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Abstract: It is considered necessary to implement advanced controllers such as model predictive
control (MPC) to utilize the technical flexibility of a building polygeneration system to support
the rapidly expanding renewable electricity grid. These can handle multiple inputs and outputs,
uncertainties in forecast data, and plant constraints, amongst other features. One of the main
issues identified in the literature regarding deploying these controllers is the lack of experimental
demonstrations using standard components and communication protocols. In this original work,
the economic-MPC-based optimal scheduling of a real-world heat pump-based building energy
plant is demonstrated, and its performance is evaluated against two conventional controllers. The
demonstration includes the steps to integrate an optimization-based supervisory controller into a
typical building automation and control system with off-the-shelf HVAC components and usage
of state-of-art algorithms to solve a mixed integer quadratic problem. Technological benefits in
terms of fewer constraint violations and a hardware-friendly operation with MPC were identified.
Additionally, a strong dependency of the economic benefits on the type of load profile, system design
and controller parameters was also identified. Future work for the quantification of these benefits,
the application of machine learning algorithms, and the study of forecast deviations is also proposed.

Keywords: building technologies; experimental demonstration; MIQP; model predictive control;
heat-pump control

1. Introduction

In the year 2020, the number of heat pumps sold in the German market was more
than 12 times the number in 2000 [1]. These figures are similar in other European markets
and emphasize the switch to an electricity-based heating in the building sector. By com-
bining different storage types and renewable sources, leading to multiple useful energies,
heat-pump systems can align local power generation and demand and facilitate lower
regional power generation costs with limited grid expansion [2]. Thus, heat pumps can
play an important role in a Smart Grid context [3]. However, if not operated or controlled
intelligently, such an expansion may also adversely affect grid supply and conventional
control strategies implemented as rule-based control; e.g., following thermal load (FTL) or
on–off schedules regulated by the grid-operator’s contract are limited in their conceptual-
ization to realize a coordinated operation with the grid and other prosumers [4,5]. Optimal
control methods such as model predictive control (MPC) that consider the multiple inputs
and constraints occurring in the operation of such complex plants have shown promising
results over conventional control in the range of 9.5% to 26% [6], 49% to 84% [7], and 8% to
100% [8] in terms of economic benefits or a reduction of 50% in the thermal energy wastage
of a residential PV-trigeneration system [9] and up to 24% in primary energy consumption
and CO2 emissions of a large-scale polygeneration plant [10]. Further, predominantly theo-
retical, studies find 18% energy savings due to MPC in long-term simulations of complex
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heating systems compared to set-point-based controllers [11] or a 16% cost reduction due
to the MPC control of heat pumps with variable prices [12]. Different economic MPC
formulations for thermal building control have been compared to proportional control
in [13], and the effect of various system variations was extensively studied in [14].

Still, a common consensus in the research community regarding gaps in this field is the
lack of demonstrations that implement MPC on heat-pump systems with off-the-shelf com-
ponents and compare its performance with conventional controllers under almost-identical
conditions [5,15,16]. The technical challenges in deploying such optimization-based energy
plant management systems are firstly the inclusion of the operational restrictions of these
components and secondly the integration of the controller in existing building automation
and control (BAC) frameworks. Additionally, for the closest possible comparison of two
controllers, the generation of the same thermal load profile during operation with each
controller is of paramount importance. This poses another technical challenge due to the
varying weather conditions and user profiles. Therefore, to ensure identical boundary
conditions and external input parameters as much as possible, many experimental com-
parison studies have taken place in controlled laboratory environments, such as a 125-day
experiment on MPC for heat pumps in a single-family house lab environment showing a
9% cost reduction in comparison to a conventional controller [17]. Further experimental
studies in lab environments can be found in [18].

Comparative studies in buildings in real use are rare. Public office buildings are
investigated in [19–21] and a commercial building in [22]. Experimental studies on MPC
for residential buildings in real use can be found in [23]. A limited experimental operation
of an MPC for a PV–heat pump system in a real single-family house can be found in a
recent work by the authors [24], where original black-box models for a heat-pump system
using a tank storage with an internal heat exchanger, model simplification techniques,
technologically motivated soft constraints, and ANN optimization have been applied.

The knowledge of state-of-art in building technologies, simulation models, and mathe-
matical optimization gained in our previous work is now applied for a novel demonstration
of optimal scheduling (economic and grid-supportive) of a real-world heat pump system
within a mixed integer quadratic problem (MIQP) in a lab environment. The main objective of
this work is the comparison of this optimal control to two different types of conventional
controllers: firstly, a controller based on the forbidden runtime for a heat pump decided by
the grid-operator, and secondly, a typical FTL controller.

The methodology section in this paper (Section 2) focuses on the heat-pump system
and the BAC, the formulation of the economic-MPC problem, and the implementation of
the conventional controllers. The experimental results with the different controllers are
presented and discussed in Section 3.

2. Methodology

A polygeneration system is installed at the Institute of Energy Systems Technology
(INES) at Offenburg University of Applied Sciences. The plant can switch between different
operation modes, facilitating the operational flexibility to consume or feed-in electricity
while satisfying all seasonal thermal loads. The details of the experimental set-up and
models are explained in a previous work by the authors [25] and, for the sake of brevity,
Sections 2.1 and 2.2 highlight only aspects relevant in the scope of this paper.

2.1. Experimental Set-Up

The block flow diagram of the INES system is shown in Figure 1. The low-voltage grid
(GRID) supplies electricity to the air–water–electric heat pump (HP) with a heating capacity
of 16 kWth and a nominal COP of 4.5. The outdoor fan (OF) consumes 0.9 kWel and is
the heat source for the HP’s evaporator circuit. A mixed hot water tank (HT) with 1.5 m3

and an electrical resistance heating coil (COIL) of peak-load 6 kWel and 98% efficiency is
also installed. The reference heating load (HL) and cooling load (CL) are emulated in a
hardware-in-the-loop set-up comprising a 34 m² thermally activated test chamber with a
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power dissipation of 80–90 W/m² and two controllable thermostats with a heating and
cooling capacity of 18 kWth and 10 kWth, respectively. On the other hand, the reference
electrical load (EL) profile is only used for the energy balance and cost calculations but
does not have any physical effects on the hardware.

Figure 1. Block flow diagram of the heat pump-based building energy system. HP (heat pump),
COIL (heating coil), HiL (hardware in the loop), HT (hot tank), HL (heating load), EL (electrical load),
OF (outdoor fan).

The data acquisition and control was implemented within a standard industrial BAC
framework, as shown in Figure 2. Here, the supervisory controller on the management
level can use either MPC or a conventional rule-based controller (for comparison purposes)
to switch on the HP and/or the COIL either in parallel or alternatively. Forecasts for
weather conditions and loads required by the MPC are retrieved automatically from local
or remote services and databases. The management-level controller is programmed in
Python and sends its control signal to the PLC (OPC server) on the automation level. A local
machine (desktop computer) interacts with this server for the storing and visualization of
monitoring data. Additionally, the local machine also runs a state-machine-based lower-
level controller that uses the control signal (plant state) value in its sequential control logic
to perform the state-based actions and transition tasks; e.g., valve sequencing or switching
pumps for that particular state. The data flow represented by dash-dotted arrows uses only
digital signals and standards necessary for OPC, API, and SQL communication, whereas
solid arrows use both digital and analog signals; e.g., resistance and voltage and the M-Bus
communication protocol. Additionally, the grey lines are part of the control loop that
repeats once every control horizon, and black lines are part of the monitoring loop that
repeats continuously every 300 ms.
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Figure 2. Building automation and control framework of the INES plant. Dash-dotted arrows
represent only digital signals, whereas solid arrows represent analog and digital signals. Grey lines
are part of the control loop, and black lines are part of the monitoring loop. The supervisory controller
on the management level and the storage of data, its visualization, and a state-machine lower-level
controller on the automation level are operated on the same local machine, represented as the box
with dotted line.

2.2. Optimal Controller

The optimal control framework was developed based on an energy flow MIQP and
implicit-MPC techniques. An economic-MPC problem, where a continuous economic cost
function unifies economic optimization with process control by applying economically
driven signals such as operating costs or energy costs [26], was formulated using a receding
horizon scheme and physically motivated constraints for real-world applications. The following
assumptions were made regarding the objective of the MPC:

• The COP of the HP is assumed constant as the focus of this work is the demonstration
of the optimal control framework, and part-load efficiencies could be represented as
linear curve fits without any substantial adverse effects on future formulations of the
MIQP framework;

• The consumption-related costs for final energies are of more significance in an eco-
nomic optimization than the operation and maintenance costs;

• If the minimum up/down time factors are included as parameters in the MPC problem,
then it is redundant to include start-up and shut-down costs in the cost function;

• The tariff for final energies represents an ideal market situation in which the complex
interactions between energy markets, economic and regulatory frameworks, and the
status of the grid are all captured in the tariff structure.

These assumptions simplify certain highly complex issues with less significance to the
end user of such control algorithms; e.g., the logic behind electricity price signals generated
by grid operators or the different primary energy factors. Additionally, under the above
assumptions, the cost-efficient operation of a plant could be considered supportive of the
larger regional grid.
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2.2.1. Models

Linear energy balance models were implemented to calculate the relevant consump-
tion and production of components as a function of their binary control signal. For instance,
the thermal capacity of the HP Pth,HP was calculated using (1), where Pth,HP,nom is the
nominal capacity and a parameter of the heat pump model and bHP ∈ {0, 1} is its binary
switch. The electrical consumption of the heat pump Pel,HP was calculated using (2) based
on its nominal coefficient of performance COPHP, also defined as a model parameter,

Pth,HP = bHP Pth,HP,nom, (1)

Pel,HP =
bHP Pth,HP,nom

COPHP
. (2)

Similar calculations were made for the heating capacity of the COIL Pth,COIL and the
electrical consumption of the COIL Pel,COIL and of the OF Pel,OF. For the mixed HT model,
only one temperature THT was calculated using an ordinary differential equation based on
the energy balance for the HT with a mass mHT shown below:

mHT cp ṪHT = Pth,HP + Pth,COIL − Pth,HL, (3)

where HP and COIL represent the sources and the heating load Pth,HL generated by the
HiL, which is supplied by the HT.

2.2.2. Operational Constraints

The constraints were classified as critical constraints or noncritical constraints for the
simplification of the optimization problem. The violation of critical constraints leads to a
solution which is not physically implementable on the plant or which leads to a system
shut-down, requiring a complete manual restart. The violation of noncritical constraints
does not lead to a complete manual restart, and they are included for the numerical
stability of the algorithm and hardware-friendly operation. Critical constraints—e.g., the
operation of HP outside the minimum permissible evaporation pressure and the maximum
permissible condensation pressure of the refrigerant by using the corresponding minimum
ambient temperature Tamb,min and maximum HT temperature THT,HP,max, respectively—
were formulated using the Big-M constraint technique [27] as shown in (4) and (5).

Tamb + M(1− bHP) ≥ Tamb,min, (4)

THT + M(1− bHP) ≤ THP,max. (5)

where M ∈ R+ is a large number chosen according to values typically expected for other
variables in the equations (cf. Table 1) making the equations hold true. For instance, the
application of (4) ensures that if Tamb < Tamb,min, and with a large M, the equation will
hold true only if bHP = 0. In other cases, bHP can be 0 or 1.

The minimum runtime constraint for the HP was implemented using the following
set of equations:

bHP(t)− bHP(t + 1)− FlankHP ≤ 0, (6a)

−bHP(t) + bHP(t + 1)− FlankHP ≤ 0, (6b)
minruntime∗dt

∑
0

FlankHP ≤ 1. (6c)

Here, the combination of Equations (6a) and (6b) results in the counting of FlankHP,
which is a binary variable that takes the value 1 every time the HP is turned on or off.
Using (6c), only one flank is allowed within a user-defined HP parameter min-runtime
since the sum of all FlankHP over this period, calculated as the product of minruntime and
the discretization parameter dt, should be less than 1.
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Noncritical constraints—e.g., constraints on system states—as soft constraints [28]
using slack variables make the numerical solution of the optimization problem more stable.
For instance, the THT was limited within the minimum THT,min and maximum THT,max

set-points as shown in (7). The violation of this constraint will not lead to the infeasibility
of the optimization problem but will be penalized in the cost function.

THT,min ≤ (THT + sTHT
) ≤ THT,max. (7)

Finally, the electric power balance was calculated using the following equation:

Pel,HP + Pel,COIL + Pel,OF = Pel,grid,buy. (8)

The simplified models and constraints form an explicit ODE system with a total
number of states nx = 1, number of binary controls nb = 2, number of constant parameters
np = 12, number of time-varying parameters nc = 4 , and number of slack variables
ns = 1. These are given in (9a)–(9d), and the parameter set can be gathered from the model
descriptions in the previously published work [29].

x = [THT], (9a)

bT = [bHP, bCOIL], (9b)

cT = [Tamb, Pth,HL, Pel,EL, rel,buy, rel,sell], (9c)

s = [sTHT
]. (9d)

2.2.3. Objective Function

The objective function shown in (10) finds an optimal control sequence that minimizes
the consumption-related costs for electricity and penalizes violations of the soft constraints
with a weight Ws ∈ Rns×ns ,

min
x,b,s

tf

∑
to

(
Pel,grid,buy(t)rel,buy(t) + s(t)TWss(t)

)
, (10)

subject to, for t ∈ [t0, tf ],

ẋ(t)− f (x(t), b(t), c(t), p) = 0, (11a)

h(x(t), b(t), c(t), s(t), p) ≤ 0, (11b)

x(t0)− x0 = 0, (11c)

s(t) ≥ 0, (11d)

b(t) ∈ {0, 1}{nb}. (11e)

The system dynamics and path constraints are considered in (11a) and (11b) with
functions f (·) and h(·), respectively, while the initial state constraint is shown in (11c).
The magnitude of the slack variables s(t) is bounded by an upper bound value (subscript
“ub”) and lower bound value (subscript “lb”). The switches of the components are the binary
controls b(t) that are constrained to take a value either 0 or 1 in (11e).

2.3. Conventional Controllers

Two types of conventional controllers were implemented for comparison against the
MPC. The first was implemented in the experimental set-up and is based on the forbidden
runtime for HP, contractually fixed by the local grid-operator. Here, the grid-operator
forbids the plant-operator to run the HP at certain time frames during the day. These time
frames are implemented in an if–else logic along with a conventional base load matching–
following thermal load strategy. A base heating load until 10 kWth is satisfied by the HP
alone and higher (peak) heating loads by the HP and COIL in parallel. A hysteresis dead-
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band logic was implemented for the individual components using the corresponding tank
temperatures. The second controller is based on the FTL logic of the first controller but
does not include the forbidden runtime logic, and it was implemented only in a simulation
environment. The hysteresis dead-band controller is indeed the standard internal control
logic often implemented by the HP manufacturers. However, the tuning of the dead-band
parameters is often done during the commissioning of the HP in a non-trivial process
and requires a great deal of expertise over the given system. In this study, a commercial
HP of the air–water–electricity type is used, and the following thermal load controller
is implemented in conjunction with the internal control logic by tuning the dead-band
parameters explicitly and specifically for this plant and scenario. Hence, the MPC is indeed
compared not to a standard conventional controller but to an enhanced conventional
controller tuned specifically to this plant. Grey-box models that were validated against
experimental data in a previous work by the authors were used for the simulation [29].

2.4. Scenario Implementation

Table 1 summarizes the parameters used to implement the scenario and set up the
MPC. The load forecast is based on a residential house with an area of ca. 250 m² and peak
heating load of 5.5 kWth and peak electrical load of 3.2 kWel [30]. The load profile is scaled
up to match the component sizes at INES with a peak heating load of 16 kWth on weekends
and a peak electrical load of 10.5 kWel. A two-price tariff structure for the rate of electricity
rel,buy is used with a high tariff of 0.23 €/kWhel from 07:00 to 22:00 and a lower tariff of
0.203 €/kWhel from 22:00 to 07:00.

Table 1. Data for the time-varying parameters and constant parameters used to set up the MPC
scenario.

Parameter Data/Value Parameter Data/Value

For implementing the scenario: For MPC set-up:

Ambient temperature
forecast

DarkSky API for
Offenburg [31]

Forecast horizon 24 h

Load forecast Deterministic
residential

Control horizon 15 min

Electricity price forecast Two-price tariff Optimization framework SCIP [32]

For physical constraints: Solver maximum
CPU time 30 s

Minimum runtime
of HP 1 h Value for M in Big-M

formulation 500

Maximum HT temperature
for HP operation Tr,HP,H,max

42 °C Value for slack weights W 1× 104

Minimum ambient temperature
for HP operation Tr,HP,H,min

10 °C

Set feed-line temperature in test
chamber heating circuit Tf,TC,set

35 °C

For comparison between the various controllers, the residential house profile men-
tioned in Section 3.1 was used to create a transition season scenario. The ambient tempera-
ture and load forecast for all controllers was similar over the entire monitoring campaign.
The set-point for the feed-line to test chamber Tf ,TC,set was fixed at 35 °C. The set-points
for the hysteresis of the conventional controllers were selected after multiple tuning ex-
periments and discussions with the component manufacturers specifically for the INES
laboratory set-up. The time ranges required to implement the HP forbidden run-times
were given in the contractual obligations of the grid-operator. All conventional control
parameters are specified in Table 2, and MPC related parameters are the same as in Table 1
specified earlier.



Energies 2021, 14, 7953 8 of 15

Table 2. Parameters for implementing the reference controller for summer with switching point.

Parameter Value

THT,min 38 °C
THT,max 42 °C

Switching point 10 kW
HP forbidden runtimes 10:15–12:15, 17:30–18:30, 21:15–22:15

3. Experimental Results

A demonstration of the receding horizon MPC is given in this section, and its technical
feasibility is evaluated using the results of a single MPC iteration, multiple MPC iterations,
and the comparison to reference controllers, under almost-identical conditions. The dura-
tion of the test was ca. 3.5 days for each controller, whereby the ambient temperature did
not vary significantly between both tests.

3.1. Single MPC Iteration

The complexity of an MPC problem arising from the interdependence of multiple
inputs and outputs—e.g., ambient temperature, initial state, physical constraints, and
electricity prices—is illustrated using the results of one iteration of the MPC scheme for a
typical heat pump system application in the transition period.

The control signal vector from one MPC iteration comprises the switching sequence
for the heat pump and the coil over the entire horizon. The resulting thermal balance,
electrical balance, and tank temperatures corresponding to this binary control signal are
shown in Figure 3a–c. The ambient temperature forecast over the horizon is shown in
Figure 3d. The following significant observations are made:

Grid-supportive operation of MPC: Considering the assumption that the electricity
price structure reflects the grid’s status in terms of consumption and generation profiles
and grid congestion, the economic-MPC operates the plant in a grid-supportive manner
wherein (i) the switching of the components is reactive to the electricity price, (ii) the
storages are charged predictively to support peak thermal loads, and (iii) longer duration
of peak loads are avoided. For instance, as seen in the thermal balance in Figure 3a, the HP
operation is preferred in times of higher electricity price rel,buy with its thermal capacity
Pth,HP covering the heating load Pth,HL and excess energy (negative values) stored in the
tank. As expected, this leads to a rise in the tank’s temperature HTavg and energy QHT,
as seen in Figure 3c. On the other hand, the COIL operation Pth,COIL is reduced in these
times. It is instead operated during lower Pth,HL and lower rel,buy at night to charge the HT
predictively to support the forecasted peak loads of the next day. Such an operation leads
to shorter peaks in the total electrical requirement Pel,total, especially in times of higher
rel,buy as seen in the corresponding electrical balance in Figure 3b. Since the system has no
possibility to produce electricity, the Pel,total is completely satisfied by purchasing electricity
from the grid Pel,grid,buy. It is observed that longer HP operation during the day for the
charging of the HT does not occur, and HP operation during the night is also avoided.
These patterns are clarified in the next point on the operational constraints.

MPC finds an optimal state vector while respecting operational constraints: The
optimal solution for switches of the heat pump maintains a minimum run time of 1 h.
However, a longer operation is avoided in certain cases as the HTavg increases beyond the
Tr,HP,H,max and the HP is turned off as shown in Figure 3c. Additionally, it is seen that the
optimal solution maintains the HTavg (system state) to be always higher than the set-point
temperature for the heating feed-line circuit Tf ,TC,set. Hence, an adequate temperature for
the heating circuit is always provided. Similarly, it is observed in Figure 3d that HP is
not operated in times in which the ambient temperature is lower than the minimum limit
set for HP operation Tr,HP,M,min. This is in accordance with the operational constraints
formulated in the optimization problem.

The morning and afternoon peaks in the forecasted load are in accordance with a
typical residential load profile. It is clear here that with MPC, multiple aspects of the
plant’s operation are covered. However, one of the core advantages of this controller is the
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update of the forecast, and this is observed in the next section with results from multiple
MPC iterations.

Figure 3. Graphical representation and feasibility check of the MPC’s solution at 09:45 (Time = 0 h)
for a 24 h forecast horizon for a test in transition season. (a) Thermal balance, (b) electrical balance,
(c) tank energy and temperature, and (d) ambient temperature forecast. Negative Pth,HP represents
charging of HT.

3.2. Multiple MPC Iterations

As an example of the receding horizon scheme, multiple MPC iterations during a 24 h
experiment with the same parameters as in Table 1 were collected. The thermal balance for
an iteration after every 4 h is illustrated as a subplot in Figure 4. As the forecast horizon
recedes or shifts, the heating load forecast Pth,HL and electricity price rel,buy for the next
24 h are updated and a new optimal schedule is calculated. For instance, in the second
subplot (2020-04-30 13:30) the Pth,HP,H between Time = 0 h to 4 h is different compared to
the solution in the first subplot (2020-04-30 09:30). Thus, the actual solution applied on the
plant was more adjusted to the current situation of the plant and the grid. Additionally, the
forecasted operation of the COIL also differed in all the subplots due to the update of the
forecast data.

The computation time for an iteration was often between 3 to 5 s. This was con-
siderably shorter than the control horizon and facilitated the usage of most recent plant
data at each iteration. Since only the first element from the MPC’s solution vector was
applied to the plant, it was not possible to determine without monitoring data how the
real operation occurred. Hence, it is of paramount importance to have such data from
experiments, especially for a comparison with conventional controllers. Results from such
an experiment are presented in the next section.
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Figure 4. Multiple MPC iterations in 4 h intervals representing a 24 h test. The shifting of the horizon and updates of the
forecast, electricity rate, and optimal schedule are noticed in each sub-plot; for instance, the inclusion of more HP operations
during the cheaper electricity rate as a higher heating load is forecasted on the horizon.
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3.3. Comparison of Conventional Controllers and MPC

The forbidden runtime controller and MPC were each tested for ca. 68 h, and the
FTL conventional controller was simulated for the same time. All controllers started with
similar initial tank temperatures. To understand the fundamental differences in the actions
of the controllers, the switching sequences and electrical balance along with the electricity
price are plotted in Figure 5a–c. Additionally, as an example of the physical constraints, the
average tank temperature for the three controllers is plotted in Figure 5d. The results of the
test with a conventional forbidden runtime controller are plotted in blue (Conv), with MPC
in orange (MPC), and with the simulated FTL controller in green (Sim). The significant
observations are summarized below.

Grid-adverse operation of conventional controllers and grid-supportive operation of
MPC: Interpreting the switching patterns in Figure 5a,b with respect to the electricity price
rel,buy, it is observed that the conventional controllers operated the HP and the COIL for
longer and more often than the MPC during the day. This behavior was more frequent when
high thermal and electrical loads occurred simultaneously and was significantly grid-adverse
since electrical peaks (see Figure 5c) were generated during times of high rel,buy. On the other
hand, the MPC predictively charged the HT (almost until maximum permissible temperatures
for HP operation) by operating the COIL at night time with lower tariff.

Simpler tuning of MPC: The tuning of the MPC was done by defining the permissible
operation range in the HT using the parameters THT,max and THT,min, which corresponds
to Tf ,TC,set. The operation was further bounded with temperature limits Tr,HP,H,max and
Tr,HP,M,min, which were promptly defined in datasheets of the components. These con-
straints specified a wide operational range. As discussed in Section 3.1, the MPC automat-
ically found an optimal solution within this range, whereas the tuning of the reference
controllers was a non-trivial process of commissioning routines, simulation studies, or
guesswork based on the recommendation of individual component manufacturers (often
not directly suitable for multicomponent systems).

Hysteresis control is noticed for conventional controllers: In Figure 5d, the FTL
strategy using hysteresis control over the tank temperature is observed for the both conven-
tional controllers. The HP is activated when the tank temperature is cooler than THT,min

and remains active until the tank temperature is hotter than THT,max. This operation gives
the hysteresis controller its distinct saw-tooth pattern.

MPC did not violate minimum runtime constraint: The heat pump was operated
at least for 1 h by the MPC as specified in its minimum runtime constraint. However,
since this constraint was not implemented as a hard rule in the conventional controllers, it
sometimes operated for less than 1 h. Either this restriction must be programmed in the
if–else logic of the conventional controller or implemented over the tuning of the hysteresis
temperatures. Executing any of these will be non-trivial compared to the simple tuning of
the MPC.

Adequate heating feed-line temperature in HT: All controllers were able to maintain
an adequate heating temperature in the HT above Tf ,TC,set = 35 °C. Nevertheless, the MPC
uses the tank capacity optimally with the average tank temperature often reaching the
minimum limit of 35 °C. Especially at the end of experiment, the predictive nature of MPC
control uses the tank energy completely and finishes with a tank temperature of ca. 35 °C.

An economic analysis of the experimental data from the first conventional controller
and MPC and simulation data of the second conventional controller showed a small saving
of ca. 1.5% in the consumption-related costs with MPC over the conventional controllers.
However, it must be taken into account that the forbidden runtime from the grid operator
was not part of the MPC framework, and to draw definite conclusions, further testing
will be necessary. An operational analysis of the measured data (similar to Figure 3d)
revealed that MPC did not violate the minimum ambient temperature and maximum
hot tank temperature conditions for HP operation. The conventional controller, however,
violated this constraint by operating the heat pump even though Tamb was lower than the
restricted value of 10 °C. More experiments and simulations with various load profiles
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and component sizes will be necessary to quantify the benefits with high certainty. This is
planned in the near future.

⠀愀⤀

⠀戀⤀

⠀挀⤀

⠀搀⤀

Figure 5. Experimental and simulation data for the three controllers with respect to (Top to bottom) (a) heat pump operation,
(b) coil operation, (c) grid consumption, (d) average tank temperature.

4. Discussion

The analysis of single and multiple MPC iterations in Sections 3.1 and 3.2 established
the technical feasibility of MPC to provide a predictive switching schedule capable of
considering multiple input forecasts, hardware constraints, and storage capacities simul-
taneously. Additionally, the process of a receding horizon scheme was displayed. However,
for the development of the component models and interpretation of the results, significant
domain knowledge was necessary.

The linear models provided fast solutions and were directly implementable in a MIQP
framework but could not capture the complex part-load behaviors of the heat pump.
Similarly, the implementation of a simple two-tariff electricity price structure did not help
to demonstrate the complete advantage of the MPC scheme, which would be achieved
with complex real-time dynamic pricing. These factors should be included in the further
development of the MPC framework.

The grid-friendly operation of the suggested MPC was only valid under the circum-
stance that the electricity price signal captured all features of the grid and incentivized
the production or consumption of electricity at relevant time frames. Thus, in its current
form, with a 15 min control horizon and working with slower thermal systems, the opti-
mization may not be able to participate in faster markets such as primary reserve control
or secondary reserve control. A significant question still to be answered would be the
ability of the hardware to react to this volatility and choice of control horizon. However,
if a signal from the energy market in the future provides for these challenges and allows
slower thermal systems to intelligently interact with the market without rebound effects,
then the optimal control framework proposed in this study could be a practical approach.
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Finally, the MPC was also compared under almost-identical circumstances with two
different conventional controllers: firstly, a conventional controller implementing both
the following thermal load-base load matching strategy and the forbidden runtime for HP as
per the grid-operator’s contract, and secondly, an exclusive FTL conventional controller.
No significant economic benefits were seen in the MPC due to a strong dependence
on the type of profile and controller tuning parameters. For instance, the conventional
controllers were specifically tuned for the INES heat pump plant and may be considered as
enhanced conventional controllers that are difficult to beat in this scenario. Nonetheless, an
operational constraint on minimum ambient temperature for the heat pump was violated
by the reference controller since it was not part of its hard-coded logic. Either the code
must be adjusted or, with further commissioning tests and calculations or simulations, the
control logic of the system would need to be adapted. Moreover, such a tuning may be
effective only for the target scenario, and the performance of the reference controller may
deteriorate outside the tuning range, making it difficult to adapt for other systems.

5. Conclusions and Outlook

The potential of MPC for operating complex energy systems in a coordinated net-
work and supporting the energy grid of the future is expressed in previous theoretical
studies, and this work demonstrated its viability and usefulness in a practical environment.
Theoretical concepts of mixed integer quadratic programming and the practical framework
of a building automation and control system were integrated together to demonstrate the
application of an economic-MPC approach for the optimal scheduling of a model heat pump
plant with standard industrial components at the INES polygeneration lab. Technical
advantages of MPC that were also reported in the literature—e.g., easier tuning and ex-
tension of existing framework, grid-supportive scheduling of the components, and lower
constraint violations—were experimentally verified.

The majority of the workload for setting up the MPC was in the modeling efforts.
No significant economic benefits could be found, and they were lower than the range
reported in literature. However, since the magnitude of benefits is strongly dependent on
various factors such as the load profile and initialization parameters of the MPC, it will
be necessary to perform further extensive tests both as lab experiments and simulations
to quantify the benefits. One immediate way to proceed would be to implement the high-
accuracy plant model as a digital-twin for the MPC solver and simulate longer test periods.
Additionally, in the near future, it is planned to implement real-time pricing signals in the
optimization framework to demonstrate further the advantages of MPC. Another exciting
possibility for research could be to implement machine learning algorithms to develop the
control-oriented component models in order to reduce the modeling efforts in deploying
the MPC.
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Nomenclature
The following abbreviations are used in this manuscript:

Symbols
b Binary control vector (-)
c Vector of time-varying parameters (-)
cp Specific heat capacity kJ/(kg·K)
COP Coefficient of performance (-)
f Function (-)
m Mass (kg)
p Vector of constant parameters (-)
P Power (kW)
r Rate or price of final energy (€/kWh or €/m³)
R Set of real numbers (-)
s Vector of slack variables (-)
t Time, time period (-)
T Temperature (°C)
Ws Weighting matrix for slack variables (-)
x Vector of states (-)
Indices
avg Average
amb Ambient
buy Buying from grid
COIL Heating coil
el Electrical or electricity
f Final time step
fc Forecast
grid Related to electricity grid
H High-temperature circuit
HL Heating load
HP Heat pump
HT Heat tank
max Maximum
min Minimum
M Medium temperature circuit
nb Number of binary controls
ns Number of slack variables
nom Nominal value
OF Outdoor fan
r Return-line entering a component
sell Selling to the grid
th Thermal
TC Test chamber
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