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Abstract: In this paper, the problem of frequency regulation in the multi-area power systems with
demand response, energy storage system (ESS) and renewable energy generators is studied. Dis-
similarly to most studies in this field, the dynamics of all units in all areas are considered to be
unknown. Furthermore time-varying solar radiation, wind speed dynamics, multiple load changes,
demand response (DR), and ESS are considered. A novel dynamic fractional-order model based
on restricted Boltzmann machine (RBM) and deep learning contrastive divergence (CD) algorithm
is presented for online identification. The controller is designed by the dynamic estimated model,
error feedback controller and interval type-3 fuzzy logic compensator (IT3-FLC). The gains of error
feedback controller and tuning rules of the estimated dynamic model are extracted through the
fractional-order stability analysis by the linear matrix inequality (LMI) approach. The superiority of
a schemed controller in contrast to the type-1 and type-2 FLCs is demonstrated in various conditions,
such as time-varying wind speed, solar radiation, multiple load changes, and perturbed dynamics.

Keywords: type-3 fuzzy systems; restricted Boltzmann machine; control systems; frequency regula-
tion; linear matrix inequality

1. Introduction

By developing the renewable energy systems, the problem of the load frequency
control (LFC) in power systems has become one of the interesting topics. Because the
changes in solar radiation, time-varying wind speed, and variation of load power are the
natural perturbation in these systems. The main controllers that frequently have been
used are classified into 3 cases: simple PID controllers, fuzzy based PID controllers, and
fractional-order PID controllers. The robust controllers with guaranteed stability are seldom
investigated in literature [1–5].

In the first case, the conventional PID controller and lag-lead compensators are used.
The main difference between studies is the type of optimization algorithm. For instance,
in [6], the imperialist competitive optimization technique is proposed to adjust the coeffi-
cients of PID control system and its regulation function is compared by the PI controller
optimized with genetic algorithm. In [7], the optimized PID controller by a chaotic op-
timization method is proposed and its effectiveness is shown by applying on two areas
power system. In [8], the capability of the genetic algorithm is examined on the PID
frequency regulation problem. In [9], the grey wolf optimization method is developed
for designing a PID control scheme for LFC. In [10], honey bee mating method is utilized
for obtaining the optimized gains for PID and its regulation proficiency is investigated.
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The PID controller tuned by bacterial foraging method is designed in [11] for two areas
system and its efficiency is studied in contrast to the conventional PID and optimized PID
by genetic algorithm. In [12], the PID controller is tuned on basis of grey wolf method and
it is shown that the regulation performance is progressed in term of peak overshoot.

In the second case, the fuzzy PID (FPID) controllers have been developed for LFC. The
fuzzy systems are one of the best approach to deal with the uncertainties [13–15]. In this
case, commonly the type-1 fuzzy logic systems (T1-FLSs) are employed to extract the gains
of the PID control scheme and various optimization techniques specially evolutionary based
algorithms are used for optimization of the parameters of FLSs. For example, in [16], a FPID
is designed and the big bang–big crunch algorithm is proposed for optimization. In [17],
the fuzzy PI controller is generated using the bat algorithm for LFC, and its superiority
is evaluated in comparison to other similar controllers, such as conventional PID. In [18],
the teaching–learning optimization algorithm is studied for designing the FPID controller
for LFC and it is verified that the regulation performance is improved in contrast to the
other optimized PID controllers. In [19], the cuckoo and harmony search algorithms are
suggested for designing the FPID controller for LFC. In [20], the multi-verse algorithm
is proposed for optimization of the FPID and its proficiency is evaluated by applying on
two-area power system. The differential evolution tuning technique is developed in [21]
for optimizing the FPID controller. In [22], the robustness of the FPID controller is studied
on two areas of the photovoltaic–thermal system. In [23], the sine–cosine algorithm is
used for designing FPID. In [24], the effectiveness of grey wolf algorithm is studied in
comparison with the bee colony method in the designing of FPID controller for LFC. In [25],
the improvement of frequency regulation of FPID controller based on the moth swarm
optimization approach is studied by providing an real-time examination.

For the third case, recently the fractional-order (FO) PID (FO-PID) control technique
and FO fuzzy logic controllers (FLCs) are also developed for LFC [26,27]. For example,
in [28], the FO-PID controller is designed on the basis of a symbiotic organisms technique
and is applied for frequency control in a microgrid. In [29], similarly to the previously
reviewed studies, the FO-PID controller is optimized by multi-verse method and its superi-
ority is authenticated by several simulations. In [30], the frequency regulation performance
of the traditional PID is improved employing fractional-order calculus and moth flame
tuning method. In [31], the effectiveness of the FO control scheme is examined by applying
on single and two areas system. In [32], the FO-PID controller is improved by Salp swarm
optimization algorithm and time-delay effect is analyzed. In [33], the impact of some
time-varying factors in the dynamics of a two areas power system is taken into account
and a FO-PID is designed and it is authenticated that FO-PID is more effective.

In most of the above reviewed studies, the closed-loop stability is not investigated and
also the control system is presented for a special power system with restricted objects and
areas. Furthermore, the evolutionary based optimization algorithms are utilized to adjust
the control parameters that impose a high computational cost beside of lack of stability
guarantee. Additionally, the effect of natural disturbances, such as simultaneous changes of
the wind speed, solar radiation, and load perturbation, are rarely studied. The robustness of
the controller are quite seldom studied. For example in [34], the event triggered controller
is combined with the H∞ criteria to ensure the robustness of the frequency regulator.
Considering the aforementioned literature review and investigation, in this study a novel
intelligent frequency regulator is suggested for multi-areas power system. Dissimilarly
to the reviewed studies, the system model is online identified by the suggested dynamic
fractional-order RBM. A new compensator is designed by the IT3-FLS to tackle the effect of
the approximation error and other perturbations. The closed-loop stability is analysed by
LMI approach. The main contributions of this study are:

• The dynamics of all units in all areas are considered to be unknown;
• In addition to unknown dynamics, the effects of time-varying parameters, solar

radiation, wind speed, and multiple load changes are taken to account;
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• A novel dynamic fractional-order model using RBMs and deep learning algorithm is
proposed for online identification;

• A novel compensator on basis of IT3-FLS is presented to cope with the dynamic model
approximation error;

• A new LMI approach is developed to derive the error feedback gains and to guarantee
the stability and robustness.

In the remain of this study, the problem is described in Section 3, the suggested
dynamic fractional-order model is described in Section 4, the proposed IT3-FLC is given in
Section 5, the stability is analyzed Section 6, the simulations and conclusions are presented
in Sections 7 and 8, respectively.

2. System Description

The under control plant is shown in Figure 1. The case study plant, includes, loads,
photovoltaic (PVs), battery/flywheel ESS (BESS)/(FESS), micro-turbines, and wind turbine
(WT). Consider the k-th area, the power changing is written as [35,36]:

Figure 1. The suggested control block diagram.

∆Pk,tie =
N
∑

i=1,i 6=k
∆Pki,tie

= 2π
s

[
N
∑

i=1,i 6=k
Tki∆ωk −

N
∑

i=1,i 6=k
Tki∆ωi

] (1)

where, N represents number of area, ∆Pk,tie represents the power variation between tie-line
and k-th area, ∆ω is frequency deviation and Tki is torque coefficient of tie-line synchro-
nization. Consider a disturbance applied to 1-th area as:

∆P1,tie =
2π

s
[T12∆ω1 − T12∆ω2] (2)

Then, ∆ω2 is:

∆ω2 =

(
−∆P2,tie − ∆P2L +

n
∑

k=1
∆Pm2i

)
D2 + 2H2s

(3)
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Then, by applying the load disturbance into k-th area, ∆Pk,tie and ∆ωk are written as:

∆Pk,tie =
2π

s

[
N

∑
i=1,i 6=k

Tki∆ωk

]
(4)

∆ωk =
(−∆Pk,tie − ∆PkL)

Dk + 2Hks
(5)

Considering a step perturbation in load as ∆PkL(s) = ∆PkL/s and from (5), ∆Pk,tie becomes:

∆Pk,tie =

−2π∆PkL
N
∑

i=1,i 6=k
Tki/2Hk(

s2 + Dk/2Hk + 2π
N
∑

i=1,i 6=k
Tki/2Hk

)
s

(6)

The regional demand response (RDR) is implemented as follows. If d2∆Pk,tie
dt2 < 0 and

d2∆Pi,tie
dt2 > 0 or d2∆Pk,tie

dt2 > 0 and d2∆Pi,tie
dt2 < 0, then:

RDRk = δ
− d2∆Pk,tie

dt2 Hk

π
N
∑

i=1,i 6=k
Tki

(7)

where, 0 < δ < 1. The dynamics of the other units are given in Figure 2.

Figure 2. The general diagram of case study.
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3. A General View on Presented Control System

The general block diagram is depicted in Figure 3. Unlike in most of the studies, the
dynamics of all units are assumed to be completely unknown. The dynamics of all units are
estimated by the proposed dynamic RMB and CD deep learning algorithm. It should be
noted that the estimated dynamic model is online optimized then it can handle the system
dynamic perturbation. The dynamic model is:

Dq
t ∆ω̂k = f̂ k(xk|θkm, ξk, εk, ηk) + χk∆ω̃k + uk (8)

where, f̂ k is the proposed RBMs, uk is the control signal, ξk, εk, and ηk are the parameters of
RBM, θkm is the vector of parameters of MLP, xk is the vector of inputs of f̂ k that is shown in
Figure 3, χk is a positive constant that is obtained form stability analysis, ∆ω̃k = ∆ωk−∆ω̂k,
ωk is the frequency deviation and Dq

t ∆ωk is defined as:

Dq
t ∆ωk(t) = 1/Γ(m− q)

∫ t

0

1

(t− τ)m−q−1
dm

dtm ∆ωk(τ)dτ (9)

Γ(·) represents Gamma function, 0 < q < 1 and m = 1. For each area the controller is
designed as:

uk = − f̂ k − λk∆ωk − uck(xck|θc) (10)

where, uck is the compensator that is generated by IT3-FLS, λk is determined by LMI
stability analysis. θc is the vector of parameters of uck and xck is the vector of inputs of uck.
The parameters of uck are learned by error feedback method.

Figure 3. The suggested control block diagram.

4. Proposed Dynamic Fractional-Order Model
4.1. Structure

The structure of the proposed dynamic fractional-order RMB-MLP is depicted in
Figure 4. The parameters of RBM are tuned by CD algorithm and the vector of parameters
θm is adjusted by the tuning rule that is derived through the LMI based stability analysis.
Consider k-th RBM-MLP, the output of proposed dynamic model is computed as follows:

(1) The inputs of RBM-MLP are the outputs of the system at the previous sample times;
(2) The inputs are considered as the visible nodes Vk0 and the outputs in the hidden layer

Hk0 are obtained as:
Hk0 = Ω

(
ξT

k Vk0 + εk

)
(11)

where, ξk is a τ × n matrix, τ is the number of inputs, n is the number of neurons, εk
is n× 1 vector and Ω(·) = 1/(1 + exp(·));
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(3) From Hk0, the vector Vk1 is obtained as:

Vk1 = Ω(ξk Hk0 + ηk) (12)

where, Hk0 that is obtained in the previous step is n× 1 vector and ηk is a τ× 1 vector;
(4) Similarly form Vk1 the vector Hk1 is obtained as:

Hk1 = Ω
(

ξT
k Vk1 + εk

)
(13)

where, Hk1 is a n× 1 vector;
(5) Finally the output is obtained as:

∆ω̂k = Iq
t

(
θT

mk Hk1 + uk

)
(14)

where, Iq
t represents the fractional integral, uk is the control signal in the k-th area and

θmk is n× 1 vector.

Figure 4. The suggested fractional-order dynamic RBM-MLP block diagram.

4.2. Learning

The adjusting of vector θT
mk is completed by the tuning rule (42) and the learning of

parameters ξk, εk and ηk are performed by CD algorithm, in which, the probability and
energy function are defined as follows:

ρ(ξ, ε, η, V, H) = eE(ξ,ε,η,V,H)/E(ξ, ε, η, V, H) (15)

E(ξ, ε, η, V, H) = −HTξV− εT H − ηTV (16)

Then the tuning rules are considered as:

ξk(t + 1) = ξk(t) + γ
(

Vk0HT
k0 −Vk1HT

k1

)
(17)

εk(t + 1) = εk(t) + γ(Hk0 − Hk1) (18)
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ηk(t + 1) = ηk(t) + γ(Vk0 −Vk1) (19)

5. Proposed Type-3 Fuzzy Compensator
5.1. Structure

The suggested compensator is an IT3FLS. The structure is given in Figure 5. The
output of compensator is obtained as:

(1) The inputs are e(t), Dq
t e(t) and Iq

t e(t), where, e(t) Dq
t e(t) and Iq

t e(t) represent the
stabilization error, fractional derivative and integral of stabilization error, respectively;

(2) For each inputs xc1 = e(t), xc2 = Dq
t e(t) and xc3 = Iq

t e(t), R membership functions
(MFs) are considered as Ãl

s|αι, s = 1, 2, 3, l = 1, ..., R with r slices (ι = 1, ..., r). Then for
input xcs, one has:

µ̄Ãl
s |ᾱι

(xcs) = exp

−
(

xs − cÃl
s

)2

σ̄2
Ãl

s |ᾱι

 (20)

µ̄Ãl
s |αι

(xcs) = exp

−
(

xs − cÃl
s

)2

σ̄2
Ãl

s |αι

 (21)

µ
Ãl

s |ᾱι
(xcs) = exp

−
(

xs − cÃl
s

)2

σ2
Ãl

s |ᾱι

 (22)

µ
Ãl

s |αι
(xcs) = exp

−
(

xs − cÃl
s

)2

σ2
Ãl

s |αι

 (23)

where, cÃl
s

is the center of Gaussian MF Ãl
s, σ̄Ãl

s |ᾱι
and σ̄Ãl

s |αι
are the upper standard

division of Ãl
s at ᾱι and αι levels, respectively, and σÃl

s |ᾱι
and σÃl

s |αι
are the lower

standard division of Ãl
s at slice level ᾱι and αι, respectively (see Figure 6);

(3) For each MFs in the step 2, one rule is considered. Then the number of rules is R and
rule firings are:

z̄l
ᾱι
= µ̄Ãl

1|ᾱι
(e)µ̄Ãl

2|ᾱι

(
Dq

t e
)

µ̄Ãl
3|ᾱι

(
Iq
t e
)

(24)

z̄l
αι
= µ̄Ãl

1|αι
(e)µ̄Ãl

1|αι

(
Dq

t e
)

µ̄Ãl
1|αι

(
Iq
t e
)

(25)

zl
ᾱι
= µ

Ãl
1|ᾱι

(e)µ
Ãl

2|ᾱι

(
Dq

t e
)

µ
Ãl

3|ᾱι

(
Iq
t e
)

(26)

zl
αι
= µ

Ãl
1|αι

(e)µ
Ãl

1|αι

(
Dq

t e
)

µ
Ãl

1|αι

(
Iq
t e
)

(27)

(4) By type-reduction in [37], the output of compensator is concluded as:

uc =

r
∑

ι=1
ᾱιν̄ι + αινι

r
∑

ι=1
(ᾱι + αι)

e (28)

where,

ν̄ι =

R
∑

l=1

(
z̄l

ᾱι
+ zl

ᾱι

)
θ̄cl

R
∑

l=1

(
z̄l

ᾱι
+ zl

ᾱι

) (29)
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νι =

R
∑

l=1

(
z̄l

αι
+ zl

αι

)
θcl

R
∑

l=1

(
z̄l

αι
+ zl

αι

) (30)

where, θ̄l and θcl are the upper and lower l-th rule parameters. The vector of rule
parameters is:

θc =
[
θc1, ..., θcR, θ̄c1, ..., θ̄cR

]T (31)

Figure 5. The suggested interval type-3 FLS block diagram.

5.2. Learning

The parameters of compensator are tuned by the simple gradient descent algorithm,
such that the cost function J = 1

2 e2(t) is minimized:

θ̄cl(t + 1) = θ̄cl(t)− γ
∂J

∂θ̄cl
(32)

θcl(t + 1) = θcl(t)− γ
∂J

∂θcl
(33)

where,

∂J
∂θ̄cl

=
e2

r
∑

ι=1
(ᾱι + αι)

r

∑
ι=1

ᾱι

(
z̄l

ᾱι
+ zl

ᾱι

)
R
∑

l=1

(
z̄l

ᾱι
+ zl

ᾱι

) (34)

∂J
∂θcl

=
e2

r
∑

ι=1
(ᾱι + αι)

r

∑
ι=1

αι

(
z̄l

αι
+ zl

αι

)
R
∑

l=1

(
z̄l

αι
+ zl

αι

) (35)
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0
1

1

100 -1

Figure 6. Type-3 MF.

It should be noted that the sign of derivative of output (∆ω) with respect to the control
signal is positive and it is fixed. Then, the value of ∂∆ω

∂uc
is combined with γ.

6. Stability Analysis

The main stability outcomes are presented in the following theorem:

Theorem 1. The asymptotic stability of closed-loop system shown in Figure 2, is ensured, if the
tuning rule and control signal are as (40)–(42) and there are scalars Q1, Q2, X1, X2, ϑ1, ϑ2 and
symmetric matrix Q3 ∈ Rn×n, such that:

[
Ψ11 Ψ12
Ψ12 Ψ22

]
< 0 (36)

where,

Ψ11 =
2
∑

i=1
Sym

Θi1 ⊗

 −Xk1 − ϕT
ckθckQ1 Xk2 01×n

0 −Xk2 HT
k1Q3

0n×1 −γHk1Q2 0n×n

+

2
∑

i=1
ϑi

I2 ⊗

 0 0 01×n
ĒkĒT

k 0 01×n
0n×1 0n×1 0n×n

 (37)

Ψ12 =


I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T
 (38)

Ψ22 =

[
−ϑ1 0

0 −ϑ2

]
⊗ I2 (39)

uk = − f̂ k − λk∆ωk − uck(xck|θck) (40)

uck(xck|θck) = −ϕT
ckθck∆ω̂k (41)

Dq
t θm = −γHk1∆ω̃k (42)

where, uck(xck|θck) is the compensator.

Proof. The proof is given in Appendix A.
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7. Simulation

The regulation outcomes of the designed LFC is examined in several scenarios, such
as time-varying dynamics, suddenly changes in mechanical power, time-varying solar
radiation, multiple load perturbation, and so on.

Example 1. For the first example an AC microgrid with given parameters as Table 1 is considered.
For each inputs of IT3-FLS 3 MFs with centers −1,1 and 1 are considered. The other control
parameters are presented in Table 2. The performance is evaluated in four scenarios.

Table 1. System parameter description.

Parameters Value/Unit Parameters Value/Unit Unit Power (KW) Output Load (KW)

TBESS 0.1 (s) Tg 0.08 (s) DEG 160 PL2 =

TPV 1.80 (s) TWTG 1.50 (s) PV 31 PL1 =

H 0.17 (pu s) TFESS 0.1 (s) FC 70

Tt 0.4 (s) TI/c 0.0040 (s) FESS 46 210

TIN 0.040 (s) R 0.330 (pu/Hz) BESS 45

Table 2. Control parameters.

Parameter Value Reference

q 0.5 (8)
λ 100 (40)
r 3 (28)
α 0,0.5,1 (28)
γ 0.1 (17)–(19)
n 10 (11)

Scenario 1: For the first scenario, the parameters are fixed and one load change (∆pL)
is considered. The other parameters and factors, such as solar radiation and wind speed,
are also considered to be fixed. The regulation performance is depicted in Figure 7. The
performance is compared with the some similar popular controllers, such as PI type-1 FLC
(PI-T1-FLC) [38] and PI type-2 FLC (PI-T2-FLC) [39]. One can see that the designed control
system outperforms in a desirable performance. It needs to be noted that the mathematical
dynamics of all units are considered to be unknown.

Scenario 2: For the second scenario, the parameters are fixed and a multiple load
changes is considered. The other conditions are same as scenario 1. From Figure 8, the
superiority of the designed controller is clearly seen. The trajectory of frequency for the
suggested controller has a well convergence to zero.
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)

Figure 7. Example 1: Scenario 1: Frequency regulation performance in the presence load changes.
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   Time (s)
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-0.04

-0.02

0

0.02

   
 (

p
u

)

Figure 8. Example 1: Scenario 2: Frequency regulation performance in the presence of multiple load changes (∆pL).

Scenario 3: In the third scenario, in addition to the multiple load changes, the value
of parameters of all units are considered to time-varying. All parameters are changed as
p = p(1 + sin(t)). The regulation performance is given in Figure 9. The well proficiency of
the suggested LFC can be significantly seen form Figure 9.
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   Time (s)

0
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0.08
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-0.02

0

0.02

   
 (

p
u

)

Figure 9. Example 1: Scenario 3: Frequency regulation in the presence of multiple load changes (∆pL), and all parameters
are changed.

Scenario 4: In the fourth scenario, in addition to the multiple load changes, the
solar radiation and mechanical power of wind turbine are also considered to be time-
varying. The performance of the frequency in this scenario is depicted in Figure 10. One
observes that the suggested method well resists versus the variation of solar radiation and
perturbation of mechanical power of wind turbine and multiple load changes. It is seen
that the trajectory of frequency corresponded to the suggested method has less deviation
in contrast to the other controllers. The values of root mean square error (RMSE) for all
scenarios are given in Table 3. It is perceived that the values for the suggested method in
all scenarios is remarkably less than the other methods.

0 2 4 6 8 10 12 14 16 18 20
   Time (s)

0

0.05

0.1

0 2 4 6 8 10 12 14 16 18 20
   Time (s)

0
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0.1

 Input variation of WTG and PV

0 2 4 6 8 10 12 14 16 18 20
   Time (s)

-0.04

-0.02

0

0.02

   
 (

p
u

)

Figure 10. Example 1: Scenario 4: Frequency regulation performance in the presence of multiple load changes (∆pL) and
time-varying solar radiation and mechanical power of wind turbine.
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Table 3. Regulation comparison by various controllers.

RMSE RMSE

Scenario Proposed Method PI-T1-FLC PI-T2-FLC

1 0.0027 0.0105 0.0107
2 0.0022 0.0084 0.0085
3 0.0017 0.0064 0.0066
4 0.0018 0.0078 0.0075

Example 2. For the second example, the IEEE 39-bus test system is taken to account. The
demand response for the first, second, and third area are considered as 98.77, 22.21, and 54.6 MW,
respectively. The power capacity of all units are given in Table 4. The other conditions are same
as [40]. The performance is examined in three scenarios.

Scenario 1: For the first scenario only load changes as shown in Figure 11 is considered
and DR and storage systems and wind turbines are neglected. The frequency regulation
performance for all three areas is given in Figure 12. It is observed that the trajectories of
the suggested method in all three areas well converged to zero.

Table 4. Example 2: The value of powers in different areas.

Area
Power (MW)

Conventional Wind Load

1 134.57 61 329.25
2 106.381 54 74.051
3 163.9 72 182.01

0 10 20 30 40 50 60 70 80 90 100
 Time [s]

0

5

10

 
P

L
 [

M
W

]

Figure 11. Example 2: The trajectory of load changes.

Scenario 2: For the second scenario, DR and storage systems are added to the previous
condition and wind turbines are neglected. The frequency regulation performance in this con-
dition is depicted in Figure 13. It is understood that the regulation performance corresponded
to the suggested method is significantly better than PI-T1-FLC and PI-T2-FLC.
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Figure 12. Example 2: Scenario 1: The trajectory of frequency regulation for all three areas.

0 10 20 30 40 50 60 70 80 90 100
  Time [sec]

-0.2

-0.1

0

  
1
(p

u
)

  Proposed Method   PI T1-FLC   PI T2-FLC

0 10 20 30 40 50 60 70 80 90 100
  Time [sec]

-6
-4
-2
0

  
2
(p

u
)

10-3

0 10 20 30 40 50 60 70 80 90 100
  Time [sec]

-10

-5

0

  
3
(p

u
)

10-3

Figure 13. Example 2: Scenario 2: The trajectory of frequency regulation for all three areas.

Scenario 3: For the last scenario, the effect of time-varying wind speed is investigated.
The wind speed trajectory is shown in Figure 14. The frequency regulation performance
in this condition is given in Figure 15. We realize that the suggested controller resists
well in the comparison of time-varying wind speed and also its regulation performance is
better than conventional type-1 and type-2 PI FLCs. The numerical comparison of RMSE
for various control approaches and different scenarios are given in Table 5. It can be
observed that the values of RMSE for the suggested controller is less than other fuzzy based
controllers in all areas and all various conditions.
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Figure 14. Example 2: Scenario 2: The trajectory of wind speed.
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Figure 15. Example 2: Scenario 3: The trajectory of frequency regulation for all three areas.

Table 5. Example 2: Performance comparison for different control methods.

Scenario Controller
RMSE

∆ω1 ∆ω2 ∆ω3

1
Proposed FLC 0.0641 0.0035 0.0050

PI-T1-FLC 0.0709 0.0064 0.0083
PI-T2-FLC 0.0688 0.0042 0.0056

2
Proposed FLC 0.0510 0.0034 0.0046

PI-T1-FLC 0.0534 0.0054 0.0070
PI-T2-FLC 0.0519 0.0042 0.0055

3
Proposed FLC 0.0457 0.0032 0.0043

PI-T1-FLC 0.0474 0.0049 0.0063
PI-T2-FLC 0.0463 0.0040 0.0052

Remark 1. One of the main properties of the suggested LFC scheme is its good robustness against
perturbations. As it shown in Figures 7–15, the trajectories of frequency deviation are approached
to zero level at a finite time in the presence of hard perturbations such as multiple load changes,
variation of solar energy, changes of wind speed, and dynamic parameter changes.
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8. Conclusions

In this study, a new adaptive FLC is designed for frequency regulation in multi-area
power systems. The suggested controller is constructed by an error feedback controller,
dynamic estimated model, and IT3-FLS. The gains of error feedback controller and the
tuning rules of the dynamic model is extracted through the LMI stability analysis. The
unknown dynamics of the units are estimated online by the suggested dynamic fractional-
order RBM and deep learning CD algorithm. The effectiveness of the schemed control
approach is examined various conditions. For the first simulation example, an ac mi-
crogrid including loads, PVs, micro-turbines, WT, FESS, and BESS is considered and the
performance is evaluated in four scenarios. For the first scenario, only small changes in
the load is considered. In the second, multiple load changes is considered. For the third
one, the issue of time-varying factors in all units is also added to the previous condition
and finally in the fourth scenario the effect variation of irradiation and wind speed is
examined. For the second simulation, the schemed controller is applied on the practical
IEEE 39-bus system. Similar to the example one, the performance is evaluated in various
conditions and effect of time-varying wind speed, multiple load changes, and DR and
storage systems are investigated. In all cases the performance is compared with the some
other popular controllers, such as PI-T1-FLC and PI-T2-FLC. One observes that suggested
control system results in desirable frequency regulation performance in versus of various
practical conditions and has clear superiority in contrast to the conventional FLCs.
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Appendix A. Stability Analysis

The following Lemmas are applied to prove results of Theorem 1.

Lemma A1 ([41]). The following equations are equivalent for a real matrix Π = ΠT :

(a) Π =

[
Π11 Π12
∗ Π22

]
> 0

(b) Π11 > 0, and Π22 −ΠT
12Π−1

11 Π12 > 0
(c) Π22 > 0, and Π11 −ΠT

12Π−1
22 Π12 > 0

Lemma A2 ([42]). Consider real matrices U and L and the following relation:

UF(t)L + LT FT(t)UT < 0
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if FT(t)F(t) ≤ I, then there exists a ϑ, such that

ϑUUT + ϑ−1LT L < 0

Lemma A3 ([43]). The asymptotic stability of system Dq
t x(t) = Ax(t) is authenticated if there

exist two symmetric matrices Πj1 ∈ <n×n, j = 1, 2 with positive definite property and two
skew-symmetric matrices Πj2 ∈ <n×n, j = 1, 2, such that:

2
∑

i=1

2
∑

j=1
Sym

{
Θij ⊗

(
AΠij

)}
< 0,[

Π11 Π12
−Π12 Π11

]
> 0,

[
Π21 Π22
−Π22 Π21

]
> 0

(A1)

where

Θ11 =

[
sin πq

2 − cos πq
2

cos πq
2 sin πq

2

]
, Θ12 =

[
cos πq

2 sin πq
2

− sin πq
2 cos πq

2

]
Θ21 =

[
sin πq

2 cos πq
2

− cos πq
2 sin πq

2

]
, Θ22 =

[
− cos πq

2 sin πq
2

− sin πq
2 − cos πq

2

]
Sym{X} = X + XT and ⊗ is Kronecker product.

From the universal approximation feature of neural networks and by considering the
optimal MLP the dynamics of ∆ωk can be written as:

Dq
t ∆ωk = f̂ ∗k (xk|θ∗km, ξk, εk, ηk) + Ek + uk (A2)

where, θ∗km is the vector of optimal parameters and Ek is the approximation error. From (8)
and (A2), the dynamic of estimation error ∆ω̃k is obtained as:

Dq
t ∆ω̃k = f̂ ∗k (xk|θ∗m, ξk, εk, ηk)− f̂ k(xk|θm, ξk, εk, ηk)− χk∆ω̃k + Ek (A3)

where, ∆ω̃k = ∆ωk − ∆ω̂k. Consider the flowing definitions:

θ̃m = θ∗m − θm
f̂ ∗k (xk|θ∗m, ξk, εk, ηk)− f̂ k(xk|θm, ξk, εk, ηk) = θ̃T

mHk1
(A4)

From (A4), Dq
t ∆ω̃k in (A3) is rewritten as:

Dq
t ∆ω̃k = θ̃T

mHk1 − χk∆ω̃k + Ek (A5)

The approximation error Ek can be written as:

Ek = Dkφk(t)∆ω̂k (A6)

where, Ēk is the upper bound of Ek and 0 ≤ φk(t) ≤ 1. From (A6), the Equation (A5) is
rewritten as:

Dq
t ∆ω̃k = θ̃T

mHk1 − χk∆ω̃k + Ēkφk(t)∆ω̂k (A7)

By applying the control signal (40), the dynamic of ∆ω̂k becomes:

Dq
t ∆ω̂k = −λk∆ωk + χk∆ω̃k − uck(xck|θck) (A8)

By substituting uck(xck|θck) from (41), one has:

Dq
t ∆ω̂k = −λk∆ωk + χk∆ω̃k − ϕT

ckθck∆ω̂k (A9)
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In the vector form, one has:

Dq
t

 ∆ω̂k
∆ω̃k
θ̃m

 =

 −λk χk 01×n
0 −χk HT

k1
0n×1 −γHk1 0n×n

 ∆ω̂k
∆ω̃k
θ̃m

+

 −uck(xck|θc)
Ek
0

 (A10)

where, n is number of elements in Hk1.
Considering (Lemma A3) and by choosing P12 = P22 = 0 and

P11 = P21 =

 Q1 0 01×n
0 Q2 01×n

0n×1 0n×1 Q3

 (A11)

It is derived that system (A10) is asymptotically stable if:

2

∑
i=1

Sym

Θi1 ⊗

 −λk − ϕT
ckθck χk 01×n

Ēkφk(t) −χk HT
k1

0n×1 −γHk1 0n×n

 Q1 0 01×n
0 Q2 01×n

0n×1 0n×1 Q3

 < 0 (A12)

The inequality (A12) can be rewritten as:

2
∑

i=1
Sym

Θi1 ⊗

 −λkQ1 − ϕT
ckθckQ1 χkQ2 01×n

0 −χkQ2 HT
k1Q3

0n×1 −γHk1Q2 0n×n


+

2
∑

i=1
Sym

Θi1 ⊗

 0 0 01×n
Ēkφk(t)Q1 0 01×n

0n×1 0n×1 0n×n

 < 0

(A13)

From (A13), one has:

2
∑

i=1
Sym

Θi1 ⊗

 0 0 01×n
Ēkφk(t)Q1 0 01×n

0n×1 0n×1 0n×n

 =

2
∑

i=1
Sym

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

 φk(t) 0 01×n
0 φk(t) 01×n

0n×1 0n×1 0n×n

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n


(A14)

From Equation (A14), the second term is rewritten as:

2
∑

i=1
Sym

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

 φk(t) 0 01×n
0 φk(t) 01×n

0n×1 0n×1 0n×n

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

 =

2
∑

i=1
Sym


Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

.I(n+2) ⊗

 φk(t) 0 01×n
0 φk(t) 01×n

0n×1 0n×1 0n×n

.I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n



(A15)
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From (A15), it can be written:I(n+2) ⊗

 φk(t) 0 01×n
0 φk(t) 01×n

0n×1 0n×1 0n×n

I(n+2) ⊗

 φk(t) 0 01×n
0 φk(t) 01×n

0n×1 0n×1 0n×n

T

=I(n+2) ⊗

 φk(t)φT
k (t) 0 01×n

0 φk(t)φT
k (t) 01×n

0n×1 0n×1 0n×n

 ≤ I(n+2)

(A16)

Then form (A16) and Lemma A2, the equation (A14) is rewritten as:

2
∑

i=1
Sym

Θi1 ⊗

 0 0 01×n
Ēkφk(t)Q1 0 01×n

0n×1 0n×1 0n×n

 ≤
2
∑

i=1
ϑi

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

.

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

T

+ϑ−1
i

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

.

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n


(A17)

From (A17), the inequality (A13) becomes:

2
∑

i=1
Sym

Θi1 ⊗

 −λkQ1 − ϕT
ckθckQ1 χkQ2 01×n

0 −χkQ2 HT
k1Q3

0n×1 −γHk1Q2 0n×n

+

2
∑

i=1
ϑi

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

.

Θi1 ⊗

 0 0 01×n
Ēk 0 01×n

0n×1 0n×1 0n×n

T

+ϑ−1
i

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

.

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

 < 0

(A18)

By considering Xk1 = λkQ1, Xk2 = χkQ2 and ΘT
i1Θi1 = I2, the inequality (A18), becomes:

2
∑

i=1
Sym

Θi1 ⊗

 −Xk1 − ϕT
ckθckQ1 Xk2 01×n

0 −Xk2 HT
k1Q3

0n×1 −γHk1Q2 0n×n

+

2
∑

i=1
ϑi

I2 ⊗

 0 0 01×n
ĒkĒT

k 0 01×n
0n×1 0n×1 0n×n


+ϑ−1

i

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

.

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

 < 0

(A19)

From (A19), one can has:

2
∑

i=1
ϑ−1

i

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

.

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

 =

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

ϑ−1
1

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

+
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I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T

ϑ−1
2

I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

 =


I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T


T

.

([
ϑ1 0
0 ϑ2

]
⊗ I2

)−1

.
I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T I(n+2) ⊗

 Q1 0 01×n
0 Q1 01×n

0n×1 0n×1 0n×n

T
 (A20)

From Equations (A19) and (A20) and Lemma A1, the inequality (36) is obtained. This
completes the proof.
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