6)

pDch
t + rdUP

t ≤ CAPDch · vDch
t , ∀t (7)

riUP
t ≤ CAPDch · vId

t , ∀t (8)

riDN
t ≤ CAPCh · vId

t , ∀t (9)

where the CAPCh and CAPDch are the connection capacity bounds in the charging and
discharging status, respectively; vCh

t and vDch
t are the binary variables associated to the

charging and discharging status, respectively, and the continuous variable vId
t denotes

the idle status. The relationship among these three variables is established in (10)–(12).
Equation (10) prevent simultaneous charging and discharging, and the joint consideration
of (10)–(12) ensures the binary behaviour of the continuous variable vId

t : note that vId
t = 1

if, and only if, both binary variables are zero, while vId
t = 0 otherwise.

vCh
t + vDch

t ≤ 1, ∀t (10)

vId
t = 1− vCh

t − vDch
t , ∀t (11)

vCh
t , vDch

t ∈ {0, 1}, ∀t (12)

On the other hand, the power exchanged between the aggregator and the grid is also
limited by the number of EVs plugged into the parking lot. As previously stated in the set of
constrains regarding the connection capacity, these bounds must be met under any possible
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status: charging in (13) and (14), discharging in (15) and (16) and idle in (17) and (18). Note
that, since all variables are non-negative, the left-hand side of (13) sets the charging power
as the upper bound for the upward reserve in the charging status and, equivalently, the
left-hand side of (16) sets the discharging power as the upper bound for the downward
reserve in the discharging status. For the same reason, the left-hand side of (14) and (15)
are not actually required but are included for the sake of clarity.

0 ≤ pCh
t − rcUP

t ≤
∼
Nt ·NTot · PCh

EV · vCh
t , ∀t (13)

0 ≤ pCh
t + rcDN

t ≤
∼
Nt ·NTot · PCh

EV · vCh
t , ∀t (14)

0 ≤ pDch
t + rdUP

t ≤
∼
Nt ·NTot · PDch

EV · vDch
t , ∀t (15)

0 ≤ pDch
t − rdDN

t ≤
∼
Nt ·NTot · PDch

EV · vDch
t , ∀t (16)

riUP
t ≤

∼
Nt ·NTot · PDch

EV · vId
t , ∀t (17)

riDN
t ≤

∼
Nt ·NTot · PCh

EV · vId
t , ∀t (18)

where NTot in the total number of EVs, the uncertain parameter
∼
Nt is the percentage (in per

unit) of EVs plugged into the parking lot, and PCh
EV and PDch

EV are, respectively, the charging
and discharging power of the EV.

Regarding energy, this model includes two sets of constraints related to the lower and
upper bounds of the state of charge of the aggregator. Firstly, the minimum and maximum
values of the state of charge at any time are bounded: (19) presents the lower bound on
the minimum value of the state of charge, while (20) is the upper bound on the maximum
value.

∼
Nt−1 ·NTot · Emin

EV, t−1+
∼
E

in
t −

∼
E

out
t ≤ emin

t , ∀t (19)

emax
t ≤

∼
Nt−1 ·NTot · Emax

EV, t−1+
∼
E

in
t −

∼
E

out
t , ∀t (20)

where Emin
EV, t and Emax

EV, t are the lowest and highest values set for the state of charge of the

EV at time t, respectively; the uncertain parameters
∼
E

in
t and

∼
E

out
t are the total amount of

energy corresponding to those EVs arriving at, and departing from, the parking lot at time
t, respectively; and variables emin

t and emax
t are the lowest and highest values, respectively,

of the state of charge of the aggregator a time t.
In addition, the non-anticipativity constraints are formulated in (21)–(26). These

constraints are included to prevent from unavailable states in the future real-time [41],
i.e., whatever the evolution of the state of charge in the coming real-time, depending on
the eventual deployment (or not) of the committed reserves, the aggregator should be
able to provide the upward and downward reserves committed in the day-ahead stage.
In (21)–(23), the upper bound of the minimum value of the state of charge (emin

t ) are
presented, while (24)–(26) formulate the lower bound of the maximum value of the state of
charge (emax

t ).

emin
t ≤ emin

t−1+
∼
E

in
t −

∼
E

out
t − ∆t

ηDch · (pDch
t + rdUP

t ) + M · (1− vDch
t ), ∀t (21)

emin
t ≤ emin

t−1+
∼
E

in
t −

∼
E

out
t +ηCh · ∆t · (pCh

t − rcUP
t ) + M · (1− vCh

t ), ∀t (22)

emin
t ≤ emin

t−1+
∼
E

in
t −

∼
E

out
t − ∆t

ηDch · riUP
t + M · (1− vId

t ), ∀t (23)

emax
t ≥ emax

t−1 +
∼
E

in
t −

∼
E

out
t +ηCh · ∆t · (pCh

t + rcDN
t )−M · (1− vCh

t ), ∀t (24)

emax
t ≥ emax

t−1 +
∼
E

in
t −

∼
E

out
t − ∆t

ηDch · (pDch
t − rdDN

t )−M · (1− vDch
t ), ∀t (25)
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emax
t ≥ emax

t−1 +
∼
E

in
t −

∼
E

out
t +ηCh · ∆t · riDN

t −M · (1− vId
t ), ∀t (26)

where parameters ηCh and ηDch are the charging and discharging efficiencies, respectively,
and M refers to a large positive number.

Finally, the boundary constraints on the initial and final state of charge of the EV
aggregator are stated in (27) and (28), respectively.

emin
t−1 = emax

t−1 = Eini, for t = 1 (27)

emin
t ≥ Eini, for t = T (28)

where Eini is the initial state of charge of the EV aggregator.

3.2. Robust Formulation

The problem formulated in (1)–(28) includes three uncertain parameters (
∼
Nt,

∼
E

in
t , and

∼
E

out
t ) in Equations (13)–(26). In order to handle these uncertainty sources, a cardinality-

constrained robust approach is used [44]. Any uncertain parameter
∼
X takes values ac-

cording to a symmetric distribution with mean equal to the expected value (X) in the
interval [X − X̂, X + X̂]. In this work, we assume the amplitude of the semi-interval (X̂)
as a percentage (σ, in per unit) of the mean value, i.e., X̂ = σ · X. Then, any uncertain
parameter may be expressed as:

∼
X∈ [X − σ · X, X + σ · X]. By means of the cardinality-

constrained robust formulation, an inequality constrained including uncertain parameters
is reformulated by adding a robust counterpart and one additional constraint for each
uncertain parameter included in the original constraint. The robust counterpart includes a
controllable parameter, the budget of uncertainty (Γ), that is a positive parameter ranging
from 0 (deterministic case assuming the expected value) to the summation of the num-
ber of uncertain parameters in the constraint (full robust formulation). This parameter
is used to reduce the level of conservatism of this technique, the robust optimization,
intended for optimizing the worst-case scenario. More information about how to set the
cardinality-constrained robust formulation of a constraint including uncertain parameters
may be found in [44].

The first constraint including an uncertain parameter in the optimization problem
formulated in Section 3.1 is the right-hand side constraint in (13). The robust formulation
of this constraint is (29) and (30):

pCh
t − rcUP

t + ΓCU
t · zCU

t ≤ Nt · NTot · PCh
EV · vCh

t , ∀t (29)

zCU
t ≥ σNEV

t · Nt · NTot · PCh
EV · vCh

t , ∀t (30)

where the budget of uncertainty (ΓCU
t ) is multiplied by the auxiliary non-negative contin-

uous variable zCU
t , and where the additional constraint (30) sets the lower bound of this

auxiliary variable (zCU
t ). Note that, since only one uncertain parameter is included in (13),

only one auxiliary variable and one additional constraint are required.
Accordingly, constraints (31)–(36) are the robust formulation of right-hand side con-

straints of (14)–(16), while constraints (37)–(40) are the robust formulation of (17) and (18).

pCh
t + rcDN

t + ΓCD
t · zCD

t ≤ Nt · NTot · PCh
EV · vCh

t , ∀t (31)

zCD
t ≥ σNEV

t · Nt · NTot · PCh
EV · vCh

t , ∀t (32)

pDch
t + rdUP

t + ΓDU
t · zDU

t ≤ Nt · NTot · PDch
EV · vDch

t , ∀t (33)

zDU
t ≥ σNEV

t · Nt · NTot · PDch
EV · vDch

t , ∀t (34)

pDch
t − rdDN

t + ΓDD
t · zDD

t ≤ Nt · NTot · PDch
EV · vDch

t , ∀t (35)
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zDD
t ≥ σNEV

t · Nt · NTot · PDch
EV · vDch

t , ∀t (36)

riUP
t + ΓIU

t · zIU
t ≤ Nt · NTot · PDch

EV · vId
t , ∀t (37)

zIU
t ≥ σNEV

t · Nt · NTot · PDch
EV · vId

t , ∀t (38)

riDN
t + ΓID

t · zID
t ≤ Nt · NTot · PCh

EV · vId
t , ∀t (39)

zID
t ≥ σNEV

t · Nt · NTot · PCh
EV · vId

t , ∀t (40)

On the other hand, in (19) there are three uncertain parameters (
∼
Nt−1,

∼
E

in
t and

∼
E

out
t ). In

this case, the robust formulation of (19), presented in (41)–(44), requires four non-negative
auxiliary variables and three additional constraints. This is an adequate example of the
most general case of conversion using the cardinality-constrained robust formulation.
Regarding the auxiliary variables, one of them (zmin

t ) multiplies the budget of uncertainty
(Γmin

t ), while each one of the three other (wmin,NEV
t , wmin,Ein

t and wmin,Eout
t ) corresponds to

an uncertain parameter. Each additional constraint in (42)–(44) sets a lower bound for the
sum of zmin

t and the corresponding auxiliary variable.

emin
t − Γmin

t · zmin
t − wmin,NEV

t − wmin,Ein
t − wmin,Eout

t ≥

Nt−1 · NTot · Emin
EV, t−1 + Ein

t − Eout
t , ∀t (41)

zmin
t + wmin,NEV

t ≥ σNEV
t · Nt−1 · NTot · Emin

EV, t−1, ∀t (42)

zmin
t + wmin,Ein

t ≥ σ
Ein
t · Ein

t , ∀t (43)

zmin
t + wmin,Eout

t ≥ σEout
t · Eout

t , ∀t (44)

Accordingly, the robust formulation of (20) is included in (45) and the three additional
constraints in (46)–(48).

emax
t + Γmax

t · zmax
t + wmax,NEV

t + wmax,Ein
t + wmax,Eout

t ≤

Nt−1 · NTot · Emax
EV, t−1 + Ein

t − Eout
t , ∀t (45)

zmax
t + wmax,NEV

t ≥ σNEV
t · Nt−1 · NTot · Emax

EV, t−1, ∀t (46)

zmax
t + wmax,Ein

t ≥ σ
Ein
t · Ein

t , ∀t (47)

zmax
t + wmax,Eout

t ≥ σEout
t · Eout

t , ∀t (48)

Finally, the robust formulation of the non-anticipativity constraints in (21)–(26) are
required. Note that three non-anticipativity constraints, (21)–(23), are formulated for emin

t ,
one for each possible status (charging, discharging, or idle), and other three, (24)–(26), are
required for emax

t . The standard application of the cardinality-constrained formulation to
each constraint would result in a high number of auxiliary constraints involving binary
variables. In order to avoid the computational burden corresponding to that option, both

uncertain parameters (
∼
E

in
t and

∼
E

out
t ) are merged into an equivalent uncertain parameter

(
∼
E

in
t −

∼
E

out
t ). The new uncertain parameter is also symmetrical, which mean equals

Ein
t − Eout

t and with a semi-amplitude of the interval σ
Ein
t · Ein

t + σEout
t · Eout

t . Note that this
change reduces the required number of both additional constraints and auxiliary variables.

The robust formulation of (21) is included in (49) and (50):

emin
t + Γmin,C

NA, t · z
min,C
NA, t ≤
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emin
t−1 + Ein

t − Eout
t + ηCh · ∆t · (pCh

t − rcUP
t ) + M · (1− vCh

t ), ∀t (49)

zmin,C
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vCh

t , ∀t (50)

Accordingly, the robust formulation of the non-anticipativity constraints in (22)–(26)
are included in (51)–(60):

emin
t + Γmin,D

NA, t · z
min,D
NA, t ≤

emin
t−1 + Ein

t − Eout
t −

∆t
ηDch · (pDch

t + rdUP
t ) + M · (1− vDch

t ), ∀t (51)

zmin,D
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vDch

t , ∀t (52)

emin
t + Γmin,I

NA, t · z
min,I
NA, t ≤

emin
t−1 + Ein

t − Eout
t −

∆t
ηDch · riUP

t + M · (1− vId
t ), ∀t (53)

zmin,I
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vId

t , ∀t (54)

emax
t − Γmax,C

NA, t · z
max,C
NA, t ≥

emax
t−1 + Ein

t − Eout
t + ηCh · ∆t · (pCh

t + rcDN
t )−M · (1− vCh

t ), ∀t (55)

zmax,C
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vCh

t , ∀t (56)

emax
t − Γmax,D

NA, t · z
max,D
NA, t ≥

emax
t−1 + Ein

t − Eout
t −

∆t
ηDch · (pDch

t − rdDN
t )−M · (1− vDch

t ), ∀t (57)

zmax,D
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vDch

t , ∀t (58)

emax
t − Γmax,I

NA, t · z
max,I
NA, t ≥

emax
t−1 + Ein

t − Eout
t + ηCh · ∆t · riDN

t −M · (1− vId
t ), ∀t (59)

zmax,I
NA, t ≥ (σEin

t · Ein
t + σEout

t · Eout
t ) · vId

t , ∀t (60)

3.3. Robust Mixed-Integer Linear Problem

Finally, we recap the complete formulation of the proposed mixed-integer linear
programming model, in which all continuous variables are non-negative.

The objective function in (1)

Subject to

(2)–(12) &

left-hand side constraints of (13)–(16) (deterministic constraints)

(29)–(60) (robust constraints)

(27)–(28) (boundary constraints)

4. Results

This section presents the results over a 24-h case study considering a residential
parking lot with a fleet of 100 EVs. According to the proposed model formulation, we
assume all EVs are identical, with a battery capacity of 42.2 kWh. The maximum charging
and discharging powers are both 3.45 kW, and the capacity of the connection between
the parking lot and the grid is 300 kW. The charging and discharging efficiencies are both
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set to 0.9. The upper bounds for the reserve, in both directions, is a 30% of the charging
and discharging power corresponding to the plugged EVs at each time. Figure 1 depicts
the energy and reserve prices; these data are taken from the Iberian Electricity Market
(MIBEL) [46] on 20 October 2020. Figure 2 shows the expected values of the uncertain
parameters in the model over the 24-h horizon. Based on the synthetic data used in [20],
a modified version of them is developed to achieve a more restrictive case study. The
purpose of this approach is to show the robustness of the proposed formulation even
under a particularly adverse situation. All σ-values in the uncertainty boxes are set to
0.05. Simulations were solved using CPLEX under GAMS [47] on a PC with an Intel Core
i5-3470S processor at 2.9 GHz and 16 GB of RAM.
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Figure 1. Energy and reserve prices.
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Figure 2. Expected values of the percentage of EVs plugged into the parking lot and total amount of
energy arriving at, and departing from, the parking lot.

The main results over this case study are provided next. These main results include
the optimal charging and discharging power schedule (pCh

t and pDch
t , respectively) and

the optimal values of variables bounding the state of charge of the aggregator at each time
(emin

t and emax
t ). This section is divided into three blocks: Firstly, the previously described

case study is analyzed; then, results over a modified version of this case study are provided;
and, finally, the sensitivity of the model to the budget of uncertainty is analyzed.

Figure 3 presents power and reserve results, where Figure 3a shows the charging and
discharging powers, and Figure 3b depicts the downward and upward reserves. Figure 3a
shows the parking lot is charging in 11 periods: as expected, the bulk of the charging is
achieved during night-time (all hours before 8); later, in the valley prices in the afternoon
(hours 16, 18, and 19); and an additional charging is required at the end of the day to
meet the minimum state of charge related to the boundary constraint at the end of the day.
Discharging is achieved at the beginning of the morning (from 8 to 10) in those periods
with high energy prices, injecting back to the grid part of the energy charged at night;
likewise, the discharging at hour 21 is also due to the high energy price. The rest of the
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day, the parking lot remains in the idle status, i.e., without charging or discharging. On the
other hand, Figure 3b shows reserve prices are not high enough to incentivize the upward
reserve: only at hour 24, with a high reserve price and no other constraint bounding at the
end of the day, upward reserve is provided. However, the opposite holds in the case of the
downward reserve. This type of reserve is provided under the three possible status: while
charging (at hours 1, 2, 6, 16, 18, 19, and 24), discharging (at hour 21) and in the idle status
(at hours 15, 17, 20, 22, and 23). The capacity of the connection between the EV aggregator
and the grid is the bounding constraint limiting the charging status at hours 3, 4, and 5,
when no reserves are scheduled. Note that, in that period, most of EVs are plugged into
the parking lot. However, in hour 2, although this capacity constraint is also limiting, the
charging power has to be reduced (292.71 kWh) to ensure the future availability of the
committed downward reserve (97.29 kWh). Then, when EVs start leaving the parking
lot, the limiting constraints are those related to the number of available EVs. It should be
also noted that no power or reserve are scheduled in the period between hours 11 and 14,
due to the reduced number of EVs plugged into the parking lot. On the other hand, the
increasing downward reserve committed at the end of the day follows the curve of EVs
plugged into the parking lot.

(a)
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Figure 3. Power and reserve results: (a) Charging and discharging power; (b) downward and upward
reserve.

Figure 4 presents the evolution of the lower and upper bounds on the state of charge
of the aggregator, i.e., the values along the day of the bounding variables emin

t and emax
t . In

this figure, the lower and upper bounds on these variables in terms of the three uncertain
values are also included (in black color): EMIN

t is the lower bound taking into account the
expected (mean) values of the uncertain parameters, while EMAX

t is the corresponding
upper bound. The gap that can be appreciated between the minimum state of charge and
its lower bound, or the maximum state of charge and its upper bound, is due to effect of
the robust formulation. As it will be shown later, these gaps do not exist if the deterministic
version, i.e., with the uncertain parameters fixed at their expected values (all Γ’s equal
zero), is run. The main reason for the gap existing between variables representing the lower
and upper bounds on the state of charge of the aggregator is the commitment of reserves.
In order to ensure the availability of the committed reserves, the gap between these two
variables (emin

t and emax
t ) has to be increased. This effect may be clearly appreciated in the

last hours of the day, where the increasing committed reserve results on an increasing gap
between these two variables bounding the state of charge of the aggregator.
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Figure 4. Evolution of bounding variables emin
t and emax

t .

In order to analyze the sensitivity of the proposed model with the reserve prices,
these input data are changed to define a modified version of the previously described
case study: all reserve prices are set to zero, but in hours 5 and 6, where the price of the
downward reserve is set to 30 e/MWh, and in the period between hours 13 and 16, where
the upward reserve is set to 40 e/MWh. Unlike the previous case study in which reserve
prices correspond to values in the wholesale market, these modified reserve prices could
correspond to the needs, for instance, of a smart grid with a relevant number of EVs with
uncontrolled charging and a relevant number of users with photovoltaic self-consumption.
Figure 5 presents the power (a) and reserve (b) results, and Figure 6 shows the lower and
upper bounds on the state of charge corresponding to this modified case study.
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Figure 5. Power and reserve results with modified reserve prices: (a) Charging and discharging
power; (b) downward and upward reserve.

In Figure 5b it can be seen that downward reserve is committed in both hours with
non-zero prices (5 and 6); however, even though the price of upward reserve is higher than
the price of downward reserve in this modified case study, there are only two hours (15 and
16), out of the four with non-zero prices, in which upward reserve is committed. On the
other hand, in terms of power and reserve, Figure 5a shows the number of hours in the idle
status is reduced: the number of hours in which the aggregator is charging is 12 (instead
of 11) while is discharging in 6 h (instead of 4). By comparing the energy committed in
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this modified case study with the previous one, it can be seen there is an increase in both
charging and discharging quantities: from 2017 kWh to 2222 kWh in the case of charging,
and from 495 kWh to 673 kWh in the case of discharging. This is due to the fact that
reserves are not paid in most of the hours in this modified case study: since low battery
capacity has to be preserved to ensure the committed reserve in a future real-time, the
aggregator has a wider margin to charge and discharge in order to reduce its energy bill.
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Figure 6. Evolution of bounding variables emin
t and emax

t with modified reserve prices.

The evolution of the lower and upper bounds of the state of charge of the aggregator in
this modified case study is depicted in Figure 6. It can be appreciated that the gap between
the bounding variables (emin

t and emax
t ) is increased in hours 5 and 6. This is increase is

mainly due to the discharging reserve committed in those hours, see Figure 5b. However,
the gap increase achieved in the period between hours 6 and 14, when no reserves are
scheduled, are due to the robust formulation of the non-anticipativity constraints: the
worst-case value of the uncertainty parameter is accounted for in opposite directions in the
lower and upper bounds. This behavior is repeated at the final part of the day, once the
gap increase due to the upward reserve committed in hours 15 and 16 is achieved. A deep
explanation of the behavior of these bounding variables may be found in Section 5.

Finally, in order to analyze the sensitivity of the proposed model to the budgets of
uncertainty, this case study, with reserve prices provided in Figure 1, is run for three
different values of this parameter: (i) the so-called ‘full-robust’ case, in which all the
budgets of uncertainty are set to their highest values; (ii) the ‘deterministic’ case, in which
all of them are zero; and (iii), an ‘intermediate’ case, in which all budgets of uncertainty are
set to their intermediate value. Figure 7 shows the power (a) and reserve (b) results, while
Figure 8 depicts the evolution of the lower and upper bounds of the state of charge for these
three cases. In both figures, results over the full robust case are identified with subscript 100,
those corresponding the intermediate case are identified with subscript 50, and subscript 0
is used to the deterministic case. It should be noted that results corresponding to the full
robust case (subscript 100) are those presented in Figures 3 and 4.
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Figure 7. Power (a) and reserve (b) results for different values of the budgets of uncertainty (Γ).

It can be appreciated in Figure 7a that the effect of increasing the budgets of uncertainty
is a decrease in both the power and reserve committed. The highest committed power,
and in both directions, are reached in the deterministic case (a total amount of 2163 kWh
while charging, and 880 kWh while discharging); on the other hand, the lowest values are
achieved in the full robust case (a total amount of 2017 kWh while charging, and 495 kWh
while discharging). The same behavior may be appreciated in the downward reserve
results in Figure 7b, accounting for a total amount of 1366 kWh in the deterministic case,
while 887 kWh is achieved in the full robust case. It may be also appreciated in Figure 8,
that bounding variables (emin

t and emax
t ) only reach their corresponding bounds (EMIN

t and
EMAX

t , respectively), in the deterministic case. As mentioned above, more details about
these bounding variables may be found in Section 5.
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Figure 8. Evolution of bounding variables emin
t and emax

t for different values of the budgets of
uncertainty (Γ).

The CPU time required to solve the original case study is 954 s (∼16 min), while the
modified version, in which reserve costs are non-zero values in only 6 h, was solved in
only 0.94 s. On the other hand, the deterministic version of the original case study (with all
Γ parameters set to zero) was solved in 4.06 s, and the case study with intermediate values
of the budgets of uncertainty was solved in 328.05 s. (∼5.5 min). All these CPU times were
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obtained with the optimality relative criterion in CPLEX (optcr) set to zero, i.e., the total
CPU time required to find out the optimal solution of the mixed-integer linear problem.

5. Discussion

Results presented in the previous section show the proposed model is able to find out
the optimal values of charging and discharging, as well as the optimal reserve values that
can be ensured at the day-ahead stage. Although the actual state of charge will depend on
the amount of reserve that will be actually deployed in the real-time, the optimal values
of bounding variables emin

t and emax
t set the lower and upper bounds, respectively, within

which the state of charge of the aggregator is able to ensure the reserves committed in the
day-ahead. The original case study (Figure 4), and its modified version (Figure 6), show
the evolution of these bounding variables to the state of charge of the aggregator. In view
of the results achieved in the previous section, some details about how the proposed model
establishes these bounding variables are provided next.

On one hand, each of these bounding variables are limited by the uncertain parameters.
The gap between variable emin

t and its lower bound, the parameter EMIN
t , as well as the gap

between variable emax
t and its upper bound, the parameter EMAX

t , can be appreciated in
Figures 4 and 6. This is due to the robust formulation of (19) and (20); note that parameters
EMIN

t and EMAX
t are, respectively, the left-hand side of (19) and the right-hand side of (20),

in which the expected values are considered for the uncertain parameters. The effect of the
robust formulation is variable emin

t is pushed up from parameter EMIN
t , while variable emax

t
is pushed down from parameter EMAX

t . This effect of moving away from these limits can
even be more clearly seen in Figure 8: the higher the level of uncertainty is considered (i.e.,
by increasing the budget of uncertainty), the wider the gap between the bounding variable
(emin

t or emax
t ) and its corresponding limit (EMIN

t or EMAX
t ).

On the other hand, the internal gap between these bounding variables (emin
t and emax

t ),
according to the non-anticipativity constraints, depends on the uncertain values of the
amount of energy departing from, and arriving at, the parking lot at each time, and on
the optimal results of the committed reserve. As previously mentioned, results over the
modified case study (Figures 5 and 6), when the provision of reserve is only profitable
in six hours, clearly show this dependency. The internal gap between emin

t and emax
t in

the period from hour 17 to 24, when no reserves are committed, are due to the robust
formulation of the non-anticipativity constraints. On the other, the joined effect of the
robust approach and committed reserve causes the increase on this internal gap in hours 5
and 6. However, this gap is not affected by the charging or discharging power. This result
can be also appreciated in the results from the modified case study in the period from hour
2 to 4. In these three hours, the parking lot is charging up to the connection capacity with
the grid, but no reserve is committed and no departures, or arrivals, are set for these three
hours; then, there is no increase in this internal gap and the evolution of emin

t and emax
t

depicts two parallel functions that can be seen in Figure 6.
Finally, results also show a ‘bottleneck effect’ around hour 13, when the lowest number

of EVs is plugged into the parking lot. The idle status, and without any reserve provision,
holds from hour 11 to 14 in the original case study (Figure 3), even though at those hours
prices are high. The same result is shown in Figure 5 for the modified case study in the
period from hours 12 to 14. This is due to fact that the limited energy availability in
the parking lot, due to the low number of plugged EVs, results in a narrowing of the
difference between the bounding parameters EMIN

t and EMAX
t . As a consequence, the

optimal solution is split into two intervals, before and after this narrowing. In fact, by
comparing the results corresponding to the evolution of this bounding variables (emin

t and
emax

t ) over the original and modified case studies (Figures 4 and 6), it can be appreciated
that quite similar results are achieved before hour 13. However, after hour 16, when reserve
is last committed in the modified case study, the internal gap between (emin

t and emax
t ) is

higher in the original case study due to the total amount of downward reserve committed
from hour 17 to 24.
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6. Conclusions

This paper proposes a mixed-integer linear robust optimization model to determine
the charging and discharging powers, as well as the downward and upward reserves, to
be committed by an EV aggregator in the day-ahead stage. Although it is an economically-
driven model, the focus is put on the capacity of the EV aggregator to provide reliable
reserve. To this end, two main features stand out: the robust formulation used to handle
the uncertainty sources in the model, and the set of non-anticipativity constraints able
to avoid the unavailability of the committed reserves whether they are required in the
real-time stage.

From the analyzed and discussed case study some conclusions can be drawn. The
proposed formulation is able to set the lower and upper bounds of the state of charge of
the aggregator through variables emin

t and emax
t . Although the actual state of charge will

depend on the amount of reserve that will be actually deployed in the real-time, the optimal
solution achieved for these bounding variables set the limits within the aggregator is able
to deploy any reserve committed in the day-ahead stage. Two factors are determinant
in establishing these two bounding variables: the amount of committed reserves and the
level of uncertainty considered in the robust formulation. In terms of reserve provision,
an aggregator is more likely to provide downward reserve than upward reserve. In the
case study with real prices taken from the MIBEL market, downward reserve is committed
in 13 h, while upward reserve is only committed in hour 24, at the end of the day, hour in
which no boundary constraint is limiting this provision of reserve. Taking into account the
battery efficiencies and the capacity of injecting power to the grid under the V2G mode,
upward reserve is only achieved in those periods with relatively high reserve prices. The
degree of conservatism included in the robust approach can be controlled through the
budgets of uncertainty: The higher the budget of uncertainty considered, the smaller the
margin for the aggregator to optimize its scheduling. Comparing results over the full
robust case with those of the deterministic case, a 6.8% decrease is achieved in the total
amount of charging power, a 43.8% decrease is achieved in the discharging status, and
a 35.1% decrease is obtained in the committed reserve. Finally, whether the availability
of reserve is a relevant requirement from the grid operator, a joint optimization of power
and reserve should be considered; otherwise, the capacity of the EV aggregator to provide
reliable reserve, based on a considerable number of small limited-energy devices, would
be severely compromised.
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