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Abstract: Private vehicle travel is the most basic mode of transportation, so that an effective way to
control the real-world fuel consumption rate of light-duty vehicles plays a vital role in promoting
sustainable economic growth as well as achieving a green low-carbon society. Therefore, the factors
impacting individual carbon emissions must be elucidated. This study builds five different models to
estimate the real-world fuel consumption rate of light-duty vehicles in China. The results reveal that
the light gradient boosting machine (LightGBM) model performs better than the linear regression,
naïve Bayes regression, neural network regression, and decision tree regression models, with a mean
absolute error of 0.911 L/100 km, a mean absolute percentage error of 10.4%, a mean square error
of 1.536, and an R-squared (R2) value of 0.642. This study also assesses a large pool of potential
factors affecting real-world fuel consumption, from which the three most important factors are
extracted, namely, reference fuel-consumption-rate value, engine power, and light-duty vehicle
brand. Furthermore, a comparative analysis reveals that the vehicle factors with the greatest impact
are the vehicle brand, engine power, and engine displacement. The average air pressure, average
temperature, and sunshine time are the three most important climate factors.

Keywords: real-world fuel consumption rate; machine learning; big data; light-duty vehicle; China

1. Introduction

Tightening the control of oil consumption has always been among the urgent focuses
of building a greener city. In the context of climate worsening and China’s commitment to
achieve carbon peak in 2030 and carbon neutrality in 2060, regulations on fuel consumption
are increasingly becoming stricter. Recently, a new round of investigation into fine particle
sources in Beijing was officially released. The results revealed that coal combustion is
no longer the main source of PM2.5 in Beijing, and mobile sources such as vehicles have
become the primary source of inhalable pollutants. To date, China has implemented a
series of measures to control the fuel consumption rate of vehicles. In September 2019,
the Ministry of Industry and Information Technology (MIIT) of the People’s Republic
of China and other relevant ministries issued the “Decision on Amending the Measures
for the Parallel Management of Average Fuel Consumption of Automobile Enterprises
and New Energy Vehicle Score”. The objective of introducing the automobile enterprise
fuel consumption score is to promote the sustainable development of China’s new energy
vehicle industry, accelerate the transformation of the energy structure, upgrade the tradi-
tional gasoline vehicle industry, and achieve a set of other goals in accordance with carbon
neutrality. To improve the performance and accuracy of the fuel consumption score, which
aims at reducing fuel consumption, the most effective method is to expand the production
of purely electric and plug-in hybrid electric vehicles.
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Currently, the fuel consumption score is calculated from the fuel consumption database
provided by the MIIT, and can be roughly divided into the following steps. The first step is
to calculate the average fuel consumption of each automobile enterprise according to the
national standard (GB27999-2014). The calculation is based on the weighted average of the
output of each vehicle and the fuel consumption value specified in the standard. The fuel
consumption of each vehicle is closely related to the vehicle’s curb weight, which varies
significantly for different vehicles. Therefore, the required fuel consumption standard is not
unified. The second step is to calculate the fuel consumption reported by each automobile
enterprise for the corresponding vehicle types, according to the MIIT. The third step is to
calculate the difference between the 2018 standard and the 2018 actual fuel consumption
(the fuel consumption reported by the MIIT) multiplied by the output, which is the actual
fuel consumption score for the specific vehicle enterprise.

The “Limits and Measurement Methods for Emissions from Light-Duty Vehicles
(CHINA 6)” guidelines, which are issued jointly by the Ministry of Ecology and Environ-
ment and the General Administration of Quality Supervision, Inspection and Quarantine,
require that all sold and registered light vehicles shall satisfy the standards, starting from 1
July 2020. According to the “Energy Conservation and New Energy Automobile Industry
Development Plan (2012–2020)”, the average fuel consumption rate of passenger vehicles
in China should be reduced to 5.0 L/100 km by 2020. The MIIT has promulgated the “Mea-
sures for the Parallel Administration of the Average Fuel Consumption and New Energy
Vehicle Credits of Passenger Vehicle Enterprises”, which was implemented on 1 April 2018.
The promulgation and implementation of these policies imposes stricter requirements for
energy saving and emissions reduction technology in the automobile industry. To solve
the current energy and environmental problems and achieve carbon neutrality in the near
future, it is of great significance to estimate the real-world fuel consumption of light-duty
vehicles and to identify its impact factors.

At present, the most direct approach to determining the fuel consumption rate of
a vehicle is to check the reference fuel consumption information provided by the MIIT,
which may be far different from the actual case. Since the implementation of a vehicle
emissions test standard, China has adopted the New European Driving Cycle (NEDC)
working conditions to test fuel consumption and emissions. However, some problems have
arisen after years of practice. The test results under the NEDC working conditions are quite
different to the real-world driving situation in China, and the gap between them in terms
of fuel consumption is approximately 26%; roughly consistent with the calculation result of
30% found by Liu et al. [1]. However, this value shows a considerable difference in different
vehicle models. Specifically, the gap between the NEDC and the real fuel consumption
of Geely Auto’s 2016 Boyue series (1.8T, 184 horsepower, L4) is about 37%, while that of
MG’s 2013 MG3 series (1.5 L, 109 horsepower, L4) is about 4.3%. This discrepancy not only
interferes with judgement in terms of understanding the actual driving state, but also does
harm to the government’s credibility from the perspective of vehicle drivers.

The problem of the NEDC working condition has three main aspects. First, the
NEDC working condition is very different to the driving characteristics of automobile
vehicles in China. This difference is particularly evident in the emissions performance, fuel
consumption, and optimized calibration value based on the NEDC. Second, this divergence
directly affects the implementation of China’s energy conservation and emissions reduction
policies, which has a negative impact on the government’s reputation to some extent. Third,
the existing NEDC working condition method underestimates the energy saving effect of
new energy vehicles.

In fact, the NEDC condition is too ideal from three perspectives. First, there is a
large gap between the laboratory simulation conditions and the actual road conditions.
Specifically, China has a vast territory and the road conditions in different regions vary
greatly, and this fact is neglected by the NEDC conditions. Second, the NEDC working
condition test ignores the influence of external factors such as air pressure and temperature,
which may influence the fuel consumption to a certain degree. Third, the NEDC working
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condition test does not consider the actual behaviors of drivers, such as their driving habits
and the use of air conditioners.

Hence, the China Automotive Test Cycle (CATC) was launched in 2015. Com-
pared with the NEDC (European Fuel Consumption and Emissions Assessment Standard)
adopted in the fifth phase of emission regulations (CHINA 5), and the Worldwide Harmo-
nized Light-Duty Vehicle Test Cycle (WLTC) working conditions adopted by the CHINA
6 standard, CATC’s working conditions more realistically reflect the actual conditions of
China’s roads. The successful introduction of this project enabled an independent basic
standard system to be established for the Chinese auto industry.

Three different types of data are collected with regard to China’s working conditions.
First, the collection of real-time and synchronized large-scale driving data for different
vehicles in different regions is realized using CAN+GPRS technology. Second, geographic
information system all-road low-frequency dynamic big data are used to calculate the
actual turnover of the vehicle and its coefficient at different speed intervals, reflecting
the macroscopic distribution of the vehicle more accurately and objectively. Third, the
driving behavior characteristics, air-conditioner usage characteristics, and other vehicle-
level characteristics are also considered.

The data used in this study were obtained from the BearOil app (www.xiaoxiongyouhao.
com (accessed on 3 February 2021)), which has already been downloaded six million times
with more than 800 thousand active monthly users. The accumulated mileage of active
vehicles in 31 different provincial regions of China has exceeded 23 billion kilometers, and
the real-world fuel consumption rate records have exceeded 51 million. Moreover, this
study also takes into consideration vehicle factors such as vehicle brand, engine power,
and engine displacement, as well as climate and environmental factors such as average air
pressure, average temperature, and sunlight hours. Therefore, this study aimed to discover
the most important factors that impact on the real-world fuel consumption rate of vehicles.

The rest of the paper is organized as follows. First, the related literature is reviewed
in Section 2. The data source, the extracted real-world fuel consumption rate, and the
climate factors are discussed in Section 3. Section 4 describes the experiments, including
the model selection and model training. In addition, Section 4 also reports the results,
including the comparison of different models and the assessment of the most important
features. Section 5 discusses the assessment of feature importance. Section 6 presents the
conclusions and the implications with regard to policy.

2. Literature Review

Considering the large proportion of environmental pollution that can be ascribed to
automobile sources [2,3], as well as the constraints on fossil fuel production, it is important
to obtain relatively accurate fuel consumption information to adjust energy allocation
appropriately. Furthermore, the application of artificial intelligence in the field of business
intelligence has risen gradually [4]. Therefore, models for estimating the real-world fuel con-
sumption rate and assessments of impact factors are being proposed at an increasing pace.

In the field of vehicle fuel consumption, extensive research has been carried out
around the world, and this can be roughly divided into three aspects.

Firstly, models that characterize the actual fuel consumption status have been pro-
posed in some studies. Among the existing models which have been proposed to estimate
fuel consumption rate, the HDM-4 fuel consumption model is one of the most widely
utilized. Many studies have used this model and then carried out calibration, which is a
necessary step in this methodology [5,6]. The accuracy of the HDM-4 fuel consumption
model and the need for further calibration were discussed in [7]. This study was based
on a limited set of tests, wherein only a small number of vehicles were tested at constant
speed on selected sections under limited weather conditions. In addition, Li et al. [8] used
a multilayer perceptron (MLP) method and considered parameters including external envi-
ronmental factors, the manipulation of vehicle companies, and the driving habits of drivers.
It was found that the multilayer perceptron method could classify their nonlinear dataset
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in the most reasonable way under sensitivity analysis. Some studies used a two-level clus-
tering model to determine the driving patterns of electric vehicles. However, this model
only focused on simple, static vehicle parking patterns and did not consider other traffic
information or weather conditions [9]. In a similar study, Wu et al. [10] predicted the fuel
consumption rate by learning from the real-world data of vehicle owners. Via a Pearson
coefficient correlation analysis with the help of data mining, Yamashita et al. [11] selected
the driving behavior indicators including speed, acceleration, and left/right/U-turns that
were proved to be highly correlated with fuel consumption. Through neural network mod-
eling and regression analysis, these indicators generated more than 12 aggregation models,
and the best mean absolute percentage error value among them was below 5%. These
classifications of driving behavior and the mean absolute percentage errors of the proposed
models provide a certain reference for the assessment of driving behavior. Ahn et al. [12]
used a microscopic fuel consumption and emissions model to predict the fuel consumption
of normal light-duty vehicles based on the instantaneous vehicle speed and acceleration
levels, and Lei et al. [13] introduced compound acceleration variables to this model to
capture the effects of the interaction between the historical acceleration and the current
speed on emissions and fuel consumption, producing reasonable estimates compared with
the actual measurements. In some studies, instantaneous Global Positioning System (GPS)
speed measurements enabled models to be applied to estimate fuel consumption and
emissions directly [14].

Secondly, some countries have developed certain vehicle fuel consumption measure-
ment tools in practice, typically including the Vehicle Energy Consumption Calculation
Tool (VECTO) and the Motor Vehicle Emission Simulator (MOVES). VECTO is software
developed by the European Commission. When vehicles enter the market, VECTO helps
to estimate their fuel consumption and carbon emissions. The main vehicle properties such
as mass, air drag, tire rolling resistance, axle and gearbox torque loss maps (torque loss as a
function of input torque and speed), and engine maps (maximum torque, motoring torque,
and fuel consumption) are the inputs of this software. In this system, the instantaneous
engine power depends on three factors: the power demand at the wheels, the power
demand of the auxiliaries, and the efficiency of each component in the powertrain. The fuel
consumption is measured through interpolation in the fuel consumption map, together
with the instantaneous engine torque and speed. Stijn et al. [15] proved that the fuel
consumption was predicted with an error of less than 1.5% for individual trips by VECTO,
and less than 0.5% when averaged over various repetitions. MOVES is a new generation
emission model developed by the US EPA since 2001, and MOVES3 has now been released.
The model uses the vehicle specific power (VSP) variable independently of vehicle weight
in the calculation of power demand [16,17], and uses cluster analysis to characterize the
relationship between VSP and fuel consumption. The vehicle power demand formula used
in MOVES takes vehicle speed, acceleration, and gradient as independent variables [18]. In
these fuel consumption prediction models, the estimation of automobile engine power is
an important part of the model. Due to the basis of traditional dynamics, there are physical
errors in such estimates. It is an urgent task of current research to design fuel consumption
prediction models based on actual conditions rather than physical formulas, in order to
improve the accuracy of predictions.

Thirdly, existing studies have shown that real-world fuel consumption rate is influ-
enced by various factors. The objective characteristics of the road and vehicle, such as
the road surface [19,20], road width [21,22], traffic congestion and speed limits [23,24],
energy management strategy [25–27], and fuel-tank status monitoring technology [28], play
significant roles. Ejsmont [20] handled the above-mentioned factors by investigating the
relationship between the surface texture and the rolling resistance of light and heavy vehi-
cle types. He used the mean profile depth as a proxy parameter for the road surface, and
the results revealed that, although a correlation exists, it cannot be explained in absolute
terms because the regression between the mean profile depth and the rolling resistance is
not linear. Kono [21] considered many factors, including traffic information, geographic
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information, vehicle parameters, and driver behavior, to analyze and predict fuel con-
sumption for ecological routes. Comparing the results to those obtained by the traditional
time-priority route search method and a driving experiment, the author concluded that it
is important to propose an indicator of fuel reduction effectiveness for future emissions
reduction technologies, including ecological route searches. Brundell-Freij [23] reported
that the speed, the acceleration, and the type of gears influenced fuel consumption. His
study results revealed that the influence of the street and traffic environment on the driving
behavior was dependent on driver variables and vehicle performance. Furthermore, sub-
jective characteristics such as driving velocity [23,28] and driving acceleration [29,30] also
affect real-world fuel consumption rates and are used to describe the temporal characteris-
tics of driving patterns. Xu, Chen, and Li [28] reported that speed has a remarkable effect on
fuel consumption, particularly when vehicles travel on urban roads where there are many
traffic signals. Hence, to reduce fuel consumption, the authors proposed a double-layer
speed optimization method with real-time computation, and obtained the optimal real-time
speed, demonstrating the potential of the double-layer speed optimization method for
improving fuel consumption and reducing travel time. By tracking the driving speed of
cars in 11 cities in China, Wang [29] inferred that the infrastructure of roads and the sizes of
cities are vital factors affecting the heterogeneity of driving behavior. Another study used
a vehicle-specific fuel consumption model based on a PEMS application to estimate fuel
consumption under different driving patterns. The vehicle fuel consumption per unit time
exhibited a strong positive correlation with the cruise speed. When the vehicle accelerated,
the fuel consumption rate significantly increased, but changed only slightly when the
vehicle decelerated [31].

Real-world fuel consumption rate is affected by climate. For example, winter has
been related to a decrease of 20% in fuel efficiency [25]. Other studies have established
the relationship between temperature and driving environment [26,27]. Zahabi [25] in-
vestigated fuel efficiency, and then compared vehicle performance to that of a standard
gasoline vehicle in a cold Canadian urban environment. He considered many different
factors including the driving conditions, temperature, and speed. In his results, a low
temperature below 0 ◦C in winter was identified as a factor exerting a detrimental influence
on fuel consumption. Specifically, it was found that fuel efficiency decreased by 20% in
winter compared with that in summer. In the present study, the climate environment is also
considered an important factor, and the temperature factor is discussed in detail. Weilen-
mann, Favez, and Alvarez [26] proposed that cold starting, which refers to the internal
temperature of vehicles, can reduce the emission of modern gasoline and diesel passenger
cars. Alvarez and Weilenmann [27] proposed that low ambient temperatures affect hybrid
electric vehicles in terms of fuel consumption and investigated these characteristics in five
in-use hybrid electric vehicle models.

However, a small dataset and number of vehicle models means that it is not clear
whether the estimations from the above models reflect the actual fuel consumption under
realistic driving conditions. Modeling formulas based on traditional physics may have
large errors with respect to reality. Even though various indicators, especially those of
speed, were considered and inputted to the models, their weights were still not assessed,
and this greatly limits the practical application of the models. In addition, climate factors
have been proved to be highly related to fuel consumption rate, but they are still not
introduced into forecasting models. To expand the applicability, research should consider
multiple factors comprehensively.

To fill the research gap, we collected big data on many vehicle models, their actual
fuel consumption, and the local climate conditions to describe the driving reality as much
as possible. In addition, we comprehensively assessed the impact of vehicle performance
parameters and local climate parameters on fuel efficiency. Our research proposed five
models, namely, linear regression, naïve Bayes regression, neural network regression, deci-
sion tree regression, and LightGBM models, to estimate the real-world fuel consumption
rate of light-duty vehicles in China. After being trained on large amounts of data, the
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deep learning method greatly optimized the prediction of vehicle engine performance,
thereby helping to improve the accuracy of the prediction. The results obtained by these
five models were compared to determine the optimal model. Additionally, this study
assessed 18 different factors and ranked the importance of all the factors.

3. Materials and Methods
3.1. Data

The data used in this study were obtained from two sources: the real-world fuel
consumption rate records reported by vehicle owners in the BearOil app and the monthly
dataset of the surface climate and road grade in some regions of China.

The real-world fuel consumption rate data are generated as follows. Users record
information on the refuel time, the total mileage of the vehicle, liters of fuel, the oil price,
and the gas payment via the BearOil app (iOS/Android versions) and the applets (WeChat
applet, Amap applet, Alipay applet) each time they refuel. After that, they mark whether
the tank is full or not and then save the record. Once a user fills up the tank, the liters of
fuel the user adds to fill up the tank next time represents the fuel consumption during the
trips between refueling. The average fuel consumption is a weighted average based on
the fuel consumption of a single trip, with the weight being the mileage of the trip. Each
time a user saves a record, it is automatically uploaded to the BearOil cloud server (after
informing the user and obtaining consent and authorization). We filtered the records of
different users of the same car model on the cloud server to exclude samples with obvious
recording errors, and then filtered out the samples with large deviations by considering
the distributions of the average fuel consumption of different users of the same car model,
taking the remaining samples as valid samples. Then, we took the arithmetic means of the
average fuel consumptions of all valid samples for each car model. Finally, we matched
the data with the corresponding external environmental data, including temperature,
humidity, pressure, wind speed, precipitation, sunshine, etc., based on the user’s location
and time information.

3.1.1. Fuel Consumption Rate Information

In this study, about 2 million records of real-world fuel consumption rates reported by
vehicle owners in 17 provincial capitals of China in the period 2013–2017 were extracted
from the BearOil app. Examples of the real-world fuel consumption rate data are shown in
Table 1. To protect user privacy, the user number (User_ID) only shows the last eight digits
of the true value.

Table 1. Raw data example of real-world fuel consumption rate information from BearOil app.

Feature Name Instance 0 Instance 1 Instance 2 Instance 3 . . .

User_ID 65961294 17424034 28206249 78105203 . . .
City Hangzhou Shanghai Wuhan Guangzhou . . .

Date 28 June
2017

26 June
2013 24 July 2013 26 June

2019 . . .

Brand Name BMW ROEWE SKODA TOYOTA . . .

Series Name BMW X1 ROEWE
350 FABIA LEVIN . . .

Version Year 2016 2011 2011 2016 . . .

Engine 1.5
L/136ps/L3

1.5
L/109ps/L4

1.4
L/86ps/L4

1.8
L/99ps/L4 . . .

Gearbox AMT-6 MT-5 MT-5 E-CVT . . .
refConsumption (L/100 km) 6.1 7.8 6.5 4.2 . . .
realConsumption (L/100 km) 11.8 9.6 7.0 4.6 . . .

The User_ID in the sample is the unique ID of a BearOil app user. Therefore, the same
User_ID corresponds to several samples, and this was used to record the time-varying
relationship between the user’s real-world fuel consumption rate, including the reporting
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time and the city in which the user lives, and the fuel consumption rate measured by
the user.

The relevant information of the vehicle is given in the sample, including the vehicle
brand, series, and version. Because the exact versions of different vehicles brands are
quite different, only the version year of each example is shown here. Additionally, the
sample features include information on the vehicle engine and transmission. The engine
parameters include the displacement (unit: L), power (unit: ps), and cylinder number. The
transmission parameters indicate the type of transmission, including manual transmission
(MT), automatic transmission (AT), automated manual transmission (AMT), continuously
variable transmission (CVT), direct shift gearbox (DSG), and so on.

Additionally, our dataset also includes a reference value for the fuel consumption
rate (refConsumption) of the corresponding vehicle, which is provided by the MIIT of the
People’s Republic of China. The fuel consumption rate measurement method adopted
by the MIIT refers to the second stage of the NEDC. However, various problems exist,
such as incompatibility with the current vehicle power and the overall quality and large
differences in the actual driving conditions. In addition, owing to the impact of different
climate conditions, driving behaviors, and other factors, the reference fuel consumption
rate is often a poor proxy for the real-world fuel consumption rate.

Table 2 presents the descriptive statistics and Figure 1 shows the sample distribution
for engine displacement. As shown in Table 1 and Figure 1, most of the samples were
vehicles with displacement coverages of 0.8 L–2.5 L. For the samples with displacement
coverages of 0.8 L–1.6 L, the average real-world fuel consumption rate records reported by
vehicle owners in the BearOil app (realConsumption) was 8.052, with a standard deviation
of 1.476 and a 75th percentile of 8.913. For the samples with displacement coverages of
1.6 L–2.5 L, the average realConsumption was 9.489, with a standard deviation of 2.042
and a 75th percentile of 10.734.

Table 2. Descriptive statistics.

Engine Displacement (L)

x ≤ 0.8 0.8 < x ≤ 1.6 1.6 < x ≤ 2.5 2.5 < x ≤ 4 x > 4.0

Standard deviation
refConsumption 0.755 0.757 1.173 1.308 4.479

realConsumption 1.298 1.476 2.042 2.607 6.015

Min
refConsumption 1.5 1.2 2 2.9 2.4

realConsumption 2.355 0.898 1.288 3.246 2.025

Max
refConsumption 7.8 9.8 12.5 15.7 17.3

realConsumption 11.836 16.076 22.365 24.319 28.064

P25
refConsumption 5.200 5.900 6.800 9.900 13.200

realConsumption 5.756 7.066 8.073 11.362 13.995

Median
refConsumption 5.600 6.400 7.600 10.700 14.400

realConsumption 6.438 7.924 9.288 13.072 17.045

Mean
refConsumption 5.653 6.447 7.631 10.681 12.917

realConsumption 6.584 8.052 9.489 13.120 15.479

P75
refConsumption 5.800 6.900 8.400 11.600 15.600

realConsumption 7.317 8.913 10.734 14.742 18.468

Observation 2177 48,570 89,008 2179 71

Note: x denotes engine displacement.
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Figure 1. Sample distribution of engine displacement.

Moreover, because some information is often omitted by app users in the process of
data uploading, there are many missing values in the original dataset. The corresponding
processing methods are introduced in the data preprocessing section of this paper.

3.1.2. Environment Information

The climate information data were extracted from the monthly reports on surface
meteorological observations provided by the meteorological departments of the provincial
regions in China. In this study, climate data from 2013 to 2017 were collected, which is
consistent with the spatial and time range of the fuel consumption rate data.

Each climate data item contains the station number of the observation area and the cor-
responding annual and monthly statistical information. The relevant climate characteristics
of feature number, specific feature name, and units of measurement are listed in Table 3.

As can be seen, the climate information includes the temperature, barometric pressure,
precipitation, sunlight, and other information. The climate information of different regions
during the sample period also exhibits great variation, which has a non-negligible impact
on the real-world fuel consumption rate of automobiles.

Because the climate of a certain region exhibits a relatively fixed pattern within a
certain month, this study averaged the climate conditions within each month in different
cities, as climate factors. For the wind direction, an Arabic number 1 was assigned to a north
wind, and this number was increased by 1 for every 22.5 degrees clockwise. Additionally,
if the wind speed was less than or equal to 0.2 m/s, conditions were considered to be calm,
which corresponds to the Arabic number 17. Therefore, there are in total 17 wind direction
categories successively numbered from 1 to 17.
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Table 3. Factors of meteorological data and units of measurement.

Feature
Number Feature Name Unit Measurement Resolution

V10004 Average pressure 0.1 hPa

Monthly

V10201 Extreme maximum pressure 0.1 hPa
V10202 Extreme minimum pressure 0.1 hPa
V13004 Mean vapor pressure 0.1 hPa
V12001 Average temperature 0.1 ◦C
V12011 Extreme maximum temperature 0.1 ◦C
V12012 Extreme minimum temperature 0.1 ◦C
V12211 Mean maximum temperature 0.1 ◦C
V12212 Mean minimum temperature 0.1 ◦C
V12201 Average temperature anomaly 0.1 ◦C
V13003 Mean relative humidity 1%
V13007 Minimum relative humidity 1%
V11002 Average wind speed 0.1 m/s
V11042 Maximum wind speed 0.1 m/s
V11041 Extreme maximum wind speed 0.1 m/s
V11212 Maximum wind direction azimuth
V11043 Extreme maximum wind direction azimuth
V13011 Average precipitation 0.1 mm
V13052 Maximum daily precipitation 0.1 mm
V13212 Precipitation anomaly percentage 1%
V13012 Daily precipitation ≥ 0.1 mm days 1 day
V14033 Sunshine percentage 1%
V14032 Sunshine time 0.1 h
V15001 Road grade

3.2. Factor Extraction
3.2.1. Factor Extraction of Fuel Consumption Rate Information

The fuel consumption rate information obtained from the BearOil app mainly contains
the following information: the vehicle factors, reference fuel consumption rate, and real-
world fuel consumption rate.

For a given user who drives the same car, there are always certain fluctuations in
the fuel consumption rate reported each time, and this is attributed to different driving
behaviors and driving environments at different times. To clarify the objective of our
research, we aimed to predict the average real-world fuel consumption rate of specific
vehicle types under specific climate conditions. Therefore, the real-world fuel consumption
rate reported by a specific app user in different cities and months was averaged and treated
as the prediction target.

There were significant differences among fuel consumption rates for different vehicle
brands, engine parameters, and transmission parameters. Therefore, this study selected
the above factors as the model input. The displacement and power characteristics of the
engine parameters are continuous variables, while the other characteristics are discrete
variables. Because the number of vehicle series belonging to different brands was too large
in our data set, there would have been too many dimensions if we had employed one-hot
encoding. Since a certain correlation exists between the proposed parameters and the exact
vehicle series, the vehicle series was not used as an input.

Moreover, although many studies have reported that the reference value provided
by the MIIT and the actual fuel consumption rate are quite different, the reported official
data can still act as a reasonable reference for the real-world fuel consumption rate, and
could also be used to reduce errors from abnormal fuel consumption values uploaded by
the app users. This study, therefore, incorporates the reference consumption given by the
MIIT, which is a continuous variable, as an input.
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3.2.2. Factor Extraction of Climate Information

The available climate factors are listed in Table 3. We merged the fuel consumption
information with the corresponding climate information in different cities and for different
dates, and combined them to be used as input variables in our models. Additionally, to
prevent multicollinearity originating from strong correlations between climate characteris-
tics, it was necessary to test the correlation coefficients between these input variables. The
climate variable pairs with correlation coefficients above 0.8 are listed in Table 4.

Table 4. Correlation table of climate factors.

Feature A Feature B Pearson Correlation

V12012 V12212 0.99296
V12012 V12211 0.96847
V12012 V12001 0.98527
V12012 V13007 0.70025
V12012 V13004 0.95931
V12012 V12011 0.93381
V14032 V14033 0.90305
V12212 V12211 0.975585
V12212 V12001 0.99426
V12212 V13004 0.95482
V12212 V12011 0.95523
V13212 V13012 0.99583
V10202 V10004 0.99927
V10202 V10201 0.99769
V10004 V10201 0.99944
V12211 V12001 0.99237
V12211 V13004 0.93057
V12211 V12011 0.97633
V11042 V11041 0.83803
V12001 V13004 0.94535
V12001 V12011 0.97182
V13007 V13003 0.86545
V13004 V12011 0.88903

As can be seen, there is a strong positive correlation between many climate-related
variable pairs, and this required us to select a proper set of corresponding characteristics.
For each variable pair with a strong correlation, only one characteristic was selected, and all
the remaining environment factors that were chosen to be inputs in the estimation process
are listed in Table 5.

Table 5. Selected environment factors.

Feature Number Factor Name Unit

V10004 Average pressure 0.1 hPa
V12001 Average temperature 0.1 ◦C
V12201 Average temperature anomaly 0.1 ◦C
V13003 Mean relative humidity 1%
V11002 Average wind speed 0.1 m/s
V11212 Maximum wind direction azimuth
V11043 Extreme maximum wind direction azimuth
V13011 Average precipitation 0.1 mm
V13012 Daily precipitation ≥ 0.1 mm days 1 day
V14032 Sunshine time 0.1 h
V15001 Road grade ◦

From the above analysis, it was found that there is a strong correlation between the
average and extreme values of the climate-related variables, e.g., between the average
temperature and average minimum temperature. For factor pairs with a strong correlation,
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this study preferred to select the average value as the input. The main reason is that
extreme values only represent the climate conditions over a short period, while the average
value is more representative of the climate condition over a given period of time, namely,
one month in our research.

3.3. Model Selection and Criteria

The objective of this study was to predict the real-world fuel consumption rate of
vehicles according to the vehicle factors and climate conditions. The selection of the model’s
input factors was described in the above section. The proposed models and model selection
procedure are introduced in this section.

The proposed regression models included linear regression, naïve Bayes regression,
neural network regression, decision tree regression, and LightGBM models. There were
three main criteria for model selection. Firstly, fuel consumption prediction was targeted
for the continuous dependent variable, and therefore regression models were selected.
Secondly, in addition to the accuracy of fuel consumption prediction, our study was
also concerned with identifying the important factors affecting fuel consumption, which
involves interpretability. That is, we needed to know whether the results of each model
were easy to explain. In this case, linear regression and decision tree regression are suitable
choices, since linear regression is good at obtaining linear relationships, while decision
tree models are developed for obtaining nonlinear relationships in the data set. Thirdly,
fuel consumption prediction has a strong practical application scenario, and the prediction
speed of the fuel consumption is often of great concern in car owners’ use. Therefore, we
referred to the practices in studies by Sousa et al. [32], Pattekari and Parveen [33], Alsalman
et al. [34], and Chen et al. [35] and added LightGBM models, naive Bayes models, and
neural network models, which have shown good performance in practice and have high
prediction speed, like linear regression and decision tree regression.

The criteria for model selection included the mean absolute error (MAE = 1
n ∑n

i=1
∣∣yi − y′i

∣∣),
mean absolute percentage error (MAPE = 1

n ∑n
i=1
|yi−y′i|

yi
), mean squared error

(MSE = 1
n ∑n

i=1
(
yi − y′i

)2), and R squared (R2 = 1− ∑n
i=1(yi−y′i)

2

∑n
i=1(yi−yi)

2 ).

In the above formula, yi denotes the true value, y′i denotes the predicted value, and
yi denotes the mean actual value. Smaller MAE, MAPE, and MSE, and larger R2 values
mean that the error between the predicted and the actual value is smaller, indicating that
the model fits well and performs better.

The selection criteria for the architecture of the models can be summarized as follows.
(1) Neural network regression: the neural network consists of three fully connected layers.
In the input layer, the number of neurons is set as 64 and the activation function is set
as ReLU (f (x) = max (0, x)), which is conventionally used in DNNs [36]. In the hidden
layer, the number of neurons is set as 64 based on the geometric pyramid rule proposed
by Masters [37] and the activation function is set as ReLU. The L2 regularizer and L1
regularizer are selected for the weighting matrix and the output matrix, respectively, and
lambda is set as 0.05 to reduce overfitting [38]. In the third layer, the number of neurons is
set as 1. RMSprop is selected as the optimizer [39]. The loss function is set as MSE and the
metric function is set as MAE [40,41]. (2) Decision tree regression: the maximum tree depth
is set as 4, the maximum number of leaf nodes is set as 200 and the minimum number of
sample leaves is set as 2. Parameter selection is based on a genetic algorithm to obtain the
optimal parameter settings that give maximum accuracy [42]. (3) LightGBM: the number
of leaf nodes is set as 25, the learning rate is set as 0.01, and the number of iterations is set
as 5000 for better accuracy [43].

4. Results
4.1. Model Training and Experiment Results

The raw data consisted of 2,424,379 records from 2002 to 2020 for 194,516 users. During
data preprocessing, 53,852 records containing missing values and 106,223 records outside
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the observation period were removed, leaving 2,264,304 records. After excluding the
detected fuel consumption outliers, 1,453,299 data records remained. Finally, we took the
average value of the fuel consumption for the same car models and obtained 142,005 items
of data.

After removal of the missing values and outliers, and standardization from the original
data, 70% of the data were randomly selected as the training dataset, and the remaining
30% of the data were used as the test dataset, according to common methods used for
predicting engine performance based on machine learning models [44–46]. In this paper,
the input data to the training set consisted of a randomly selected 70% sample. The models
were reproducible using the same software, program, and data. However, the results were
non-repeatable due to uncontrolled randomization which causes computational variation
that cannot be removed for the learning libraries used, such as Keras (with TensorFlow),
in this study. In fact, this unique type of uncontrolled randomization is a significant and
common challenge for machine learning methods [47].

In Table 6, the ‘refConsumption’ row represents the result from directly using the MIIT
reference fuel consumption rate for model prediction. As can be seen, the error between
the reference fuel consumption rate value and real-world fuel consumption rate value is
quite large. The remaining rows represent the training and prediction errors of the four
regression models, respectively.

Table 6. Results of regression model training and testing.

Model
Training Data Testing Data

MAE MAPE MSE R2 MAE MAPE MSE R2

refConsumption 1.896 26.4% 5.351 −2.245 1.899 26.4% 5.386 −2.241
Linear regression 1.024 11.8% 1.840 0.575 1.028 11.8% 1.854 0.577

Naïve Bayes 1.024 11.8% 1.840 0.575 1.028 11.8% 1.854 0.577
Neural network 0.963 11.3% 1.630 0.624 0.985 11.5% 1.707 0.610

Decision tree 1.079 12.4% 2.013 0.536 1.086 12.5% 2.048 0.532
LightGBM 0.858 9.8% 1.343 0.690 0.914 10.4% 1.552 0.646

We referred to studies by Liu et al. [1] and Liu et al. [48] to present the average fuel
consumption results for each model by displacement distribution, as shown in Table 7.
The criteria for displacement distribution are based on the Chinese national standard
GB3730.1-88. Clearly, LightGBM shows the best prediction, with the smallest difference
from the actual fuel consumption.

Table 7. Average fuel consumption results for each model by displacement distribution.

Model
Engine Displacement (L)

x ≤ 1.0 (1.530%) 1.0 < x ≤ 1.6
(34.203%)

1.6 < x ≤2.5
(62.680%)

2.5 < x ≤4.0
(1.534%)

x > 4.0
(0.050%)

refConsumption 5.653
(−0.932)

6.447
(−1.605)

7.631
(−1.859)

10.681
(−2.439)

12.917
(−2.562)

Linear regression 7.014
(+0.884)

8.185
(+0.006)

10.171
(−0.040)

11.420
(+0.160)

17.586
(−0.656)

Naïve Bayes 7.0137
(+0.884)

8.185
(+0.006)

10.171
(−0.040)

11.420
(+0.160)

17.587
(−0.655)

Neural network 6.282
(+0.152)

8.118
(−0.061)

10.204
(−0.007)

11.194
(−0.066)

17.785
(−0.458)

Decision tree 7.573
(+1.443)

8.214
(+0.035)

10.125
(−0.085)

11.362
(+0.102)

16.680
(−1.563)

LightGBM 6.590
(−0.034)

8.056
(+0.007)

9.516
(−0.003)

13.161
(−0.029)

17.408
(−0.835)

Note: The values in brackets below the displacement range indicate the percentage for each displacement range, while the values in
brackets below the model results are the differences between the average of the predicted values and the corresponding average of the
actual fuel consumption.
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4.2. Comparison and Analysis of Different Models

In this section, we compare the five different models according to our proposed criteria.
Figure 2 shows the mean absolute error (MAE) between the model prediction and the

actual values of each model. As can be seen, the mean absolute error from the reference
fuel consumption rate provided by the MIIT was 1.899 L/100 km, while the mean absolute
error using our dataset and including vehicle factors and climate conditions was approxi-
mately 1 L/100 km. Among the models, the mean absolute error of the LightGBM model
(0.914 L/100 km) was the lowest.

Figure 2. MAE of different models.

However, the MAE only indicates the absolute value of the deviation and may not
sufficiently reveal the magnitude of the relative deviation from actual values. Therefore,
Figure 3 shows the mean absolute percentage error (MAPE) between the model prediction
and the actual values. The results reveal that the MAPE between the reference fuel con-
sumption rate and the real-world fuel consumption rate was approximately 26.4%. The
best prediction model was still LightGBM, with a corresponding MAPE of 10.4%, which
is better by 16% compared with the reference rate. This demonstrates that our proposed
prediction model could be applied practically in the prediction and revision of vehicle fuel
consumption, thus enhancing the credibility of the fuel consumption score.

Additionally, the mean square errors (MSE) of the model prediction and actual values
of different models are shown in Figure 4. The results reveal that the mean square error of
the LightGBM model is the lowest. This verifies our proposition that LightGBM performs
best among the five regression models.

R2 is an index measuring the degree to which a set of independent variables explain a
dependent variable in a regression model. From Figure 5, it can be seen that the reference
fuel consumption rate given by MIIT explains the real-world fuel consumption rate to a
very low degree, while the highest R2 value is that of the LightGBM model, followed by
that of the neural network model. The results indicate that the dependent variables in the
LightGBM model explain 64.6% of the variation in the independent variable.
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Figure 3. MAPE of different models.

Figure 4. MSE of different models.

From the above results, it can be seen that the prediction errors of the real-world fuel
consumption rate by the five regression models based on the vehicle and climate parameters
were much lower than that of the reference fuel consumption rate value provided by the
MIIT. The MAPE can be reduced by 16% by most of them, showing that the proposed
prediction model has practical significance and can be used in real-world applications to
produce much more precise estimates of the fuel consumption rate.

Moreover, the comparison between the results obtained by the different models
revealed that the LightGBM regression model was the optimal model with the best perfor-
mance in reducing the prediction error.
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Figure 5. R2 of different models.

5. Discussion

The above results reveal that the LightGBM model achieved the best performance. The
estimated weights of the input parameters in the LightGBM model are shown in Figure 6.

Figure 6. Weights of 18 factors in LightGBM model.

From the relative weights of the different factors, it can be seen that the reference fuel
consumption rate is the most significant input characteristic, which is consistent with the
reality that the MIIT reference value could act as a proxy for a large proportion of the actual
fuel consumption.

The engine power and vehicle brand are input factors with weights exceeding 0.1,
which indicates that vehicle parameters, as well as the exact brand, could impact the real-
world fuel consumption to a non-negligible degree. The extra explanatory power brought
by engine power and vehicle brand could be attributed to unrealistic testing conditions,
which do not capture the different fuel consumption rates of different vehicles.
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Additionally, the engine displacement is an input factor with a weight exceeding 0.05,
which indicates the great effect of atmospheric pressure on the combustion efficiency of
gasoline fuel.

Moreover, among the environment factors, the average pressure (V10004), road grade
(V15001), average temperature (V12001), average wind speed (V11002), and sunshine time
(V14032) also have a great impact on the real-world fuel consumption rate.

In summary, in this part of the study we carried out a comparative analysis of the
vehicle and climate factors in our dataset and found that, in addition to the reference fuel
consumption rate, the vehicle factors that had the greatest impact on the real-world fuel
consumption rate were the vehicle brand, engine power, and engine displacement. The
climate factors that had the greatest influence on real-world fuel consumption rate were
the average air pressure, average temperature, and sunshine time.

According to the research in this paper, the parameters required for fuel consumption
prediction are of two types: one is the vehicle parameter information and the other concerns
the matching with the corresponding external environment data, according to the user’s
location and time information. These include temperature, humidity, pressure, wind speed,
precipitation, sunshine, road grade, etc. Therefore, the models in this paper could be
embedded into the BearOil app as a forecasting module. Users would only need to input
vehicle parameters and location information, and the corresponding fuel consumption
prediction results would be obtained. Furthermore, we extracted information from millions
of users and their corresponding car models in our study. Therefore, each car model
corresponded to different records from different users, even if it was extracted for the same
date. In the future, we will try to track each user for a longer period of time and extract
refueling data from the user for each month to construct a complete time series dataset. For
this purpose, we could refer to the study of Bokde et al. [49] and apply the Monte_Carlo
function of the ForecastTB package for better model comparison, since this requires the
input of a time series dataset.

6. Conclusions

With the ongoing innovation and development in information technology, artificial
intelligence (AI) will greatly accelerate technological progress in our increasingly digital
and data-driven world. In this paper, we utilized five regression models, namely, linear
regression, naïve Bayes regression, neural network regression, decision tree regression,
and LightGBM models, to estimate the real-world fuel consumption rate of light-duty
vehicles in China, based on a large sample of individual real-world driving and fuel
consumption data.

The MAE, MAPE, MSE, and R2 values between the real-world fuel consumption rate
and the value predicted using the vehicle and climate factors were far better than when only
referring to the fuel consumption rate provided by the MIIT of China. The comparison of
the different models revealed that the LightGBM regression model performed best among
the candidate models according to all our criteria (MAE = 0.914 L/100 km, MAPE = 10.4%,
MSE = 1.552, and R2 = 0.646).

This study also assessed 18 different factors and determined the priority ranking of
each factor. From the relative weight of each factor in the LightGBM model, it can be seen
that the three most important factors were the reference fuel consumption rate, engine
power, and vehicle brand.

In our study, China’s light-duty vehicles show higher fuel consumption rates com-
pared to the NEDC, which provides a meaningful reference for other countries. Therefore,
a proper light-duty vehicle test cycle should be adopted for the reality of the situation in
China, while the role of the NEDC must be seriously evaluated.

Achieving cleaner transportation also matters greatly to China. In the traditional
vehicles industry, manufacturers should emphasize the technological improvement of key
components such as the engine. For instance, dual-fuel engines that are promising for
balancing superior power with combustion efficiency can be focused upon. Based on the
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assessments of the United States and the European Union [50,51], waste heat recovery
(WHR) can effectively reuse produced heat as engine work, reducing fuel consumption.
That is worth learning.

Additionally, the government should tighten the regulation of vehicle fuel consump-
tion, prevent overconsumption from entering the market, and support heterogeneous
vehicle models in different ways. It is wise to adopt policy tools such as taxes and credits
to guide consumer preferences to certain vehicle brands that show strong environmental
responsibility and fuel-saving potential, especially new energy vehicles.
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