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Abstract: Forecasting the electricity consumption is an essential activity to keep the grid stable and
avoid problems in the devices connected to the grid. Equaling consumption to electricity production
is crucial in the electricity market. The grids worldwide use different methodologies to predict the
demand, in order to keep the grid stable, but is there any difference between making a short time
prediction of active power and reactive power into the grid? The current paper analyzes the most
usual forecasting algorithms used in the electrical grids: "X of Y’, weighted average, comparable
day, and regression. The subjects of the study were 36 different buildings in Terni, Italy. The data
supplied for Terni buildings was split into active and reactive power demand to the grid. The
presented approach gives the possibility to apply the forecasting algorithm in order to predict the
active and reactive power and then compare the discrepancy (error) associated with forecasting
methodologies. In this paper, we compare the forecasting methodologies using MAPE and CVRMSE.
All the algorithms show clear differences between the reactive and active power baseline accuracy.
‘Addition X of Y middle” and ‘Addition Weighted average’ better follow the pattern of the reactive
power demand (the prediction CVRMSE error is between 12.56% and 13.19%) while ‘Multiplication
X of Y high” and ‘Multiplication X of Y middle’ better predict the active power demand (the prediction
CVRMSE error is between 12.90% and 15.08%).

Keywords: baseline load forecasting; active and reactive power demand; electricity consumption;
XofY

1. Introduction

The rise in the quantity and diversity of electronic devices makes linking active and
reactive power demand harder for every customer [1]. For such a reason, separate active
and reactive power forecasting is a viable option. Every electrical grid uses a different
approach to predict the electrical consumption. This paper will present popular algorithms
used at present, and compare their accuracy, while at the same time showing the contrast
between the active power and reactive power forecasting. Hence, we try to contribute to
the scientific knowledge of efficient grid management, improving the prediction capacity
of reactive power in the grid which facilitates exploitation of Distributed Energy Resources
(DER) and integration of the renewable energy sources (RES) into the grid [2].

Forecasting methodologies are based on information from a single variable; that is,
forecasting does not need standard deviation calculations that indicate the importance of
each variable (weight) in the objective function, as is the case with regression methods,
parameter estimation, or data reconciliation [3]. As such, consistency in calculation of the
errors can be very important for comparing various algorithms [4] because it works like
an indicator that is measured consistently. Additionally, coupling this with some sort of
robust filtering like Hampel’s X84 rule [5,6].
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The basic algorithm used in the electrical grids to generate Customer Baseline Load
(CBL) is "X of Y’ methodology, used by, e.g., PJM ISO [7] or CAISO [8], New England
ISO (ISONE) employs weighted average to forecasting [9], whereas comparable day and
regression are used for short-term power forecasting of wind farms [10,11].

Numerous studies try to improve the baseline accuracy through innovative ideas,
different methods, approaches, and assumptions to generate CBL [12]. Table 1 shows some
of the relevant previous studies with obtained prediction errors.

Table 1. Overview of relevant CBL prediction errors in literature.

Reference Description Error

The authors completed short term forecasting, for

10 industrial customers in Korea. MAPE 2.8-26%

[13]

The authors examined daily electricity consumption of
[1] an administration building located at the Southwark RMSE 34%
campus of London South Bank University in London.

The authors undertook short term forecasting for eight
[14] users and implemented the baselines in a demand
response program.

Average real error
1.15-43%

The authors completed short time load forecasting in

buildings blocks situated in California. MAPE 10.88-17.97%

The authors simulated 195 scenarios of a non-residential

[11] building, MAPE 22-40%
[16] The data used in this paper were collected from Overall Performance
162 industrial and commercial customers. Index 6-23.8%

The data used in this paper were collected from three

commercial buildings in EEUU. CVRMSE <20%

While several studies presented in Table 1 used Mean Absolute Percentage Error
(MAPE) to estimate the CBL predication error, some experts do not recommend using
MAPE [18]. According to the International Performance Measurement and Verification
Protocol (IPMVP), the best indicator for a proper baseline error estimation is Coefficient of
Variation Root Mean Square Error (CVRMSE) with an established threshold for a successful
baseline as CVRMSE < 20% when considering hourly energy use [19].

In addition to the studies listed in Table 1, projects using Artificial Neural Networks
(ANN) resulted in more accurate forecasting, but strongly were dependent upon the type of
buildings and inputted data quality [20]. We also did not apply Support Vector Regression
(SVR) because the method to measure the error in this method is not consistent (the training
error and the error of when performing the data validation are different in SVR [21]) with
the other methods studied in this document, which would not give us the possibility of
comparing SVR with the other methods shown [22].

2. Materials and Methods

This research examined electricity demand in 36 buildings situated in Terni (Italy)
during the years 2016, 2017, and 2018. The data were collected by the local Distribution
System Operator (DSO) ASM Terni S.p.A.; data were gathered by means of Advanced
Metering Infrastructure (AMI) installed at the customers’ locations. With respect to the
dataset analyzed in this paper, DSO was identified a group of customers for which data
were collected every 15 min; it is worth noting that the Italian Authority prescribes to
collect only a monthly aggregated measure.

The implemented procedure used the consumption over the previous days to predict
the electricity demand in a window event of 30 min. The algorithms used to generate
the baselines were based on the most popular statistical methods implemented in the
actual electricity market worldwide: ‘X of Y days’, comparable day, weighted average,
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regression, and comparable day with addition or multiplication adjustments [23]. In order
to analyze the data, a ‘Matlab” script was developed. The script reads the data in “.xIsx’
format, generates the baselines for active and reactive power demand, and calculates the
errors between the baseline and actual consumption. Mean Absolute Percentage Error
(MAPE) [23] and Coefficient of Variation of the Root Mean Square Error (CVRMSE) [24]
were calculated.

The baselines can be generated half an hour in advance, or one day in advance of
the desired time window. Table 2 shows the inputs and outputs of the applied baseline
generation methods. In some cases, the input is a previously generated baseline.

Table 2. Inputs and outputs of baseline methodologies.

Type Input Output
XofY Load demand historical Baseline Wlt.h one week to one
day in advance
Weighted average Load demand historical Baseline Wlt,h one week to one
day in advance
Comparable day Load demand historical Baseline with one week to one

day in advance

Load demand historical

Regression Temperature historical Baseline with one step (half hour)

Measurement of temperature inadvance
. Load demand historical Baseline with one step (half hour)
Adjustments .
Measurement of load demand in advance

21. Xof Y

‘X of Y’ is a statistical methodology which uses ‘X’ of the “Y” days before an event.
Two alternative approaches are possible: ‘X of Y middle” and ‘X of Y high’. In the former,
X’ takes the middle values of the “Y" quantities, while the latter excludes the lowest
(Y-X) values. Usually, the ‘X of Y middle” is more accurate while X of Y high” is a more
conservative approach [25].

Equations (1) and (2) show the algorithms used to generate the baselines "X of Y
middle” and "X of Y high’ [26]. Note that subscript t here denotes timestep during the day.
In the case of ‘X of Y middle’, the ‘X" values will be those closest to the average value of
the Y’ values, while in the case of "X of Y high’ the "X’ values will be those closest to the
highest value of the ‘Y’ values.

Equation (1) Baseline X of Y middle [26].

1 d=X
by =% L lap M
deMid(X,Y)
Equation (2) Baseline X of Y high [26].
1 d=X
by=% L lan k)
deHigh(X,Y)

‘X of Y’ algorithms are used by Pennsylvania—New Jersey—Maryland interconnection
(PJM), California Independent System Operator (CAISO), or New York Independent System
Operator (NYISO) [26]. A study recommends that (0.4) < (X/Y) < (0.8) and that no data
older than 60 days is used to generate the baseline as the weather change can affect
the accuracy of the prediction [27]. For ‘X of Y’ algorithms, the current project took
into consideration the demand data over a 5 week long period preceding each date and
0.6 < (X/Y) <£0.8, with Y =5 and X = 3 or X = 4. Such choice is based upon a study [25]
that recommended that the electricity demand data used to generate a baseline should be



Energies 2021, 14, 7533

4 of 14

between 30 and 60 days. We selected 5 weeks (35 days) due to weather conditions, i.e., in
order to minimize the impact of the changing seasons on predictions. The same study [25]
used both Y =5 and Y = 10. We chose Y = 5 because the number of previous days we
selected (35) is closer to 30 than to 60. In the case when a period of time closer to 60 days
would be selected, Y = 10 would be preferred.

2.2. Weighted Average

The weighted average algorithm awards more weight to the days further away from
the event. The approach gives greater accuracy when there are many irregularities during
the day closest to the event [28]. Equations (3) and (4) are used to generate the weighted
average baseline [10].

Equation (3) Weighted average (1) [10].

Wi=x—7 L lan ©
Equation (4) Weighted average (2) [10].

by = (L =71)Wey + 7Yl (np 4)

In our study, value for the factor v was taken as 0.9 according to recommendations [26],
while the value of n = 5 was chosen for consistency with the ‘X of Y’ methodologies.

2.3. Comparable Day

The comparable day approach is simpler to apply, because it does not use any equation;
the approach consists of generating a baseline with information about a ‘similar day’. While

‘similar’ is usually a subjective term, it can be determined by the weather, or day of the

week, for example. The temperature is measured and used to forecast the demand using
a previous day with a similar temperature; similarly, measurements of rain or snow fall
may be considered [11]. Alternatively, our research took into consideration demand a week
before an event to generate a new baseline. For example, to predict the electrical demand
on a Monday, the data of the previous Monday were used.

2.4. Simple Regression

Simple regression makes a modification to the baseline (b1) and a more precise baseline
(b2) using the temperature and the temperature historical data.
Equation (5) Simple regression.

X T — S5 1) T T

P(d) = ®)
de 1 T2 (Zd 1 T )
Equation (6) Simple regression.
bu—Pu(<> m)+hm (©)
Equation (7) Simple regression.
21)1(:1 T(*n t)
Ty=—~+% @)

2.5. Adjustments

Adjustments take a previously generated baseline and make an adjustment in the win-
dow before an event (half-hour in our research). Three types of adjustments were used in
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the current research, multiplication adjustment (Equations (8) and (9)), addition adjustment
(Equations (10) and (11)), and linear regression adjustment (Equations (12)-(14)) [16].

2.5.1. Multiplication and Addition Adjustments

The multiplication and addition adjustment have the same concept: take a previously
generated baseline and use a factor to reduce the error. In the case of multiplication
adjustment, the factor multiplies the baseline, while in the case of addition adjustment the
factor adds to or subtracts from the baseline. In our study, after making the adjustments, a
subsequent physical analysis was undertaken, and we decided to specify zero baseline if
the adjusted baseline took negative values. However, our approach is unable to predict
negative demand, e.g., in the case when consumers generate electricity.

Equation (8) Multiplication factor.

Vi b
My = Sm1, ®)
i=1"(i)
Equation (9) Multiplication adjusted Baseline.

byry = Mpbyy) ©)

Equation (10) Addition factor.

1 t—1
Sy =771 Zl i) = ba (10)

1=

Equation (11) Addition adjusted baseline.
bZ(t) = b(t) + S(t) (11)

2.5.2. Linear Regression Adjustment

Linear regression is the most comprehensive method to forecast the demand because
it takes into consideration the weather. Regression is used to predict the “total consumption’
during the day but is not the best way to predict the consumption in a short event window
of half an hour [29]. Equations (6) through (8) are used to generate the regression baseline.
The main difference between linear regression and simple regression methods is that simple
regression does not use temperature, while linear regression does.

Equation (12) Linear regression factor [16].

X =1 lanTian — a1 lap a1 T

Pt = n ) ) 5 (12)
Xy 12— (e Ty
Equation (13) Linear regression baseline [16].
bary = Pap (T(*t) - Tm(d,t)) + by (13)
Equation (14) Average temperature [16].
t
i=1 (i
Toan = %U (14)

2.6. Short Term Load Forecasting for Baseline Assessment

The electrical demand depends on numerous factors, e.g., temperature, solar radiation,
rainfall, occupancy, etc. In order to compare the different algorithms, the current study
calculated two baseline prediction errors: Mean Absolute Percentage Error (MAPE) and
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Coefficient of Variation Root Mean Square Error (CVRMSE). MAPE is the most widely used
method to calculate the error [23], clearly showing the gap between the real and predicted
values. However, MAPE exhibits drawbacks if the real value is zero or close to zero. In
such cases, CVRMSE can prevent divergences [3]. CVRMSE is harder to calculate but does
not have problems with the values close to zero. Equation (13) is used to calculate MAPE,
while Equations (14) and (15) are used to calculate CVRMSE.

Equation (15) MAPE error.

100 N | be) — Loy
Equation (16) CVRMSE error.
2
100, [ (20— 1)
CVRMSE = bmJ - N (16)
Equation (17) Mean baseline value.
Nb
b
bm = E=L0 17)

2.7. Assessment Average

Our study analyzed different buildings and numerous methodologies. The results are
presented as an average for each methodology following Equation (16) (tb is the number of
buildings—normally 36—but in some cases can be less because of missing data to generate
some of the baselines).

Equation (18) Average error.

th
Average_Error = % Z Error; (18)
i=1

An additional parameter considered in this study is the number of buildings in which
each method exhibits the best results (with the lowest error). Such parameter is shown in
Tables 3-6 in the Min columns, whereas the opposite counts of the buildings reporting the
worst performance of a particular method are presented in the Max columns.

2.8. Data Normalization

Data normalization typically treats the development of clean data; in order to do this
we used MATLAB. Buildings 9 and 36 did not have any indication of the suitable baseline
generation methods, as insufficient data were available to generate baselines for them. Such
a result may be due to problems with the meters. In building 32, consumption was zero for
a large part of the 3 years resulting in mostly zero baseline. We considered such a case as an
exception and omitted the results of building 32 from Table 7. The zero consumption could
be due to the specific use of the building, e.g., as a warehouse/storage or holiday home, or
due to malfunction of the equipment used to measure the electricity consumption.

3. Results and Discussion

For this study we had 3 years of data, therefore, it was very difficult graphically
to see the baseline and the different methods in such a long period of time. For that
reason, we included graphs for one week, one graph for active power baselines (Figure 1),
and one for reactive power baseline (Figure 2). However, we followed the IPMVP [19]
recommendations and used CVRMSE as principal indicator, and we complemented it with
MAPE because it is a common indicator and easy to understand.
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3.1. Active Power Baseline

Table 3 shows the average MAPE for all buildings. The low error average was obtained
for the methodologies with multiplication and addition adjustment. The multiplication
adjustment with "X of Y high” has the overall lowest average error over the considered years
ranging between 9.95% and 12.97% annually. Baselines generated without adjustment and
using linear regression have a similar average error. The simple regression baselines have
the highest average error of 34.57% in 2018. Columns ‘Min’ and ‘Max” in Table 3 show how
many buildings have low and high average errors using each of the considered methods.
The normal simple regression has the high average error and at the same time is the most
common method producing high errors.

Table 3. Baseline, active power, MAPE (highlighted in red are the worst results, highlighted in blue are the best results).

MAPE [%] Min Max
Baseline, Active Power
2016 2017 2018 2016 2017 2018 2016 2017 2018

Normal X of Y high 21.74 25.68 30.45 0 0 0 0 0 0
Normal X of Y middle 20.41 23.61 25.28 0 0 0 0 0 0
Normal comparable day 18.72 18.34 22.43 0 0 1 0 0 0
Normal weighted average 21.56 25.43 30.10 0 0 0 0 0 2
Normal simple regression 27.16 32.54 34.57 0 0 0 12 23 21
Multiplication X of Y high 10.42 9.95 12.97 4 5 6 0 0 0
Multiplication X of Y middle 10.46 9.94 13.44 3 12 8 0 0 0
Multiplication comparable day 11.54 10.93 14.79 5 4 5 0 0 0
Multiplication weighted average 10.48 9.97 13.05 6 6 7 0 0 0
Multiplication simple regression 12.89 12.50 16.14 0 0 1 0 0 0
Addition X of Y high 11.39 10.79 14.40 0 0 0 0 0 0
Addition X of Y middle 10.97 10.15 13.38 3 5 3 0 0 0
Addition comparable day 11.73 11.08 14.43 0 1 2 0 0 0
Addition weighted average 11.22 10.55 14.03 0 0 2 0 0 0
Addition simple regression 13.19 12.17 16.58 0 0 0 0 0 0
Linear regression X of Y high 25.09 26.33 31.04 0 0 0 0 0 0
Linear regression X of Y middle 25.00 26.14 30.71 0 0 0 0 0 0
Linear regression comparable day 25.66 26.80 31.68 0 0 0 2 5 4
Linear regression weighted average 25.04 26.26 30.90 0 0 0 0 0 0
Linear regression simple regression 26.24 27.15 32.17 0 0 0 7 5 7

The number of minimum and maximum values does not necessarily have to match the
number of considered buildings (36), as insufficient electricity demand data for a particular
period would prevent baseline generation, meaning that the total number of baselines
would be less than 36. Another possibility is that, for the same building, multiple methods
might have the same maximum or minimum errors, increasing the number of minimum or
maximum counts.

Table 4 shows the average CVRMSE for all buildings and the number of buildings
with the best and the worst averages for each method. In this case, baseline calculation
methods with the highest and the lowest CVRMSE do not match those with the highest
number of extreme error values. The lowest CVRMSE is for ‘Addition Weighted average’,
ranging between 12.56% and 26.83%, while the same method also has the highest number
of buildings with low errors overall during the considered 3-year period.

Depending on the method used to calculate the error, the best baselines are using
multiplication setting according to the MAPE calculation or the methods with addition
adjustment according to the CVRMSE calculation. Comparatively, MAPE errors were
mostly lower than CVRMSE for all prediction methods.
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Table 4. Baseline, active power, CVRMSE (highlighted in red are the worst results, highlighted in blue are the best results).

CVRMSE (%) Min Max
Baseline, Active Power
2016 2017 2018 2016 2017 2018 2016 2017 2018

Normal X of Y high 23.29 24.50 45.68 0 0 1 0 0 0
Normal X of Y middle 24.18 25.72 48.48 0 0 0 0 0 2
Normal comparable day 24.67 25.73 50.49 0 0 0 0 0 3
Normal weighted average 24.23 25.55 46.89 0 0 0 0 0 0
Normal simple regression 31.01 32.59 54.16 0 0 0 9 13 13
Multiplication X of Y high 18.96 34.39 43.74 5 3 5 0 1 0
Multiplication X of Y middle 22.57 38.56 44.40 0 1 0 1 1 4
Multiplication comparable day 34.52 39.37 64.16 0 0 0 4 6 8
Multiplication weighted average 19.35 30.36 38.82 0 1 2 0 1 2
Multiplication simple regression 26.78 48.46 53.80 0 0 0 3 7 4
Addition X of Y high 12.59 13.26 26.99 3 6 6 0 0 0
Addition X of Y middle 12.59 13.23 27.00 1 6 10 0 0 0
Addition comparable day 14.05 14.97 30.36 2 6 1 0 0 0
Addition weighted average 12.56 13.19 26.83 8 10 8 0 0 0
Addition simple regression 14.92 15.27 30.80 0 0 1 0 0 0
Linear regression X of Y high 29.41 27.73 46.66 0 0 0 0 0 0
Linear regression X of Y middle 29.44 27.74 46.69 0 0 0 0 0 0
Linear regression comparable day 30.00 28.56 48.04 0 0 0 0 2 2
Linear regression weighted average 29.43 27.72 46.61 0 0 0 0 0 0
Linear regression simple regression 30.39 28.56 48.08 0 0 0 2 2 2

3.2. Reactive Power Baseline

Table 5 shows the MAPE calculation for the reactive power baselines. The algorithm
with the best average error is the ‘Addition X of Y middle’, while ‘Multiplication X of Y
high” has the highest number of buildings with the lowest average errors during the overall
3-year period, despite having approximately 4% higher average error each year.

Table 5. Baseline, reactive power, MAPE (highlighted in red are the worst results, highlighted in blue are the best results).

MAPE (%) Min Max
Baseline, Reactive Power
2016 2017 2018 2016 2017 2018 2016 2017 2018

Normal X of Y high 38.01 47.94 48.60 1 1 2 0 0 0
Normal X of Y middle 35.09 50.08 49.39 0 0 2 0 1 0
Normal comparable day 31.90 48.04 46.91 0 0 0 0 1 0
Normal weighted average 38.51 48.55 49.64 0 0 0 2 1 1
Normal simple regression 113.02 109.54 109.84 0 1 0 17 22 25
Multiplication X of Y high 24.83 40.05 39.77 9 8 6 0 0 0
Multiplication X of Y middle 22.42 42.76 43.35 0 2 1 0 4 3
Multiplication comparable day 23.87 43.68 43.63 0 1 0 1 1 0
Multiplication weighted average 25.12 40.26 40.14 2 2 3 1 0 0
Multiplication simple regression 32.06 44.75 47.30 2 4 5 0 0 0
Addition X of Y high 24.65 35.82 35.28 1 2 3 0 0 0
Addition X of Y middle 20.81 35.70 35.19 0 2 6 0 0 0
Addition comparable day 21.79 36.99 36.18 4 2 2 0 0 0
Addition weighted average 24.53 35.56 35.09 1 5 3 1 0 0
Addition simple regression 37.87 51.30 52.56 0 0 0 0 2 3
Linear regression X of Y high 38.35 48.20 44.89 0 2 0 0 0 0
Linear regression X of Y middle 38.57 48.53 44.90 0 0 0 0 0 0
Linear regression comparable day 39.30 49.40 45.83 0 0 1 0 0 0
Linear regression weighted average 38.39 48.23 44.84 0 0 0 0 0 0
Linear regression simple regression 46.54 56.85 54.91 1 0 0 1 1 1

Table 6 shows the CVRMSE calculation where ‘Addition Weighted average’” and
‘Addition X of Y high’” have the same average errors. Baseline calculation methodology
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with the highest number of buildings with the lowest average error during the overall
3-year period is ‘Addition Weighted average’.

Table 6. Baseline, reactive power, CVRMSE (highlighted in red are the worst results, highlighted in blue are the best results).

CVRMSE (%) Min Max
Baseline, Reactive Power
2016 2017 2018 2016 2017 2018 2016 2017 2018

Normal X of Y high 27.20 26.69 24.69 0 0 0 0 0 0
Normal X of Y middle 29.49 30.63 28.44 0 0 0 0 0 1
Normal comparable day 28.81 28.99 27.83 0 0 0 0 1 1
Normal weighted average 28.73 28.49 25.89 0 0 0 0 0 0
Normal simple regression 71.04 60.77 60.01 2 5 3 12 11 13
Multiplication X of Y high 31.78 53.17 28.47 1 1 1 1 2 0
Multiplication X of Y middle 50.85 50.54 59.77 0 0 0 1 2 7
Multiplication comparable day 61.48 68.71 64.87 0 0 0 3 7 4
Multiplication weighted average 26.39 57.82 29.72 1 0 1 0 2 0
Multiplication simple regression 23.29 37.39 24.97 0 0 1 0 1 1
Addition X of Y high 15.08 14.52 12.90 5 9 6 0 0 0
Addition X of Y middle 15.36 14.97 13.18 0 2 3 0 0 0
Addition comparable day 16.79 16.06 14.65 2 2 1 0 0 0
Addition weighted average 15.16 14.62 12.90 8 8 10 0 0 0
Addition simple regression 40.89 43.36 39.65 0 0 0 1 1 2
Linear regression X of Y high 32.61 30.77 22.48 0 0 0 0 0 0
Linear regression X of Y middle 32.73 30.92 22.56 0 0 0 0 0 0
Linear regression comparable day 33.22 31.37 23.36 0 0 0 1 0 0
Linear regression weighted average 32.66 30.81 22.47 0 0 0 0 0 0
Linear regression simple regression 49.33 49.87 43.28 0 1 0 0 1 0

The worst methodology to generate a baseline of reactive power demand is ‘Normal
simple regression’ which has the highest average error and the highest number of buildings
with high errors (in both cases MAPE and CVRMSE). Comparatively, CVRMSE errors were
mostly lower than MAPE for all prediction methods.

3.3. Comparison between Active and Reactive Power Baseline (2016, 2017, and 2018)

Table 7 shows which algorithm is more accurate for each building. The building
ID numbers are presented in the first column, while the other columns correspond to
considered baseline generation methods. Each row corresponds to a single building, where
A was placed for the baseline calculation method with the lowest MAPE for the active
power, and R for the method with the lowest CVRMSE for the reactive power.

Table 7. The most accurate methods used for active (A) and reactive (R) power calculation per building ID.

ID a b c d e f g h i j k 1 m n o P q r
1 A R
2 AR
3 R A
4 R A
5 R A
6 AR
7 AR
8 A R
9
10 AR
11 R A
12 A R
13 A
14 R A
15 A R
16 A R
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Table 7. Cont.

ID

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
A count
R count

AR

AR

0 0 1 0 0 6
2 2 0 0 0 6

> |ae

AR

AR

()

=)
W
N
N
o

PRVl O 5 B — & — ~ 509 = 0 A0 wmI

Normal

Multiplication

Addition

Linear regression

Normal X of Y high

Normal X of Y middle

Normal comparable day

Normal weighted average
Normal simple regression
Multiplication X of Y high
Multiplication X of Y middle
Multiplication comparable day
Multiplication weighted average
Multiplication simple regression
Addition X of Y high

Addition X of Y middle

Addition comparable day
Addition weighted average
Addition simple regression
Linear regression X of Y high
Linear regression X of Y middle
Linear regression comparable day
Linear regression weighted average
Linear regression simple regression

In nine buildings, the methods with the lowest error are the same but in the other
25 cases they are not coincident. In only 36% of the cases, we obtained the lowest set by
applying a single method to predict active and reactive power; in the rest of the cases it
would be better to apply different methods.

4. Conclusions and Future Work

Electrical grids need an upgrade in order to include the innovative technologies of
electricity generation (wind turbines, solar panels) and the Distributed Energy Resources
(DER). To control a process, it is necessary to understand and predict its main component
factors, which in the case of the electrical grid, are the customers and generators. The
presented research focuses on prediction of the customers’ characteristics, separating the
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demand in active and reactive power components for each building to improve the accuracy
of demand prediction. The main limitation is the sample profile as all the buildings are
located in Terni, Italy, in the Italian electrical market. We recommend that future research
should consider other electrical markets subject to different usage patterns. While the used
sample of selected buildings provided a representation of building performance, increasing
the sample size may allow deeper analysis of singular cases such as the buildings with
very rare or occasional electricity consumption.

When talking about active power, MAPE calculation is more important because the
active power demand values are usually nonzero. For the reactive power, CVRMSE is more
significant, because the reactive power demand can be zero, which makes MAPE calcula-
tions inaccurate. Consequently, the lowest error resulted from application of ‘Addition X of
Y middle’ and ‘Addition Weighted average’ in prediction of reactive power (the forecasting
error is between 12.9% and 15%), while ‘Multiplication X of Y high” and ‘Multiplication
X of Y middle” provided better prediction of active power demand (the forecasting error
is between 9.9% and 12.9%). However, the accuracy of the statistical methods used to
generate baselines in this investigation also depended on the building to which they were
applied. Better results were obtained by applying different baseline calculation methods to
predict the demand for active and reactive power in different years.

Additional research is necessary to verify these findings on a larger customer dataset.
In future research, it would be also interesting to investigate the accuracy of prediction
methods for active and reactive power in the same building from one day to another, and
whether it is better to apply different baseline forecasting methods on specific days. The
recommendation would be to take a single building and explore the algorithms studied
day by day to see how error varies and whether it is possible to determine which method
provides more accurate results on particular days of the week/month/year.
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Nomenclature

S Addition factor

0] Adjusted baseline generated
ANN Artificial Neural Network

T ) Average temperature for a day (d)
b Average value of the baseline

b Baseline generated

CBL Customer Baseline Load

CVRMSE  Coefficient of Variation Root Mean Square Error (%)
CAISO California Independent System Operator

n Day before to the event bounded within X and Y

d Day number bounded within X and Y

l (d,t) Historical load measured

IPMVP International Performance Measurement and Verification Protocol

ISO Independent System Operator
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MAPE Mean Absolute Percentage Error (%)

My Multiplication factor

Nb Number of steps in the baseline

PIM Pennsylvania, New Jersey, and Maryland
P(a) Regression parameter

T Temperature historical data

T(*i) Temperature measured in the moment

X The quantity of days for the method ‘X of Y’
t Time step during the day (half-hour in the current study, i.e., between 1 and 48)
tb Total number of buildings

Wi Weighted parameter

0% Weighting factor
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