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Abstract: The higher share of renewable energy sources in the electrical grid and the electrification
of significant sectors, such as transport and heating, are imposing a tremendous challenge on the
operation of the energy system due to the increase in the complexity, variability and uncertainties
associated with these changes. The recent advances of computational technologies and the ever-
growing data availability allowed the development of sophisticated and efficient algorithms that
can process information at a very fast pace. In this sense, the use of machine learning models has
been gaining increased attention from the electricity sector as it can provide accurate forecasts of
system behaviour from energy generation to consumption, helping all the stakeholders to optimize
their activities. This work develops and proposes a methodology to enhance load demand forecasts
using a machine learning model, namely a feed-forward neural network (FFNN), by incorporating
an error correction step that involves the prediction of the initial forecast errors by another FFNN.
The results showed that the proposed methodology was able to significantly improve the quality of
load demand forecasts, demonstrating a better performance than the benchmark models.

Keywords: error correction; load demand forecast; feed-forward neural network

1. Introduction

According to the last International Panel on Climate Change (IPCC) report [1], there is
strong evidence of human influence on global climate change, which is characterized by the
global average temperature increase, higher ocean levels and the occurrence of catastrophic
events, among others. The rise in greenhouse gas (GHG) concentration in the atmosphere
is most likely the main driver of the changes in the Earth’s climate. In this sense, the energy
sector accounts for a quarter of the world’s GHG emissions [1], being the one with the
largest share. Therefore, it is not possible to discuss climate change without considering
the energy sector.

Changes in climate conditions can affect physical, biological and human systems at
global and regional scales and require adaptation and mitigation measures. In order to
reduce GHG emissions, several national, regional and global agreements have been signed,
such as the European Union (EU) 2009/28/EC directive [2], in which it was agreed that EU
countries must fulfil at least 32% of their total energy needs with renewable energy by the
year of 2030. More recently, as part of the European Green Deal, the European Commission
proposed the first European Climate Law to enshrine the 2050 climate neutrality target
into law [3]. This type of measure is in accordance with the findings presented in [4],
which state that large-scale changes in the energy system are a must to achieve this goal
and mitigate the global climate crisis. However, the energy transition towards cleaner
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sources demands profound and challenging changes in the sector’s infrastructure, policies,
regulations, market design and operation.

The aging of conventional power plants, technological advances and cost reductions
are allowing cleaner sources, mainly solar and wind-based systems, to boost their share
in the electricity mix at the expense of fossil fuels [5]. Simultaneously, the electrification
of significant sectors, such as transport and heating, is increasing the load demand while
system decentralization is altering the load patterns and the energy flow, as consumers are
changing their roles to become prosumers, i.e., someone who both produces and consumes
energy. Moreover, the growth of digital and storage technologies also increases system
complexity and can expose it to cyber threats [6]. All this transformation requires various
adaptation measures, which involves technical, economical and political issues [6] that
must be applied to ensure reliable, affordable, safe and high-quality electricity.

The uncertainty of energy supply and demand can cause grid instability issues, such
as overvoltage and frequency deviations. To overcome this situation, the system must be
flexible and resilient enough in order to cope with rapid generation and load changes and
balance them at every moment. In this regard, recent technologies and approaches such as
small-scale energy storage systems (e.g., batteries) and demand response programs have
been gaining increased attention [6]. However, they are not always feasible as they can be
extremely expensive and still need more improvement to be applied at a large scale. On
the other hand, one common way for system operators to deal with this variability is by
defining a certain amount of energy reserve that can be used to adjust the system frequency.
In liberalized markets, such as the Iberian Electricity Market (MIBEL), the necessity and use
of this reserve can configure an extra cost to the system operation and lead to an increase
in the electricity price.

The above-mentioned solutions have in common the fact that they try to deal with
the system variability by giving immediate responses to instantaneous deviations, by dis-
charging batteries, turning off electrical appliances or increasing the power of a generator,
for example. Nonetheless, they all typically have their behavior planned based on power
generation and load demand predictions. Therefore, accurate forecasts are essential for
these tools to optimize their performances and, consequently, the whole system operation.

The interest in energy demand and supply forecasts has significantly increased since
the oil crisis in the 1970s [7]. At that time, most of the employed models were statistics-
based such as linear regression, ordinary least squares and stepwise regression, among
others. However, the growing complexity of electrical systems and the unknown rela-
tionships between multiple variables impose great difficulties that these simpler models
cannot handle.

On the other hand, a boost in the application of computational methods has been ob-
served in recent years. The technological developments in computing allowed the creation
of sophisticated and efficient computational methods that typically use advanced statistical
concepts. They can be combined with statistical models, used to estimate their parameters
or to make forecasts with reduced computational time and improved performance [7].

In the present paper, a machine learning model based on a feed-forward neural
network (FFNN) for a load demand forecast is proposed. The main novelty of this method
is that the FFNN is first applied to the historical data of load measurements, and, in a
second step, the same method is applied to the results of the load forecast to estimate the
errors of the initial load forecast. Finally, the initial load forecast is adjusted considering
the errors forecast, providing a very accurate load demand forecast. The consumption
forecast can be used by several stakeholders for different purposes such as transmission and
distribution system management, support to market participation or energy management
in energy communities.

The increased need for electricity and the change in the power generation mix and
load patterns are some of the already observed transformations. With all this, electricity
grid management becomes more unpredictable and its operation and control more complex,



Energies 2021, 14, 7644 3 of 24

which can lead to greater supply instability. Therefore, techniques and methods capable of
increasing system reliability are extremely necessary.

One way to ensure more trustworthiness and better management of the system is by
anticipating the load demand. When accurate forecasts are made, the decisions regard-
ing the power system operation, maintenance and planning become more efficient [8,9].
Furthermore, improvements on energy policies and tariffs can be achieved. In recent
years, much of the research has been focused on the development of models to forecast
the electrical load in different time horizons. These periods are often classified as short
term, which goes up to 1 week ahead; medium term, from weeks to 1 year; and long term,
for future years [10]. Additionally, each of these timeframes have different applications,
with the first being more important for daily operation and cost minimization [11] and the
others for fuel reserves estimation, maintenance and capacity expansion planning [12].

Several approaches have been employed recently to make these forecasts. These ap-
proaches can be separated into three categories: statistics-based, computational intelligence-
based and hybrid approaches [7]. Statistical models usually embraces uni or multivariate
time-series models and regression techniques, such as Autoregressive Integrated Moving
Average (ARIMA) and Linear Regression, while computational intelligence models are
mainly related to ML approaches. Commonly, statistics-based methods are less memory
intensive due to their simplicity and, thus, faster to execute. On the other hand, ML models
are capable of identifying nonlinear relationships between inputs and outputs and can
be extremely time consuming. However, this level of complexity can be necessary to
achieve better results [10]. Finally, hybrid models combine features from statistical and
computational intelligence models. They generally use the former to preprocess and/or
select the input data that will be fed to the latter.

These forecast models can be implemented using a large range of inputs that can be
divided into four major categories: socio-economic, such as the regional average income
and GDP; environmental, such as mean temperature; building and occupancy, which is
related to building sizes and dwelling types; and time index, which is related to the date
stamps used as inputs [13]. Additionally, electricity demand historical data are generally
taken into consideration. However, the choice of these inputs will depend on the time scale
and type of the region of the study. Usually, historical, environmental and time index data
are more common for short-term forecasts in a region scale [13].

Recently, several neural network structures have been employed to develop for short-
term load forecasting. In [14], a model composed of a Convolutional Neural Network
(CNN), a bidirectional Gated Recurrent Unit (GRU) and a Long Short-Term Memory
(LSTM) recurrent neural network (RNN) was presented. First, the authors computed
hourly autocorrelation coefficients of hourly loads and temperature, which were used to
calculate the kernel size of convolutional layers. Later, two-dimensional convolutional
layers with the load and temperature time-series were used to extract features from these
data [14,15].

In [16], a hybrid Artificial Neural Network (ANN) to forecast the day-ahead load in a
smart grid was proposed. The strategy was divided into three modules: pre-processing,
forecasting and optimization. The goal of the first module was to remove irrelevant and
redundant features from the dataset by applying a mutual information-based technique.
Mutual information (MI) represents the uncertainty reduction about one variable as a con-
sequence of observing another one and is a concept related to the information theory [17].
In [18], the authors introduced an Advanced Wavelet Neural Network (AWNN) to forecast
one-step-ahead load demand. The proposed approach was composed of four stages: load
decomposition, feature selection, prediction model creation and forecasting. The main idea
of data decomposition is to break the data into their constituent parts to find universal or
functional properties that are not observed in their usual representation [15].

In [19], an LSTM network using a cross-correlation-based transfer learning approach
was proposed to forecast 15-min-ahead load demand. Transfer learning is a methodology
that identifies similarities in different datasets and allows the use of knowledge from other
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tasks on related ones [15]. This approach can be extremely useful when the available data
are scarce. In this work, energy demand data from several randomly selected buildings
over approximately one year were collected for the transfer learning step, while the load
demand to be estimated came from data collected from a university building in Turkey
over one month. Additionally, both of them were sampled at every 15 min. The results
showed that the proposed model was able to outperform the benchmark models in terms
of the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). Moreover, the contribution of the transfer learning approach was
evident, as a significant improvement in the LSTM model could be verified. The authors
also observed that the best proposed models came from those weights obtained with the
data from the buildings with the highest cross-correlation. However, the MAPE was higher
than the one observed in other works (about 8%), and details about the performance of
these models for each day and time were not provided.

In [12], ML approaches including ANN, Multiple Linear Regression (MLR), Adap-
tive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Regression (SVR) were
employed to forecast week and year-ahead electricity demand in Cyprus. The inputs
for the models were time, environmental data such as temperature, humidity and solar
irradiation and socio-economic data such as population, gross national income per capita
and electricity price. The results showed that the ANN and the SVR models performed
significantly better than the other two for both short-term and long-term forecasts, with
the MAPE around 2% in the first scenario and 5% in the second.

In [20], a hybrid model that combined ARIMA with SVM was applied to forecast
hourly load demand. This work used historical data from a state in the south of India to
estimate the ARIMA parameters and generate initial load forecasts. Then, the outliers of the
initial predictions were detected by means of the percentage error method and corrected
using the deviation method. The forecast errors data of the corrected ARIMA model output
and the other two variables, namely day and average temperature of the week, were given
as inputs for the SVM model to estimate the initial forecast error. Finally, the initial forecasts
and the expected errors were added to obtain the final load prediction. The authors found
that the proposed ARIMA–SVM model was able to outperform single ARIMA and SVM
models in terms of MAPE (4.15% versus 5.16% and 4.97%, respectively). Furthermore, the
performance of the proposed model without the outlier detection approach was worse
(6.23% versus 4.15%). In [21], SVM was proposed for fault prediction of specific loads.

Another hybrid model was proposed in [22], which combined an SVR model and
a two-step parameter optimization algorithm using the Grid Traverse Algorithm (GTA)
and Particle Swarm Optimization (PSO) to forecast the load demand in several short-term
scales (from 5 min to 16 h ahead). The tested data were comprised of 80 days of load
from a distribution feeder. In the first moment, these data were pre-processed to eliminate
excessively deviating samples using a mapping algorithm. Then, a GTA designed with
cross-validation was used to narrow the SVR parameters’ search area. After, the PSO
searched for the best parameters of the SVR model in the GTA solution space also using
cross-validation.

In [23], three ensemble learning algorithms, namely Random Forest (RF), Gradient
Boosted Regression Tree (GBRT) and Adaboost (AR2), were employed to forecast one-hour-
ahead electricity load. Ensemble models are those that combine several models, which are
trained separately in order to reduce the generalization error [15]. The main advantage of
this type of model is that, on average, they perform at least as well as any of its members
and, if the errors of its members are independent, they will perform significantly better.
In this work [23], historical electricity demand from an office building was collected at
every 10 s and averaged to a one-hour basis. Different training strategies merging various
features such as historical, time index and environmental data were tested to forecast every
hour of a single day. The authors found that using the time index data with the most
recent temperature measurements and a few past load observations provided the best
forecasts in general. The results of this work were compared to the ones in [24], which
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generated forecasts for the same building using SVM and three fuzzy rule-based models.
It was observed that the AR2 model outperformed the SVM model in terms of MAPE
(5.34% vs. 5.82%). Moreover, the other two ensemble models performed better than the
fuzzy rule-based models.

In [25], a short-term load forecasting model based on error correction using dynamic
mode decomposition (DMD) was proposed. Using two years of electricity demand data
from a city in China, the authors built several load forecasting models including ANN, SVR
and ARIMA. They used historical data, namely previous day, same day in the previous
week and similar day loads, as inputs. The latter was obtained by grey relational analysis,
which is a method that aims to find highly correlated data. With the errors achieved by these
models, the DMD was applied to forecast the errors. The DMD is a data-driven method
that can extract complex spatiotemporal features from data. Extensive experiments on
small and large geographical scales were conducted to evaluate the proposed methodology.
Nearly in all cases, combining the DMD for the error correction with the load forecasting
model resulted in better results. Additionally, different decomposition techniques including
Wavelet Transform were tested and generally had a worse performance. Finally, it was
possible to notice a smaller prediction accuracy for the small area forecasts, which was
probably caused by its higher load variability. In Table 1, a summary of previous works
can be seen.

Table 1. Summary of previous works.

Reference Year Forecasting
Model

Dataset
Size Sample Rate Input Data Forecast

Horizon Metrics

[12] 2020 ANN, MLR,
ANFIS, SVR 2 years 15 min

Time index,
socio-economic,
environmental

1 year,
1 week MAPE, RMSE

[14] 2021 CNN, GRU,
LSTM

7 and
11 years 1 h Historical,

environmental 1 h MAPE, MAE,
RMSE

[16] 2019 ANN 2 years 1 h Historical,
environmental 24 h MAPE, Variance

[18] 2016 AWNN 2 years 5 and 60 min Historical 5 and 60 min MAPE, MAE

[19] 2021 LSTM 14 months 15 min Historical, time
index 15 min MAPE, MAE,

RMSE

[20] 2017 ARIMA,
SVM 2 years 1 h

Historical, time
index,

environmental
24 h MAPE

[22] 2018 SVR 80 days 1 s Historical
From

minutes to
hours

MAPE

[23] 2020 RF, GBRT,
AR2 10 days 1 h

Historical, time
index,

environmental
1 h MAPE

[24] 2018 SVM 11 weeks 10 s Historical, building,
environmental 24 h MAPE

[25] 2020 DMD 2 years 15 min, 1 h
Historical, time

index,
environmental

24 h
MAPE, MAE,

RMSE, Variance,
Direction Accuracy

Several works have been published in the field of consumption forecasts. Nevertheless,
most of the methods are very simple and not accurate and others are very complex and
not useful in many applications where computational resources or time are limited. The
present paper has the following main contributions:
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- Propose a consumption forecast method assuring a balance between the accuracy and
the computational effort/costs;

- Propose a new methodology comprising the forecast of consumption based on his-
torical data and the forecast of the error of the initial forecast. Combining the two
forecasts, we can improve the accuracy of the final results.

2. Proposed Methodology

In the present work, the FFNN was selected to develop the proposed methodology.
The term neural network comes from the fact that these models were inspired by biological
brains in the sense of how they process information. A neural network model is typically
composed of nodes (or neurons) that are distributed across different layers, namely input,
hidden and output layers. Each node in a layer is linked to the ones in the next by means of
a weight parameter that measures the strength of that connection, forming a fully connected
network structure that resembles the nervous system. In Figure 1, a general neural network
is illustrated.
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The operating principle of neural networks can be described as a sequence of func-
tional transformations [17]. For a given layer l ∈ {1, . . . , L}, where L is the number of

layers, quantity, called the activation value A[l] =
(

a[l]1 , . . . , a[l]j

)T
, can be calculated as a

linear combination of inputs X[l−1] =
(

x[l−1]
1 , . . . , x[l−1]

i

)
and weights W [l] in the form

A[l] = W [l]x[l−1] + b[l] (1)
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where

W [l] =


ω
[l]
1,1 ω

[l]
1,2 · · · ω

[l]
1,j

ω
[l]
2,1 ω

[l]
2,2 · · · ω

[l]
2,j

...
...

. . .
...

ω
[l]
i,1 ω

[l]
i,2 · · · ω

[l]
i,j

 (2)

and b[l] =
(

b[l]1 , . . . , b[l]j

)T
is a parameter known as bias, which is used to adjust the output.

The subscripts i and j represent the number of nodes or dimension of layers l − 1 and l,
respectively.

Then, the activation value A[l] is transformed by a nonlinear, differentiable function
h[l](.) that is named activation function as in Equation (3), resulting in the next layer input
vector X[l]. For hidden layers, the activation function is a hyperbolic tangent function
(tanh) or a rectified linear unit (ReLU), while for the output layer it is the identity function.

X[l] = h[l](A[l]) (3)

Equations (1) and (3) present recursive calculations that constitute a process known as
forward propagation [17]. This name comes from the fact that the information is flowing
forward through the network, and this is the reason why this type of model is called FFNN.
There are some particularities about these equations that should be mentioned: the first
input vector X[0] comes from the features selected from the dataset, while the remaining are
the result of the calculations. Additionally, the final result, observed in X[L], is the output
of the model.

The parameter optimization is performed with gradient descent-based calculations
(Equation (4)). With this approach, the required partial derivatives are related to the two
parameters of an FFNN model: the weights and biases. Appling Equation (4) to the last
layer of this model results in Equations (5) and (6).

p[i+1] = p[i] − η5 E(p) (4)

where p represents the model parameters, η is the learning rate (LR) and E(p) is the loss
function in Equation (5), which is the Mean Squared Error (MSE), also called Euclidean
or L2 norm. In Equation (5), xi is the forecasted value, ti is the target value and n is the
number of points in the dataset. The search for the loss function minimum is commonly
performed by computing its gradient (5E(p)), which is the vector containing the partial
derivatives of E(p) [15]. The partial derivative ∂

∂p E(p) indicates how the function changes
with a small change in one of the parameters. Therefore, the gradient vector points to
the direction of the steepest increase in the function. As the learning algorithm goal is to
minimize the error, with this approach the parameters can be updated at each iteration i by
going in the opposite direction.

E(p) = MSE =
1
n

n

∑
i=1

( f (xi, p)− ti)
2 (5)

W [L]
[i+1] = W [L]

[i] − η
∂E

∂W [L]
(6)

b[L]
[i+1] = b[L]

[i] − η
∂E

∂b[L]
(7)

Using the chain rule, one can write these partial derivatives as Equations (8) and (9):

∂E
∂W [L]

=
∂E

∂X[L]
◦ ∂X[L]

∂A[L]
· ∂A[L]

∂W [L]
(8)
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∂E
∂b[L]

=
∂E

∂X[L]
◦ ∂X[L]

∂A[L]
· ∂A[L]

∂b[L]

T

(9)

where the dot (.) symbol stands for matrix multiplication and the circle (◦) symbol for the
Hadamard or element-wise product. At this stage, it is useful to introduce the following no-
tation:

δ[L] =
∂E

∂X[L]
◦ ∂X[L]

∂A[L]
(10)

where δ[L] is a value known as delta and represents the error that the layer L−1 sees.
Moving on to the layer L−1, the calculations are as in Equations (11)–(13).

∂E
∂W [L−1]

=
∂A[L]

∂X[L−1]

T

·
(

∂E
∂X[L]

◦ ∂X[L]

∂A[L]

)
◦ ∂X[L−1]

∂A[L−1]
· ∂A[L−1]

∂W [L−1]

T

(11)

∂E
∂b[L−1]

=
∂A[L]

∂X[L−1]

T

·
(

∂E
∂X[L]

◦ ∂X[L]

∂A[L]

)
◦ ∂X[L−1]

∂A[L−1]
· ∂A[L−1]

∂b[L−1]

T

(12)

δ[L−1] =
∂A[L]

∂X[L−1]

T

· δ[L] ◦ ∂X[L−1]

∂A[L−1]
(13)

From layer L−1 to the first layer, it is possible to write the next deltas as Equation (14):

δ[l] =
∂A[l+1]

∂X[l]

T

· δ[l+1] ◦ ∂X[l]

∂A[l]
(14)

and, therefore, the partial derivatives can be obtained as Equations (15) and (16):

∂E
∂W [l]

= δ[l] · ∂A[l]

∂W [l]

T

(15)

∂E
∂b[l]

= δ[l] · ∂A[l]

∂b[l]

T

(16)

Finally, the parameter updates can be performed using Equations (15) and (16) with
Equations (6) and (7), respectively. The process presented above constitutes the backprop-
agation learning algorithm. With this approach, the algorithm goes through each layer
in reverse, measuring the error contribution from each connection by means of the deltas
and updating the parameters accordingly [26]. By computing the gradient in reverse, the
backpropagation algorithm avoids unnecessary calculations as it reuses previous ones.
This is the major reason for this method’s higher computational effectiveness when com-
pared to numerical methods such as finite differences [17] and one of the cornerstones to
FFNN’s popularity.

To improve the accuracy of the forecast methodology proposed in the present work,
the FFNN algorithm is executed two times. First, electric load measurements are used as
input for FFNN to obtain the first iteration of the load forecast. Afterwards, comparing
the obtained values with the measured values, it is possible to compute the errors of the
method. These errors are used as inputs for a second FFNN predictor. Finally, the errors
forecasts are merged with the initial loads forecasts to obtain the global loads forecasts.
This process is illustrated in Figure 2.
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3. Case Study
3.1. Database and Preliminary Analysis

The collected data refer to the measured load demand in an industrial area connected
to the medium voltage grid and were sampled every 10 min. Furthermore, they came in a
.csv format, which could be directly used by the Python scripts that were developed later.
The retrieved period ranges from 1 October 2016 to 31 March 2017 in a total of 26,208 sam-
ples. In Figures 3 and 4, an overview of the power load measurements is presented.
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Figure 4. Electrical load measurements (detail).

A preliminary analysis of the electrical load data was carried out in order to find
relevant information that could be used to prepare the models. At first, from Figure 3, it
is noticeable that the retrieved data had some noisy samples close to 30 October 2016 as
the load pattern drastically changes. These points were removed after the application of
a statistical test that will be detailed in the next section. Additionally, it appears that the
load demand has a growth trend in this period. Moreover, from Figure 4, it is possible to
observe that the load behavior is cyclical throughout the days and that several peaks take
place around 02:00, 12:00 and 23:00. In Figures 5 and 6, this pattern also seems to change
depending on the weekday, with lower power demand on weekends, and on the month,
increasing significantly from October to January and decreasing in February.

Figure 7 shows the autocorrelation function (ACF) plot for the electrical load data. This
graph is frequently used to analyze time series and shows the correlation between the time
series and past observations (lags). The autocorrelation coefficient ranges from −1 to 1 and
measures how strong the relationship between two variables is, with 1 indicating a strong
positive relationship, −1 strong negative relationship and 0 meaning no relationship. The
values above the blue area of the graph are those that are statistically significant (p > 95%).

Therefore, in this case, the plot suggests that the previous power demand is strongly
related to the current one for lags up to 7 days (1008 periods). The ACF also shows that
there is a descending trend of the autocorrelation coefficient as time progresses and that
spikes occur at the end of each day period (lags 144, 288, etc.).

Energies 2021, 14, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 5. Electrical load: daily average. 

 
Figure 6. Electrical load monthly average. 

 
Figure 7. Electrical load database autocorrelation. 

Figure 5. Electrical load: daily average.



Energies 2021, 14, 7644 11 of 24

Energies 2021, 14, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 5. Electrical load: daily average. 

 
Figure 6. Electrical load monthly average. 

 
Figure 7. Electrical load database autocorrelation. 

Figure 6. Electrical load monthly average.

Energies 2021, 14, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 5. Electrical load: daily average. 

 
Figure 6. Electrical load monthly average. 

 
Figure 7. Electrical load database autocorrelation. Figure 7. Electrical load database autocorrelation.

3.2. Load Foreast Model Parameterization

The methodology described in Section 4 was implemented in Python’s TensorFlow
library, together with scikit-learn, numpy and others. Three different forecast horizons,
10 min ahead, 1 h ahead and 12 h ahead, were tested. For each horizon, six different input
combinations were evaluated. They were divided into two categories, one considering
only the previous recorded loads and the other also including the sine and cosine transfor-
mations of time. The choice of these inputs was based on the preliminary analysis already
described and did not include other possible explanatory variables such as the weekday
or month to keep the models simpler and to verify if the selected inputs would be able to
reach good results. Therefore, the configurations were:

(a) Inputs without time:

1. Loads at the previous six (6) periods;
2. Loads at the previous three (3) periods and three (3) days at the time of the

forecast;
3. Loads at the previous three (3) periods, three (3) days and three (3) weeks at the

time of the forecast;
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(b) Inputs with time:

1. Loads at the previous six (6) periods and time of the forecast (transformed into
sine and cosine);

2. Loads at the previous three (3) periods, three (3) days at the time of the forecast
and time of the forecast (transformed into sine and cosine);

3. Loads at the previous three (3) periods, three (3) days and three (3) weeks at the
time of the forecast and time of the forecast (transformed into sine and cosine).

In the first moment, 20% of the data were separated (≈5000 samples) to be tested by
the initial electrical load model, while the other 80% were used as the training set. In order
to have more reliable results, the models were trained with three-fold cross validation.
Before feeding the data into the models, the Z-score, also called standard score, of each
sample in the training set was calculated as in Equation (17), and those that were more
than 3 times the standard deviation away from the set mean were removed (Zscore > 3).

Zscore =
x− µ

σ
(17)

In Equation (17), x is the sample value, µ stands for the set mean and σ represents its
standard deviation. Later, the training data were scaled to be between 0 and 1. Data scaling
is a common pre-processing technique that can improve the model learning process. After
the training, the models were ranked based on the average of the validation set root mean
squared error (RMSE) over the three folds. Additionally, the MAE was another metric used
to evaluate the performances.

To find the best parameters for the FFNN, a grid search was performed. In an initial
search, the number of nodes varied from 12 to 48 in steps of 12 with the hyperbolic tangent
or rectified linear unit activation function (Equations (18) and (19)).

tanh(x) =
ex − e−x

ex + e−x (18)

f (x) = max(0, x) (19)

This resulted in a total of eight models per input configuration that are presented
in Table 2. At this stage, some parameters were kept constant, such as the number of
layers (3), the LR (0.01), the number of maximum epochs (1500) and batch size (144). The
chosen optimizer was the Adam algorithm, which is a stochastic gradient descent method
based on adaptive estimation of the first and second-order moments [27]. Additionally,
to avoid overfitting, they were programmed to stop the training if the validation MSE
did not decrease between five consecutive epochs, an approach known as early stopping.
After this step, the model with the best overall performance for each time horizon was
further explored by changing the LR to 0.005 and 0.001. Finally, the best configuration had
its results compared to those of the persistence model in the 10-min horizon and linear
regression of the same inputs in the 1-h and 12-h horizons by making predictions on a
previously unseen test set.

Table 2. Electrical load models.

Model Nodes in the Hidden Layer Activation Function

1 12 ReLU
2 24 ReLU
3 36 ReLU
4 48 ReLU
5 12 tanh
6 24 tanh
7 36 tanh
8 48 tanh
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3.3. Load Forecast—Results of First Forecast Step

The initial load forecasts for each time horizon are presented in this section. The tables
in this subsection present only the results of the best model for each horizon in order to
make the text more fluid.

3.3.1. Ten-Minute Horizon

The results obtained for the initial forecast (Step 1) with the best 10-min-ahead model
are presented in Table 3. The best configuration in this scenario had the previous three
periods and days as inputs. Configuration I, which was the original one with an LR of
0.01, achieved almost the same results of configuration II with a lower execution time (ET).
This probably happened due to the higher LR. On the other hand, model III appeared to
learn at a much slower pace and did not reach the same results. When compared to the
persistence model, the RMSE and the MAE of the best proposed model were 10.6% and
23.8% higher. These findings are somehow understandable as making predictions for such
a short time in the future can be easier by assuming that the next value will be the same as
the one observed now. Indeed, the proposed ANN converged to a solution that generated
forecasts similar to those of the persistence model (Figure 8). However, giving inputs other
than the previous recorded value to the model seemed to hinder its predictions.

Table 3. Results of the 10-min-ahead initial and baseline models.

Model LR RMSE
(kW)

MAE
(kW)

Test RMSE
(kW)

Test MAE
(kW)

Test
MAPE (%) ET (s)

I 0.01 223.00 159.34 234.24 177.66 3.61 354.13
III 0.005 223.62 160.90 - - 524.84
III 0.001 247.98 179.50 - - 548.39

Baseline - - - 211.72 143.53 2.84 -Energies 2021, 14, x FOR PEER REVIEW 15 of 26 
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3.3.2. One-Hour Horizon

The results of the best 1-h-ahead model are shown in Table 4. Here, the best configura-
tion also took the previous three periods and days as inputs; however, the arrangement
with time performed better. Similarly to the previous case, the model with the original LR
had better results than the other two but with similar execution times, which suggests that
the higher LR enabled the model to be closer to a loss curve minimum at the end of the
training. Furthermore, it achieved superior performance than the linear regression model
in the order of 10.7% over the RMSE and of 11.3% over the MAE. In Figure 9, the forecasts
made with the ANN can be seen. It shows that the model was able to make accurate
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predictions but missed some of the load spikes and had a slightly smoother behavior when
compared to the actual values.

Table 4. Results of the 1-h-ahead initial and baseline models.

Model LR RMSE
(kW)

MAE
(kW)

Test RMSE
(kW)

Test MAE
(kW)

Test
MAPE (%) ET (s)

I 0.01 339.43 261.33 376.25 303.76 6.41 513.99
II 0.005 357.58 276.05 - - 546.20
III 0.001 1037.59 736.56 - - 515.76

Baseline - - - 421.48 342.30 6.96 -
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3.3.3. Twelve-Hour Horizon

Figure 10 presents the results of the best 12-h-ahead model. The best configuration
was the same as the 10-min horizon with only the previous three periods and days as inputs.
Here, decreasing the LR to 0.005 enhanced the forecasts when compared to the other two
configurations. The lower execution time combined with the worse performance of the
original configuration suggests that an LR of 0.01 was too high and the training stagnated
and stopped at some point, while for model III it was too low and did not allow the results
to improve sufficiently. In comparison to the linear regression model, the performance
of the best proposed model was 12.6% and 13.5% superior in terms of the RMSE and the
MAE (Table 5). Figure 10 shows results that were similar to the previous case. Yet, the
predictions seemed more inaccurate, with more substantial errors.

Table 5. Results of the 12-h-ahead initial and baseline models.

Model LR RMSE
(kW)

MAE
(kW)

Test RMSE
(kW)

Test MAE
(kW)

Test
MAPE (%) ET (s)

I 0.01 548.03 432.91 - - 184.89
II 0.005 543.55 431.31 501.46 399.92 8.36 531.64
III 0.001 547.33 520.63 - - 507.03

Baseline - - - 573.76 462.44 9.67 -
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3.3.4. Summary of Forecast Results in Step 1

An interesting observation that was valid for all the models is that often those with
lower execution times had the worst performances, which can suggest that they were stuck
in a local minima and were not able to progress with the chosen LR. Additionally, it seemed
that the differences of the number of nodes in the hidden layer and the activation function
from one model to another did not impact the execution times.

Finally, Table 6 summarizes the results of the proposed initial models for the three
forecast horizons. These results showed that the forecast accuracy decreased as the forecast
horizon increased and indicated the greater degree of difficulty to make longer forecasts
due to the higher uncertainty of the data, justifying the use of more complex models.
Furthermore, for very short-term forecasts, simple methods such as the persistence model
can provide relatively good estimates with low computational resources.

Table 6. Summary of the adjusted models for the three horizons.

Horizon RMSE (kW) MAE (kW) MAPE (%)

10-min 234.24 177.66 3.61
1-h 376.25 303.76 6.41
12-h 501.46 399.92 8.36

3.4. Load Forecast—Error Forecast (Step 2)

Considering the results of the first step of the forecast model, the errors will be
analyzed. Figures 11–13 show the error distributions for the three forecast horizons. It
is possible to notice that the error distribution is similar to the Gaussian distribution,
especially for the 1-h and 12-h forecasts. Moreover, the figures also present the mean and
standard deviation of these errors. The fact that the means are not centered at zero suggests
that there is still some error bias and that more information could be retrieved from the
data. Additionally, the standard deviation increases for longer forecast horizons which,
again, can indicate the higher degree of uncertainty on long-term predictions.
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Figures 14–16 show the ACF plot for the three horizons. As explained in Section 3.1,
this graph reveals the strength of the relationship between a time series and its previous
values and it was used to construct the error forecasting models. One can verify that the
autocorrelation coefficients rapidly decreased and showed an oscillating behavior with
more significant spikes at the end of each day (lags 144, 288, 432 and 576). Therefore,
configurations combining these lags and the most recent values were tested to forecast the
initial models’ errors.
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The error forecasts are presented below separately for each time horizon. The tables
in this subsection show only the results of the best model for each horizon in order to make
the text more fluid.

3.4.1. Ten-Minute Horizon

Table 7 shows the results of the best 10-min-ahead error forecasting model. In this
scenario, all the models had similar results in terms of error metrics. The major difference
was regarding the training time, which was higher for smaller LRs. The most probable
reason for these facts is that the three models were able to find the same loss function
minimum, but those with smaller LRs had smaller weight updates and, therefore, took
longer. Figure 17 shows the error predictions made with model II. One can notice that
the predictions were very accurate, especially on the error spikes. After this step, it was
expected that the error correction model would improve the initial results.

Table 7. Results of the 10-min-ahead error forecasting models.

Model LR RMSE
(kW) MAE (kW) Test RMSE

(kW)
Test MAE

(kW) ET (s)

I 0.005 170.14 118.07 - - 23.57
II 0.0025 169.97 118.26 103.69 78.01 50.90
III 0.001 172.17 119.87 - - 96.70
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3.4.2. One-Hour Horizon

In Table 8, the results of the 1-h-ahead error forecasting models and the results of the
best 1-h-ahead error forecasting model can be seen. The remarks made for the 10-min-
ahead error forecasting model are also valid for this case. In Figure 18, the forecasts made
with model II are illustrated. Here, the model was not as accurate as in the previous case to
predict spikes and trends.

Table 8. Results of the 1-h-ahead error forecasting models.

Model LR RMSE
(kW) MAE (kW) Test RMSE

(kW)
Test MAE

(kW) ET (s)

I 0.005 284.81 230.45 - - 16.66
II 0.0025 284.43 230.86 236.54 186.57 37.54
III 0.001 284.71 230.93 - - 78.75



Energies 2021, 14, 7644 19 of 24
Energies 2021, 14, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 18. One-hour-ahead error forecasts. 

3.4.3. Twelve-hour Horizon 
Table 9 presents the results of the best 12-h-ahead error forecasting model. In 

comparison to the other two scenarios, here there is a significant difference in the training 
time of the models. Although the results were similar, model III (with the smaller LR) was 
able to perform slightly better than the other two with a considerably higher execution 
time. This was probably because the smaller LR enabled the model to continue improving 
despite the closeness to a loss function minimum, while the other two stagnated and 
stopped training. Figure 19 shows that, as in the 1-h horizon, the model underestimated 
some spikes and, also, presented smoother behavior when compared to the true error. 

Table 9. Results of the 12-h-ahead error forecasting models. 

Model LR RMSE (kW) MAE (kW) Test RMSE (kW) Test MAE (kW) ET (s) 
I 0.005 406.92 334.34 - - 6.83 
II 0.0025 407.37 334.82 - - 9.54 
III 0.001 405.60 332.62 34.053 257.43 56.57 

 
Figure 19. Twelve-hours-ahead error forecasts. 

3.4.4. Summary of Errors Forecast Results in Step 2 
Unlike the initial models (Step 1), here all the models in each forecast horizon 

presented similar performances regarding error metrics and execution times. In every 
case, the best model was the one that combined both the previous four periods and days 
as inputs. Lastly, Table 10 summarizes the results of the proposed error models for the 
three forecast horizons. Again, the forecast accuracy decreased as the forecast horizon 
increased, which emphasizes the greater degree of difficulty to make longer forecasts due 

Figure 18. One-hour-ahead error forecasts.

3.4.3. Twelve-Hour Horizon

Table 9 presents the results of the best 12-h-ahead error forecasting model. In compari-
son to the other two scenarios, here there is a significant difference in the training time of
the models. Although the results were similar, model III (with the smaller LR) was able to
perform slightly better than the other two with a considerably higher execution time. This
was probably because the smaller LR enabled the model to continue improving despite the
closeness to a loss function minimum, while the other two stagnated and stopped training.
Figure 19 shows that, as in the 1-h horizon, the model underestimated some spikes and,
also, presented smoother behavior when compared to the true error.

Table 9. Results of the 12-h-ahead error forecasting models.

Model LR RMSE
(kW) MAE (kW) Test RMSE

(kW)
Test MAE

(kW) ET (s)

I 0.005 406.92 334.34 - - 6.83
II 0.0025 407.37 334.82 - - 9.54
III 0.001 405.60 332.62 34.053 257.43 56.57 
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3.4.4. Summary of Errors Forecast Results in Step 2

Unlike the initial models (Step 1), here all the models in each forecast horizon presented
similar performances regarding error metrics and execution times. In every case, the best
model was the one that combined both the previous four periods and days as inputs.
Lastly, Table 10 summarizes the results of the proposed error models for the three forecast
horizons. Again, the forecast accuracy decreased as the forecast horizon increased, which
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emphasizes the greater degree of difficulty to make longer forecasts due to the higher
uncertainty of the data. Furthermore, one can notice that both the RMSE and MAE were
lower than the ones achieved with the initial models, which can possibly indicate that these
models were more accurate than the initial models.

Table 10. Summary of the adjusted models for the three horizons.

Horizon RMSE (kW) MAE (kW)

10-min 103.69 78.01
1-h 236.54 186.57

12-h 343.05 257.43

3.5. Load Forecast—Final Forecast (Step 3)

The adjusted forecast results, considering the initial load forecast (Step 1) and the
errors forecast (Step 2), are presented below separately for each time horizon. As explained
in Section 4, the adjusted model was obtained by adding the forecasted error to the initial
prediction and had its results compared to those of the baseline models considering only
the error test set.

3.5.1. Ten-Minute Horizon

Table 11 shows a comparison between the results obtained with the initial, adjusted
and baseline forecasting models for the 10-min-ahead scenario. It can be noticed that
the initial model performed worse than the persistence model and that, by means of the
proposed methodology, it was able to outperform it. The improvements of the adjusted
forecasts over the baseline were of 38.2% on the RMSE and 29.1% on the MAE. These
results are illustrated in Figure 20, which shows that the proposed methodology apparently
allowed the correction of the ”persistence” (Baseline) behavior previously presented by the
initial model and achieved more accurate forecasts.

Table 11. Results of the 10-min-ahead forecasts.

Steps RMSE (kW) MAE (kW) MAPE (%)

Initial 200.83 152.96 3.44
Adjusted 103.69 78.01 1.75
Baseline 167.77 110.00 2.40
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3.5.2. One-Hour Horizon

In Table 12, a comparison between the results obtained with the initial, adjusted and
baseline forecasting models for the 1-h-ahead scenario can be seen. Originally, the initial
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model had a performance only slightly superior to the one of the linear regression model.
With the proposed methodology, the initial results were improved by 32.1% on the RMSE
and 36.2% on the MAE. In Figure 21, it is possible to notice that the model correctly adjusted
the initial forecasts between timesteps 0 and 50 and close to timestep 150, while it did not
change the accurate predictions of some load spikes.

Table 12. Results of the 1-h-ahead forecasts.

Steps RMSE (kW) MAE (kW) MAPE (%)

Initial 352.95 295.43 6.95
Adjusted 239.34 188.49 4.30
Baseline 391.58 307.11 6.87
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3.5.3. Twelve-Hour Horizon

Table 13 presents a comparison between the results obtained with the initial, adjusted
and baseline forecasting models for the 12-h-ahead scenario. Like in the previous case, the
proposed methodology was able to enhance the initial forecasts, which were only slightly
better than that of the linear regression model. Here, the improvements over the initial
model were of 22.5% on the RMSE and 29.0% on the MAE. Figure 22 shows the results of
the initial and adjusted forecasts. It can be seen that, again, the proposed methodology
properly corrected the forecasts close to the timesteps 50 and 150, while it did not affect the
initial predictions on the load spikes.

Table 13. Results of the 12-h-ahead forecasts.

Steps RMSE (kW) MAE (kW) MAPE (%)

Initial 442.55 362.55 8.35
Adjusted 343.05 257.43 5.79
Baseline 480.68 381.89 9.00
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3.5.4. Summary of Load Forecast Results in Step 3

Finally, Table 14 summarizes the results of the proposed methodology for the three
forecast horizons. Like in the initial and error predictions, the forecast accuracy decreased
as the forecast horizon increased, which reinforces the greater degree of difficulty to make
longer forecasts due to the higher uncertainty of the data.

Table 14. Summary of the adjusted models for the three horizons.

Horizon RMSE (kW) MAE (kW)

10-min 103.69 78.01
1-h 239.34 188.49

12-h 343.05 257.43

4. Conclusions

The proposed methodology utilized an FFNN for both initial and error forecasts as
the error time series often contains useful information that can be used to improve initial
estimations. After a careful state-of-the-art review and an extensive data preliminary
analysis, the models were created. A search for the best model inputs and parameter
configurations was also conducted.

With regard to the electrical load demand forecasts, the data referred to the measured
load demand in an industrial area connected to the medium voltage grid and were sampled
every 10 min. The forecasts were made for three time horizons: 10 min, 1 h and 12 h
ahead. The results demonstrated that the proposed initial models outperformed the linear
regression model for the last two horizons, while, for the first, the results were worse than
those achieved with a simple persistence model. By comparing the results for the three time
scales, it was verified that the forecast accuracy decreased for longer time horizons, which
highlights the higher difficulty to make longer forecasts due to the higher uncertainty of
the data. Additionally, for very short time scales, the findings suggest that a simpler model
can provide better estimates.

The initial electrical load demand forecasting errors analysis showed that the model
might not have extracted all the information from the input data as the error distribution
was not centered at zero and there was a correlation between a given error and the previous
ones. Indeed, the error forecasting models achieved good forecasting accuracy, with a
lower RMSE and MAE than the initial models. Furthermore, by combining the predicted
error with the initial forecasts, it was possible to improve the initial results significantly for
all time scales. Especially for the 10-min-ahead forecasts, the application of the proposed
methodology resulted in a more accurate model than the persistence model.
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The proposed methodology, including two forecast steps, based on historical data and
errors, achieved accurate results in all time horizons when compared with the baseline
method. This is a good indicator of the applicability of the method in real scenarios when
short-term forecasts are required. To prove the effectiveness of the method, application in
larger datasets considering consumers with different profiles will be tested. Depending on
the type of consumers, residential, industrial or service buildings, some adjustments can be
included in the method, namely the use of more hidden layers in the FFNN. These hidden
layers can increase the complexity of the method as well as the execution time. A balance
between the effectiveness and efficiency of the method should be identified according to
the specific applications.
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