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Abstract: This paper presents the development of a supercapacitor energy storage system (ESS)
aimed to minimize weight, which is very important for aerospace applications, whilst integrating
smart functionalities like voltage monitoring, equalization, and overvoltage protection for the cells.
The methodology for selecting the supercapacitor cells type/size is detailed to achieve the safest
and most energy-dense ESS. Additionally, the development of the interface electronics for cells’
voltage monitoring and overvoltage protection is presented. The proposed design implements a
modular distributed architecture coordinated using communication buses to minimize the wirings
and associated complexity and to enable system reconfiguration and expansions, as well as fault
diagnoses. Validating the proposed ESS functionalities has been done via experimental testing and
the results are presented and discussed.

Keywords: aircraft electrical power systems; more electric aircraft; supercapacitors energy storage

1. Introduction

The newly introduced different types of electrically driven systems in future more
electric aircraft (MEA) significantly increase power demands, and thus increasing gen-
eration capacity requirements for the onboard electric power system (EPS) [1–5]. Some
specific loads with high dynamics such as flight actuation systems are characterized by
significant power requirement peaks. These types of loads impose significant challenges
for EPS rating definition and EPS stability and power quality [1,6]. To minimize these
effects, the first option is to sufficiently increase the rated power of the onboard power
generation system to handle these power peaks. This means the power generators should
be sized based on the peak power rather than the average power, leading to a significant
increase of EPS weight and volume. The second option is to keep generators sizing based
on the average power consumption whilst implementing an energy storage system (ESS),
that should be sized to smooth these high power peaks, i.e., to supply the high dynamic
transient loads such that these become invisible for the generators. Implementation of the
ESS in this way allows enhancing the design of the MEA EPS by reducing the sizing of
the power generators, as well as adding the capability of storing the regenerative energy
produced by some of the loads like the electromechanical actuator (EMA) for future re-use
instead of dissipating it in braking resistors. In addition, smoothing of the power demand
surges seen by generators lead to reduced power cables size following the average power
consumption rather than its peak power/current requirement, which results in further
reduction of EPS weight.

A wide range of ESSs is available in the market with different characteristics for
different applications [7,8]. Aircraft applications impose design constraints for the weight
of onboard equipment to minimize fuel consumption. Accordingly, the ESS needs to fulfill
its required power and energy ratings at minimum weight. This makes the electrochemical
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ESS a better choice for aircraft EPS. There are two representative devices, which are the
lithium-ion batteries that are characterized by high specific energy (100–300 Wh/kg), and
supercapacitors (SC) that that characterized by high specific power (20 kW/kg) at low
specific energy (5–10 Wh/kg) [9]. Accordingly, the ESS selection depends on the specific
requirements of the applications. For centralized ESS where a central energy storage unit
supplies all the targeted loads, and thus requires large energy capacity ESS, the use of
Li-ion batteries is more adequate. In contrast, distributed ESSs where distributed energy
storage units are localized at each load, and thus do not require high energy capacity but
need significant power capability to cover the short-term peak power demands; therefore,
in these, the use of SC is more adequate [10]. Much research has been focused on the
utilization of the SC-based ESS for aircraft EPS and its corresponding benefits; however,
most of the research is focused on studying the energy management strategies [6,11–13]
rather than studying the design optimization for the SC-ESS itself, including its associated
management subsystems in terms of ESS weight and reliability, which are very important
parameters for aircraft applications.

In the paper, the design and implementation of SC-based ESS and associated manage-
ment subsystems for SC cells’ voltage monitoring, balancing, and overvoltage protection
are proposed.

The paper is organized into five sections. In Section 2, the sizing and optimal design
of the SC energy storage system are investigated. In Section 3, The design of cells’ voltage
monitoring and overvoltage protection subsystem is presented. In Section 4, an exper-
imental evaluation of the proposed system is presented, and Section 5 summarizes the
conclusions of this work.

2. Sizing of the SC Energy Storage System

The supercapacitor energy storage system (SC-ESS) as shown in Figure 1 should
be interfaced to the DC power bus through a DC/DC converter that controls the SC-ESS
charge/discharge process. The SC-ESS is constructed based on series/parallel combinations
of SC cells to achieve the required voltage level and energy capacity. The SC-ESS presented
in this paper is designed to fulfill the energy and power requirements listed in Table 1
based on the power consumption of an EMA load profile in an aircraft. Accordingly, the
equivalent capacitance of the SC-ESS can be estimated based on these requirements as [14]:

Ceq =
2Estr

V2
max − V2

min
(1)

where Estr is the targeted energy capacity of the SC-ESS whilst Vmax and Vmin are its tar-
geted maximum and minimum operating voltages, respectively. Accordingly, the selected
minimum and maximum voltages strongly affect the SC-ESS sizing to achieve the required
energy capacity (Estr).
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The common design technique is selecting the SC-ESS maximum voltage at a value
close to the DC bus voltage whilst keeping its minimum voltage around 50% of that value
to limit the current ratings of both the SC-ESS and the interfaced DC/DC converter, as
this impacts the size/weight of their magnetics/semiconductors. Accordingly, by setting
the minimum and maximum SC-ESS voltages, the capacitance of the single SC cell in the
string, which consists of n series-connected cells, can be estimated as follows:

Ccell =
Ceq

n
; n =

Vmax

Vcell−max
(2)

where Vcell-max is the maximum operating voltage of the single SC cell (2.7 V for most SC
cells). This capacitance can be obtained directly using a single cell or by implementing a
parallel combination of two or more cells based on the available standard capacitances.

Applying the SC-ESS design requirements listed in Table 1 to Equations (1) and (2)
and selecting Vmax = 260 V and Vcell-max = 2.5 V, yield the required capacity of the single SC
cell to be around 150 F. However, changing the targeted SC-ESS operating voltage range
can enable utilization of other cells with higher/lower capacities that might have different
characteristics and, hence, make a choice based on the best cell. Accordingly, to identify
the best SC cell to be implemented to achieve minimum overall weight for the SC-ESS, the
characteristics of the different commercially available SC cells in the range of 100–400 F
have been evaluated focusing on their specific energy (Wh/kg) as it significantly affects the
overall SC-ESS weight. Figure 2 shows the specific energy of the different SC cells within
the selected range. As can be seen, the 150 F SC cell that matches the design calculations at
Vmax = 260 V has lower specific energy (4.7 Wh/kg) compared to the 350 F cell produced by
Company1, which has 25% more specific energy (5.9 Wh/kg). Accordingly, implementing
this cell in the targeted SC-ESS resulted in a 25% reduction in the overall SC cells weight.
However, implementing such large capacity cells requires a reduction of Vmax according to
(1) and (2), which adds the advantages of reducing the number of series-connected cells
and thus reducing the complexity of cells’ voltage monitoring and overvoltage protection
subsystem. In the meantime, it also adds the disadvantage of increasing the current rating
of the interfaced DC/DC converter, thus increasing its size and weight.

Table 1. SC-ESS Targeted Specifications.

Parameters Value

Maximum power 2 kW
Bus voltage 270 V

Energy capacity 10.9 Wh
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The two design options (based on 150 F and 350 F cells) are investigated based on
the specifications of the targeted SC-ESS listed in Table 2 and the design parameters for
designs are presented. As it can be seen, design B, which utilizes the 350 F SC cell, has
reduced weight by nearly 22% compared to design A. However, the maximum current
required to deliver the given power (2 kW) at minimum voltage is increased significantly
and this may increase the thermal stress of the SC-ESS and increase the weight/size of
the interfaced converter. As per the investigations done in [15,16], implementing a two-
channel interleaved converter in conjunction with wide band-gap semiconductor switches
can minimize the effects of the increased current rating on the converter size/weight.
Additionally, the investigations carried out in [15] show minor differences in terms of
thermal stresses between the two cells due to the better thermal characteristics and reduced
internal resistance of the 350 F SC cell.

Table 2. Comparing Design Options for SC-ESS.

Parameters Design A Design B

Utilized SC cell capacity 150 F 350 F
Maximum operating voltage 260 V 120 V
Minimum operating Voltage 120 V 65 V

No. of series-connected cells/string 106 48
The maximum operating current of the SC-ESS 16.7 A 31 A

No. of parallel strings 1 1
Total no. of utilized SC cells 106 48

Total weight of the utilized SC cells 3.4 kg 2.8 kg

3. SC Cells’ Voltage Monitoring and Overvoltage Protection Subsystem

Based on the proven weight savings in the targeted SC-ESS according to design B that
utilizes 350 F SC cells, this design is considered for the SC-ESS and its associated subsystems
are presented in this paper. To facilitate the design, manufacturing, and maintenance of
the SC-ESS, a modular distributed architecture has been considered such that the targeted
system is based on four series-connected modules, each of these consisting of 12 series-
connected SC cells with associated voltage monitoring and overvoltage protection circuits,
as presented in the following subsections.

3.1. SC Cells’ Voltage Monitoring Subsystem

Monitoring the voltages of the SC cells is essential to ensure safe SC-ESS operation, as
well as assessing the cells’ state of charge (SoC) and state of health (SoH). To monitor all 48
cells with a minimum wirings/complexity, a distributed cells’ voltage monitoring subsys-
tem is implemented such that each module has a localized cells’ voltage monitoring board
and all the boards alongside the modules are sharing the data via a communication channel
which selected to be based on serial peripheral interface (SPI) protocol. The module’s volt-
age monitoring board as illustrated in Figure 3 consists of signal conditioning electronics
with associated filtration for adaptation of the measured signals to a suitable level, and
some application-specific integrated circuits (ASICs) for analog to digital conversion (ADC)
and communication protocols.
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Figure 3. Block diagram representing cells’ voltage monitoring within a single SC module as a part
of the full voltage monitoring subsystem of the SC-ESS.

3.2. SC Cells’ Overvoltage Protection Subsystem

The maximum operating voltage of the SC cells should be strictly limited at the rec-
ommended level by the manufacturer as exceeding this limit may result in a catastrophic
failure of the cell. Accordingly, an overvoltage protection subsystem is mandatory to
ensure SC-ESS safe operation. Overvoltage protection of the cells can be achieved by either
preventive or corrective actions. Overvoltage protection subsystems based on preven-
tive action are employing one of the cells’ voltages active or passive voltage balancing
techniques [17–19] that act during the charging process to prevent the weak cells within
the string from reaching the maximum voltage limit whilst other stronger cells are still
charging. On the other hand, overvoltage protection subsystems based on corrective action
are employing shunt circuits that act only if one or more cells hit the maximum voltage
limit during the charging process to completely bypass those cells preventing them from
further charging whilst allowing other cells within the string to continue charging. The
overvoltage protection (OVP) in the proposed SC-ESS design is built to allow both preven-
tive and corrective actions to ensure maximum reliability for the OVP subsystem. The block
diagram shown in Figure 4 represents the different parts of the proposed OVP subsystem.
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The subsystem consists of a shunt circuit per cell, formed by a semiconductor switch
(Si) and a power resistor (Ri), which is controlled by two independent controllers: the
first controller is built based on a voltage comparator with associated filtering and signal
conditioning electronics. Each SC cell has its controller that works independently from
other cells’ controllers or system central controller and activates the shunt circuit of the cell
automatically once the cell voltage hits the preset limit; hence, it performs the corrective
actions of the OVP subsystem. The second controller is built based on a digital platform
that implements digital electronics (ASICs) that receives commands via the inter-integrated
circuit I2C communication channel from the central controller. Each SC module has its
digital controller that controls the shunt circuits of the entire cells based on pulse width
modulation (PWM) with different duty cycles defined by the central controller according
to the degree of mismatching between measured cells’ voltages to perform cells’ voltage
balancing as a preventive action for overvoltage protection.

The resistance of the shunt resistor should be selected based on the level of degrada-
tion/capacity fade of the SC cells to be mitigated. Under the specified constant charging
power (2 kW), the current of the SC-ESS decreases as the voltage increases with the increase
in the SoC. Accordingly, the value of the current at which the degraded SC cell hits the
maximum voltage limit (2.5 V) is changing according to the level of its capacity fading (as
a percentage of the initial capacitance), as illustrated in Figure 5. As it can be seen, with
no capacity fade in the SC cells, all the cells hit the limit when the voltage of the SC-ESS
reaches 120 V (100% SoC), where the current of the SC-ESS is 16.7 A, and hence, no actions
are required from the OVP subsystem, since charging is going to be stopped anyway. On
the other hand, introducing 10% capacity to one or more cells causes the voltage of these
specific cells to hit the limit early whilst the voltage of the SC-ESS is still at around 108 V.
Continuing the charging process under this condition forces the OVP subsystem to bypass
degraded cells by activating their corresponding shunt circuits. The current of the SC-ESS
at this condition is around 18.6 A; hence, the shunt circuit associated with the cell should
be able to handle the full value of this current/power. For the proposed SC-ESS, the shunt
resistor is selected to be 100 mΩ to allow a shunt current of 25 A at maximum cell voltage
limit (2.5 V). This allows mitigating the capacity fade of ≈33%, as illustrated in Figure 5.
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The preventive action of the OVP subsystem does not affect the sizing of the shunt
circuit as the balancing mechanism should operate with a significantly lower power com-
pared to the protective action. Hence, sizing of the shunt circuit based on protective action
supports both protective and preventive actions. Accordingly, the balancing act can operate
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with continuous current (defined by cell voltage and the resistance of the shunt circuit) for
fast balancing, or with PWM current for slower operations, which gives more flexibility to
design the balancing algorithms.

The block diagram of the developed SC-ESS with all subsystems is shown in Figure 6.
The full system consists of four series-connected modules, each with a power board
(connecting SC cells) and two detachable boards for voltage monitoring and OVP as can
be seen in Figure 7. The aluminum enclosure of the module is used as a heat sink for the
shunt resistors for more savings in weight.
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4. Experimental Validations

To validate the proposed SC-ESS design, a test setup based on the manufactured
four modules has been constructed. The test setup as shown in Figure 8 consists of a
power supply that acts as a charger, the electronic load that acts as the system load, and
the Arduino Mega 2560 board that acts as the SC-ESS controller. The Arduino board is
interfaced with the PC to perform data-logging as well.

The evaluation of the proposed SC-ESS design with associated management electronics
is achieved by three tests as detailed below.
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Figure 8. Experimental setup to validate the proposed design for SC-ESS: (a) test setup; (b) assembled
SC-ESS.

The first test is reported in Figure 9, in which the operation and performance of the
protective action of the OVP subsystem are evaluated. It is conducted under continuous
charge–rest–discharge cycling with 15 A constant current charge and 1.8 kW constant
power discharge whilst voltages of the SC cells are measured by the voltage monitoring
subsystem and the stack current (SC-ESS current) are measured by a current prob. The
test started with forced voltages mismatches between the SC cells of 0.25 V to emulate a
capacity mismatch of 12.5%, which caused the cells that were initially at higher voltages to
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hit the maximum voltage limit (2.5 V) at t = 38 s, and hence the OVP subsystem activated
the shunt circuits associated with those cells. Accordingly, their voltages were kept at the
limit whilst other cells continued charging until they hit the limit as well (at t = 47 s in
this experiment) and the shunt circuits for these cells were also activated to maintain their
voltages at the limit until the charging process stopped (at t = 62 s). The overshoots of cell
voltage due to the switching of the shunt circuit were maintained at ≤10 mV to ensure the
maximum utilization of cells’ capacity. Hence, the test confirmed that the OVP subsystem
enabled safe operation for SC-ESS that was able to complete the charge cycles and protect
the SC cells that were at the risk of overvoltage under the imposed voltages mismatching
that emulates SC cell capacity fade due to degradation.
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Figure 9. Performing of protective action to protect the SC cells by OVP subsystem during continuous
charge/discharge cycling: (a) SC cells’ voltages; (b) charge/discharge power and current.

The second test, which is reported in Figure 10, evaluates the operation of the OVP
subsystem under given discharging commands from the central controller to demonstrate
its ability to execute these commands when required. These may happen under some
conditions like a safe discharge of the ESS. The test starts with SC cells having unequal
voltages, and because of applying multiple charging cycles (at t = 49 s and 130 s) with
a current of 15 A, the voltage raises to the overvoltage limit; hence, activation of the
associated shunt circuits by the OVP preventive action was required at t = 160 s, which
continued in operation until the charging cycle stopped at t = 172 s. Accordingly, as the
shunt resistors were thermally coupled with the modules’ enclosures, the power dissipated
in these resistors causes temperatures (temp.) of the SC-modules’ enclosures to be increased,
as can be seen for modules 1 and 2 recorded temps. (M1 and M2 case temp.) in Figure 10.
At t = 360 s, a controlled discharge for the cells of modules 1 and 3 with a duty cycle of
20% followed by faster discharging with larger duty cycles (50% and 75%) based on the
received commands from the central controller were reported. Accordingly, the energy
stored in these modules dissipated in the shunt circuits, causing temp. increase, as can
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be seen for M1 case temp. recorded. When the voltage reached 0.4 V, the discharge was
stopped. At t = 580 s, the remaining cells at modules 2 and 4 were also commanded to
discharge with a 75% duty cycle and this caused a fast discharge to the same minimum cell
voltage as the other cells (0.4 V) to achieve a balanced state for all cells while the energy
dissipated in these modules also caused its temp. to be increased, as can be seen for M2
case temp. recorded. This test confirmed the capability of the OVP subsystem to perform a
discharge cycle for specific SC cells by a specific discharging rate controlled by the duty
cycle that is selected by the central controller and commanded via the communication bus.
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Figure 10. Performing of protective action to protect the SC cells by OVP subsystem during
charge/discharge as well as responding to discharge commands from the central controller: (a) SC
cells’ voltages; (b) SC-modules 1 and 2 enclosures’ temperatures; (c) Discharge power and current.
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The third test reported in Figure 11 evaluates the capability of the OVP subsystem to
perform active dissipative SC cells’ voltage balancing as a preventive action to protect the
cells from overvoltage. The test started with imposed mismatching between the SC cells,
then a discharging process by a constant power of 1.3 kW was introduced at t = 15 until
t = 25 s to allow for sufficient charging time for demonstrating the balancing mechanism.
After a rest time provided to the system, the charging of the SC-ESS started by a constant
current of 5 A at t = 47 s, where the mismatching in the SC cells’ voltages was detected by
the system controller. Following this, it activates the balancing mechanism in which the
SC cells’ shunt circuits equalize the cells’ voltages in a PWM manner. As can be seen, the
balancing mechanism succeeded to achieve balanced cells’ voltages in a considerable short
time due to the ability of the shunt circuit to handle a high current.
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In the three experimental tests, the results confirmed the proposed functionalities of
the SC-ESS in terms of cells’ voltage monitoring, fast balancing, and overvoltage protection.

5. Conclusions

In this paper, the design and implementation of a smart super-capacitors-based energy
storage system are proposed. The SC-ESS sizing was optimized for minimum weight by
utilizing the highest energy density cells of the available range and adjusting the operating
voltage range, accordingly. In addition, the proposed design minimizes the wirings for
cells’ voltage monitoring and overvoltage protections by employing a distributed mod-
ular architecture coordinated via standard communication buses. SC cells overvoltage
protection subsystem in the proposed design implements two independent preventive and
protective actions for the highest reliability to ensure safe operation of the system. Finally,
the design is validated based on experimental testing of the manufactured modules and
the results showed the achievement of the proposed functionalities.
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