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Abstract: This work presents the mathematical framework of the nth-Order Comprehensive Adjoint
Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (abbreviated
as “nth-CASAM-L”), which is conceived for obtaining the exact expressions of arbitrarily-high-
order (nth-order) sensitivities of a generic system response with respect to all of the parameters
(including boundary and initial conditions) underlying the respective forward/adjoint systems. Since
many of the most important responses for linear systems involve the solutions of both the forward
and the adjoint linear models that correspond to the respective physical system, the sensitivity
analysis of such responses makes it necessary to treat linear systems in their own right, rather than
treating them as particular cases of nonlinear systems. This is in contradistinction to responses
for nonlinear systems, which can depend only on the forward functions, since nonlinear operators
do not admit bona-fide adjoint operators (only a linearized form of a nonlinear operator admits
an adjoint operator). The nth-CASAM-L determines the exact expression of arbitrarily-high order
sensitivities of responses to the parameters underlying both the forward and adjoint models of
a nonlinear system, thus enable the most efficient and accurate computation of such sensitivities.
The mathematical framework underlying the nth-CASAM is developed in linearly increasing higher-
dimensional Hilbert spaces, as opposed to the exponentially increasing “parameter-dimensional”
spaces in which response sensitivities are computed by other methods, thus providing the basis for
overcoming the “curse of dimensionality” in sensitivity analysis and all other fields (uncertainty
quantification, predictive modeling, etc.) which need such sensitivities. In particular, for a scalar-
valued valued response associated with a nonlinear model comprising TP parameters, the 1st-
−CASAM-L requires 1 additional large-scale adjoint computation (as opposed to TP large-scale
computations, as required by other methods) for computing exactly all of the 1st-−order response
sensitivities. All of the (mixed) 2nd-order sensitivities are computed exactly by the 2nd-CASAM-
L in at most TP computations, as opposed to TP(TP + 1)/2 computations required by all other
methods, and so on. For every lower-order sensitivity of interest, the nth-CASAM-L computes the
“TP next-higher-order” sensitivities in one adjoint computation performed in a linearly increasing
higher-dimensional Hilbert space. Very importantly, the nth-CASAM-L computes the higher-level
adjoint functions using the same forward and adjoint solvers (i.e., computer codes) as used for
solving the original forward and adjoint systems, thus requiring relatively minor additional software
development for computing the various-order sensitivities.

Keywords: forward model; adjoint model; sensitivity analysis and the curse of dimensionality;
arbitrarily-high-order (nth-order) comprehensive adjoint sensitivity analysis methodology; 1st-, 2nd,
3rd- and 4th-order sensitivities; nth-order sensitivities

1. Introduction

The functional derivatives of results (customarily called “responses”) produced by
computational models of physical systems with respect to the model’s parameters are
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customarily called the “response sensitivities.” The first-order sensitivities have been used
for a variety of purposes, including: (i) understanding the model by ranking the impor-
tance of the various parameters; (ii) designing and optimizing the system; (iii) performing
“reduced-order modeling” by eliminating unimportant parameters; (iv) quantifying the
uncertainties induced in a model response due to model parameter uncertainties; (v) per-
forming data assimilation and model calibration; (vi) performing “model validation” by
comparing computations to experiments to address the question “does the model repre-
sent reality?” (vii) prioritizing improvements in the model; (viii) performing “forward
and inverse” predictive modeling” to obtain best-estimate predicted results with reduced
predicted uncertainties.

As is well known, non-linear operators do not admit adjoint operators; only linear
operators admit corresponding adjoint operators. For this reason, many of the most
important responses for linear systems involve the solutions of both the forward and the
adjoint linear models that correspond to the respective physical system. Included among
the widest used system responses that involve both the forward and adjoint functions
are the various forms of Lagrangian functionals, the Raleigh quotient for computing
eigenvalues and/or separation constants when solving partial differential equations, the
Schwinger functional for first-order “normalization-free” solutions [1–5]. These functionals
play a fundamental role in optimization and control procedures, derivation of numerical
methods for solving equations (differential, integral, integro-differential), etc. The analysis
of responses that simultaneously involve both forward and adjoint functions makes it
necessary to treat linear systems in their own right, rather than treating them as particular
cases of nonlinear systems. This is in contradistinction to responses for nonlinear systems,
which can depend only on the forward functions, since nonlinear operators do not admit
bona-fide adjoint operators—only a linearized form of a nonlinear operator admits an adjoint operator.

As is well known, even the approximate determination of the first-order sensitivities
∂R/∂αi, i = 1, . . . , TP of a model response R to TP parameters αi using conventional
finite-difference methods would require at least TP large-scale computations with altered
parameter values. The computation of the distinct second-order response sensitivities of a
would require TP(TP + 1)/2 large-scale computations, which rapidly becomes unfeasible
for large-scale models comprising many parameters, even using supercomputers. The
computation of higher-order sensitivities by conventional methods is limited in practice by
the so-called “curse of dimensionality” [6] since the number of large-scale computations needed
by conventional, including statistical, methods for computing higher-order response sensitivities
increases exponentially with the order of the response sensitivities.

This work presents the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodol-
ogy for Response-Coupled Forward and Adjoint Linear Systems,” which will be abbreviated as
“nth-CASAM-L.” The nth-CASAM-L enables the efficient computation of the exact expres-
sions of the 1st-, 2nd-, 3rd- and 4th-order sensitivities of a generic system response which
depends on both the forward and adjoint state functions with respect to all of the parame-
ters underlying the respective systems. The mathematical framework of the nth-CASAM-L
is constructed upon the fundamental principles introduced by Cacuci [7–11] for the first-
and second-order adjoint sensitivity analysis methodology. The qualifier “comprehensive”
is used because the original methodology [7–11] was extended to provide exact expressions
for the sensitivities of a system response not only to the system’s internal parameters but
also to the system’s uncertain boundaries and internal interfaces in phase-space [12,13]. The
principles underlying the 2nd-CASAM-L were applied to an OECD/NEA reactor physics
benchmark (a reflected plutonium sphere), for which the response of interest was the
experimentally-measured [14] neutron leakage through the sphere’s outer surface. The nu-
clear data used in the computational modeling of the neutron transport processes through
this spherical benchmark included 21,976 imprecisely known model parameters, as follows:
180 group-averaged total microscopic cross sections, 21,600 group-averaged scattering mi-
croscopic cross sections, 120 parameters describing the fission process, 60 parameters
describing the fission spectrum, 10 parameters describing the system’s sources, and
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6 isotopic number densities. The results obtained for the 1st- and 2nd-order sensitivi-
ties of this benchmark’s leakage response to all of these 21,976 uncertain model parameters
were presented in [15–20]. Notably, the 2nd-order sensitivities caused the expected value
of the leakage response to be significantly larger than the computed value of the leakage
response. The importance of the 2nd-order sensitivities increased as the relative standard
deviations for the cross sections increase. For fully correlated cross sections, for example,
neglecting the 2nd-order sensitivities would cause an error as large as 2000% in the expected
value of the leakage response, and up to 6000% in the variance of the leakage response.

Subsequently, Cacuci [21] has developed the 3rd-order CASAM-L, which was applied
to compute [22–24] the largest 3rd-order sensitivities of the OECD/NEA benchmark, which
turned out to be among the (180)3 = 5,832,000 third-order mixed sensitivities (of which
988,260 are distinct) of this benchmark’s leakage response with respect to the benchmark’s
180 microscopic total cross sections. The results obtained in [22–24] indicated that the
absolute value of the largest 3rd-order relative sensitivity is ca. 437 times larger than
the largest 2nd-order sensitivity and is ca. 20,000 times larger than the largest 1st-order
sensitivity. These results have motivated the recent development by Cacuci [25] of the
4th-order CASAM-L, which was applied [26,27] to compute the 45,212,895 distinct fourth-
order sensitivities of this benchmark’s leakage response with respect to the benchmark’s
180 microscopic total cross sections.

This work is structured as follows: Section 2 presents the general mathematical
formulation of the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology
for Response-Coupled Forward/Adjoint Linear Systems” (nth-CASAM-L). This innovative
methodology has no comparable counterpart in the literature and is applicable to any
linear system. The general mathematical formulation of the nth-CASAM-L will be proven
to be correct by using “proof by induction,” which comprises the usual steps, namely:
(i) establish the pattern underlying the nth-CASAM-L for n = 1; (ii) assume that the pattern
is valid for an arbitrarily high-order, n; (iii) prove that the pattern is valid for n + 1.
The starting point for this proof by induction is the 4th-order CASAM-L developed by
Cacuci [25], which is summarized, for convenient referencing, in Sections 4 and 5.

Section 3 presents the framework of the “5th-Order Comprehensive Adjoint Sensi-
tivity Analysis Methodology Response for Coupled Forward/Adjoint Linear Systems”
(5th-CASAM-L). The 5th-CASAM-L will be developed from the 4th-CASAM-L, and its
mathematical formalism will also be shown to coincide with the particular formulas ob-
tained by setting n = 5 in the general nth-CASAM-L framework. The 5th-CASAM-L is also
innovative and has no counterpart in the literature. Finally, Section 4 offers conclusions
regarding the significance of this work’s novel results in the quest to overcome the curse of
dimensionality in sensitivity analysis, uncertainty quantification and predictive modeling.
The application of the nth-CASAM-L is illustrated in an accompanying work [28] by con-
sidering a paradigm model which describes the transmission of particles produced by a
distributed source through a shield which surrounds the source.

2. The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward/Adjoint Linear Systems (nth-CASAM-L)

The general framework of the “nth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Response-Coupled Forward/Adjoint Linear Systems (nth-CASAM-L)”
will be established by using a “proof by induction.” This proof will comprise the usual
steps, as follows:

1 Establish the pattern underlying the nth-CASAM-L for n = 1;
2 Assume that the pattern is valid for an arbitrarily high-order, n;
3 Prove that the pattern is valid for n + 1.

2.1. The Pattern Underlying the nth-CASAM-L for n = 1, 2, 3, 4

The mathematical framework of the 4th-CASAM-L, which also comprises the results
for the 1st-, 2nd-, and 3rd-CASAM-L, has been conceived by Cacuci [25]. For convenient



Energies 2021, 14, 8314 4 of 42

referencing, the pattern underlying the mathematical framework of the 4th-CASAM-L is
succinctly reviewed in Sections 4 and 5. The main features of the structures of the mathe-
matical frameworks for n = 1, 2, 3, 4, are summarized in Tables 1–4. This information will
be used in the next Subsection to surmise the general mathematical framework underlying
the nth-CASAM-L, for any order n, to enable the computations of response sensitivities of
any order, n.

Table 1. First-Order Sensitivities (n = 1).

Original System; Hilbert Space; Inner Product;
Response

F(1)(α; x)u(1)(x) = q(1)
F (x;α); b(1)

F

(
u(1); α

)
= 0; u(1)(x) , [ϕ(x),ψ(x)]†

H0; 〈ϕ(x),ψ(x)〉0 ,
TI
∏
i=1

ωi(α)∫
λi(α)

ϕ(x)·ψ(x) dx; R[ϕ(x),ψ(x);α]

1st-LVSS

[
V(1)(α; x)

]
2×2

δu(1)(j1; x) = q(1)
V

(
j1; u(1);α; δα

)
;δu(1)(x) , [δϕ(x), δψ(x)]†;[

V(1)(α; x)
]

2×2
, F(α; x);

b(1)
V

(
u(1);α; δu(1) ; δα

)
= δbF

(
u(1); α; δu(1) ; δα

)
= 0

1st-Level Hilbert Space H1;
〈
η(1)(x),ξ(1)(x)

〉
1
,

2
∑

i=1

〈
η
(1)
i (x),ξ(1)i (x)

〉
0

1st-LASS

[
A(1)(α; x)

]
2×2

a(1)(x) = s(1)A

[
u(1)(x);α

]
;
[
A(1)(α; x)

]
2×2

,
[
V(1)(α; x)

]∗
2×2

;

a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
; b(1)

A

(
u(1); a(1);α

)
= 0

1st-Order Sensitivities: R(1)
[

j1; u(1)(x); a(1)(x);α
]
, ∂R[ϕ(x),ψ(x);α]/∂αj1 ; j1 = 1, . . . , TP

Table 2. Second-Order Sensitivities (n = 2).

2nd-Level Forward System

Original Forward System + 1st − LASS : F(2)(α)u(2)(x) = q(2)
F

(
u(1);α

)
u(2)(x) ,

[
u(1)(x), a(1)(x)

]†
;F(2)(α) , diag

(
F(1), A(1)

)
;

b(2)
F

(
u(2); α

)
,
(

b(1)
F , b(1)

A

)†
= [0, 0]†;

2nd-LVSS

[
V(2)

(
u(1);α

)]
22×22

δu(2)(x) = q(2)
V

(
u(2);α; δα

)
δu(2)(x) ,

[
δu(1)(x), δa(1)(x)

]†
;[

V(2)
(

u(1);α
)]

22×22
,

(
V(1) [0]2×2

V(2)
21 V(2)

22

)
22×22

b(2)
V

[
u(2);α; δu(2)(x); δα

]
,

 b(1)
V

(
u(1);α; δu(1); δα

)
δb(1)

A

(
u(2);α; δu(2); δα

)  =

(
0
0

)

2nd-Level Hilbert space H2;
〈
η(2)(x),ξ(2)(x)

〉
2
=

4
∑

i=1

〈
η
(2)
i (x),ξ(2)i (x)

〉
0

2nd-LASS

[
A(2)

(
u(1);α

)]
22×22

a(2)(j1; x) = s(2)A

(
j1; u(2);α

)
; j1 = 1, . . . , TP

a(2)(j1; x) ,
[
a(2)1 (j1; x), . . . , a(2)k (j1; x), . . . , a(2)4 (j1; x)

]†
; k = 1, . . . , 22[

A(2)
(

u(1);α
)]

22×22
,
[
V(2)

(
u(1);α

)]∗
22×22

; b(2)
A

[
u(2)(x); a(2)(j1; x);α

]
= 0

2nd-Order Sensitivities R(2)
[

j2; j1; u(2); a(2);α
]
, ∂2R[ϕ(x),ψ(x);α]/∂αj1 ∂αj2 ; j2 = 1, . . . , j1
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Table 3. Third-Order Sensitivities (n = 3).

3rd-Level Forward System

2nd − Level Forward System + 2nd − LASS; F(3)u(3)(x) = q(3)
F ;

F(3) , diag
(

F(2), A(2)
)

u(3)(j1; x) =
[
u(2)(x), a(2)(j1; x)

]†
;

b(3)
F

(
u(3); α

)
,
(

b(2)
F , b(2)

A

)†
= [0, 0]†

3rd-LVSS

[
V(3)(j1)

]
23×23

δu(3)(j1; x) = q(3)
V

[
j1; u(3)(j1; x);α; δα

]
δu(3)(j1; x) =

[
δu(2)(x), δa(2)(j1; x)

]†
;
[
V(3)

]
23×23

,

(
V(2) [0](4×4)

V(3)
21 V(3)

22

)
b(3)

V ,
[
b(2)

V , δb(2)
A

]†
= [0, 0]†

3rd-Level Hilbert Space H3;
〈
η(3)(x),ξ(3)(x)

〉
3
,

23

∑
i=1

〈
η
(3)
i (x),ξ(3)i (x)

〉
0

3rd-LASS

[
A(3)

(
j1; u(2)

)]
23×23

a(3)(j2, j1; x) = s(3)A

(
j2, j1; u(3);α

)
[
A(3)

(
j1; u(2)

)]
23×23

,
[
V(3)

(
j1; u(2)

)]∗
23×23

.

b(3)
A

[
a(3)(j2; j1; x); u(3)(j1; x);α

]
= 0

a(3)(j2, j1; x) ,
[
a(3)1 (j2, j1; x), . . . , a(3)8 (j2, j1; x)

]†
,
[
. . . , a(3)k (j2, j1; x), . . .

]†

k = 1, . . . , 23; j1 = 1, . . . , TP; j2 = 1, . . . , j1;

3rd-Order Sensitivities
R(3)

[
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α

]
, ∂3R[ϕ(x),ψ(x);α]/∂αj1 ∂αj2 ∂αj3 ; j3 = 1, . . . , j2

Table 4. Fourth-Order Sensitivities (n = 4).

4th-Level Forward System

3rd − Level Forward System + 3rd − LASS : F(4)u(4)(x) = q(4)
F ;

u(4)( j2, j1; x) =
[
u(3)(j1; x), a(3)(j2, j1; x)

]†
;F(4) , diag

(
F(3), A(3)

)
b(4)

F

(
u(4); α

)
,
(

b(3)
F , b(3)

A

)†
= [0, 0]†

4th-LVSS State Function δu(4)(j2, j1; x) =
[
δu(3)(j1; x), δa(3)(j2, j1; x)

]†

4th-LVSS

[
V(4)

]
24×24

δu(4)(j2, j1; x) = q(4)
V

[
j2, j1; u(4)(j2, j1; x);α; δα

]
b(4)

V ,
[
b(3)

V , δb(3)
A

]†
= [0, 0]†;

[
V(4)

]
24×24

,

[
V(3) [0]23×23

V(4)
21 V(4)

22

]
24×24

4th-Level Hilbert Space; H4;
〈
η(4)(x),ξ(4)(x)

〉
4
,

24

∑
i=1

〈
η
(4)
i (x),ξ(4)i (x)

〉
0
.

4th-LASS State Function
a(4)(j3, j2, j1; x) ,

[
a(4)1 (j3, j2, j1; x), . . . , a(4)16 (j3, j2, j1; x)

]†

,
[
. . . , a(4)k (j3, j2, j1; x), . . .

]†
; k = 1, . . . , 24;

4th-LASS

[
A(4)

]
24×24

a(4)(j3, j2, j1; x) = s(4)A

[
j3, j2, j1; u(4)(j2, j1; x);α

]
;[

A(4)
]

24×24
,
[
V(4)

]∗
24×24

; b(4)
A

[
a(4)(j3, j2, j1; x); u(4)(j2, j1; x);α

]
= 0

4th-Order Sensitivities
R(4)

[
j4, j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α

]
, ∂4R[ϕ(x),ψ(x);α]/∂αj1 ∂αj3 ∂αj3 ∂αj4 ; j4 = 1, . . . , j3 .

2.2. The Pattern Underlying the nth-CASAM-L for Arbitrarily High-Order n

Based on the pattern displayed in Tables 1–4, the pattern displayed in Table 5, below,
is expected to be valid for any integer n.
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Table 5. nth-Order Sensitivities.

nth-Level Forward System

(n− 1)th − Level Forward System + (n− 1)th − LASS : F(n)u(n)(x) = q(n)
F ;

F(n) , diag
(

F(n−1), A(n−1)
)

; b(n)
F

(
u(n); α

)
,
(

b(n−1)
F , b(n−1)

A

)†
= [0, 0]†

u(n)(jn−2, . . . , j1; x) =
[
u(n−1)(jn−3, . . . , j1; x), a(n−1)(jn−2, . . . , j1; x)

]†

nth-LVSS

[
V(n)

]
2n×2n

δu(n)(jn−2, . . . , j1; x) = q(n)
V

[
jn−2, . . . , j1; u(n)(jn−2, . . . , j1; x);α; δα

]
δu(n)(jn−2, . . . , j1; x) =

[
δu(n−1)(jn−3, . . . , j1; x), δa(n−1)(jn−2, . . . , j1; x)

]†

b(n)
V ,

[
b(n−1)

V , δb(n−1)
A

]†
= [0, 0]†;

[
V(n)

]
2n×2n

,

(
V(n−1) [0](2n−1×2n−1)

V(n)
21 V(n)

22

)
2n×2n

nth-Level Hilbert Space; Inner Product Hn;
〈
η(n)(x),ξ(n)(x)

〉
n
,

2n

∑
i=1

〈
η
(n)
i (x),ξ(n)i (x)

〉
0
.

nth-LASS State Function a(n)(jn−1, . . . , j1; x) ,
[
. . . , a(n)k (jn−1, . . . , j1; x), . . .

]
; k = 1, . . . , 2n

nth-LASS

[
A(n)

]
2n×2n

a(n)(jn−1, . . . , j1; x) = s(n)A

[
jn−1, . . . , j1; u(n)(jn−2, . . . , j1; x);α

]
;[

A(n)
]

2n×2n
,
[
V(n)

]∗
2n×2n

; b(n)
A

[
a(n)(jn−1, . . . , j1; x); u(n)(jn−2, . . . , j1; x);α

]
= 0

No. of Distinct Sensitivities

TP(TP + 1)(TP + 2) . . . (TP + n− 1)/n!
R(n)

[
jn, . . . , j1; u(n)(jn−2, . . . , j1; x); a(n)(jn−1, . . . , j1; x);α

]
, ∂nR[ϕ(x),ψ(x);α]/∂αj1 . . . ∂αjn ; j1 = 1, . . . , TP; j2 = 1, . . . , j1; . . . . . jn = 1, . . . , jn−1

2.3. Proving That the Framewok for the nth-CASAM-L also Holds for the (n + 1)th-CASAM-L

The pattern presented in Table 5 implies that the generic nth-order sensitivity of the
response R[ϕ(x),ψ(x);α] to model parameters has the following form, for j1 = 1, . . . ,
TP;jn = 1, . . . , jn−1; . . . j2 = 1, . . . , j1:

∂nR[ϕ(x),ψ(x);α]/∂αj1 . . . ∂αjn ,R(n)
[

jn, . . . , j1; u(n)(jn, . . . , j1; x); a(n)(jn−1, . . . , j1; x);α
]

,
TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(n)
[

jn, . . . , j1; u(n)(jn−2, . . . , j1; x); a(n)(jn−1, . . . , j1; x);α
] (1)

where the function u(n)(jn−2, . . . , j1; x) is the solution of the following nth-Level Forward
System (nth-LFS):

F(n)u(n)(x) = q(n)
F ; b(n)

F

(
u(n); α

)
= 0 , b(n)

F

(
u(n); α

)
= 0 (2)

and where the nth-level adjoint function a(n)(jn−1; . . . ; j1; x) is the solution of the following
nth-Level Adjoint Sensitivity System (nth-LASS):[

A(n)
]

2n×2n
a(n)(jn−1, . . . , j1; x) = s(n)A

[
jn−1, . . . , j1; u(n)(jn−2, . . . , j1; x);α

]
, b(n)

A

[
a(n)(jn−1 . . . j1; x);α

]
= 0 (3)

Concatenating Equations (2) and (3) yields the following (n + 1)th-Level Forward Sen-
sitivity System [abbreviated as (n + 1)th-LFSS] for the function u(n+1)(jn−1, . . . , j1; x) =[
u(n)(jn−2, . . . , j1; x); a(n)(jn−1, . . . , j1; x);

]†
:{

F(n+1)(α; x)u(n+1)(jn−1, . . . , j1; x)
}
α0

=
{

q(n+1)
F

(
jn−1, . . . , j1; u(n); x;α

)}
α0

, x ∈ Ωx

(
α0
)

(4)

{
b(n+1)

F

[
u(n+1)(jn, . . . , j1; x); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (5)

where:
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F(n+1)(α; x) ,


[
F(n)

]
2n×2n

[0]2n×2n

[0]2n×2n

[
A(n)

]
2n×2n

; u(n+1)(jn−1, . . . , j1; x) ,

(
u(n)(jn−2, . . . , j1)
a(n)(jn−1, . . . , j1)

)
;

q(n+1)
F (jn−1, . . . , j1; x;α) ,

(
q(n)

F
s(n)A

)
; b(n+1)

F

[
u(n+1)(jn−1, . . . , j1; x); α

]
,

(
b(n)

F
b(n)

A

)
.

(6)

In terms of the function u(n+1)(jn−1, . . . , j1; x) ,
[
u(n)(jn−2, . . . , j1; x); a(n)(jn−1, . . . , j1; x)

]†
,

each nth-order sensitivity can be written as follows:

∂nR(ϕ;ψ;α)
∂αj1 . . . ∂αjn

≡ R(n)
(

jn, . . . , j1; u(n+1);α
)
≡

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(n)
(

jn, . . . , j1; u(n+1);α
)

. (7)

The total G-differential of R(n)
(

jn, . . . , j1; u(n+1);α
)

is obtained, by definition,
as follows:{

δR(n)
(

jn, . . . , j1; u(n+1);α; δu(n+1); δα
)}
α0

,

 d
dε

 TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(n)
(

jn, . . . , j1 ; u(n+1) + εδu(n+1);α+ εδα
)
α0


ε=0

=
{

δR(n)
(

jn, . . . , j1; u(n+1);α; δα
)
α0

}
dir

+
{

δR(n)
(

jn, . . . , j1; u(n+1);α; δu(n+1)
)
α0

}
ind

,

. (8)

where the direct effect term
{

δR(n)
(

jn, . . . , j1; u(n+1);α; δα
)
α0

}
dir

depends directly on

the vector of parameter variations δα, and is defined as follows, for j1 = 1, . . . , TP;
j2 = 1, . . . , j1; . . . ; jn = 1, . . . , jn−1:

{
δR(n)

(
jn, . . . , j1; u(n+1);α; δα

)
α0

}
dir

,

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(n)
(

jn, . . . , j1; u(n+1);α
)

α0

δα, (9)

and where the indirect-effect term
{

δR(n)
(

jn, . . . , j1; u(n+1);α; δu(n+1)
)
α0

}
ind

is defined as

follows:{
δR(n)

(
jn, . . . , j1; u(n+1);α; δu(n+1)

)
α0

}
ind

,


TI

∏
i=1

ωi(α)∫
λi(α)

dxi

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂u(n+1)(jn, . . . , j1; x)


α0

δu(n+1), (10)

with
∂[ ]

∂u(n+1)(jn ,...,j1;x)
δu(n+1)(jn−1, . . . , j1; x) ≡ ∂[ ]

∂ϕδϕ(x) + ∂[ ]
∂ψδψ(x) +

2
∑

k=1

∂[ ]

∂a(1)k

δa(1)k (x)

+
22

∑
k=1

∂[ ]

∂a(2)k (j1)
δa(2)k (j1; x) + . . . +

2n

∑
k=1

∂[ ]

∂a(n)k (jn−1,...,j1)
δa(n)k (jn−1, . . . , j1; x),

(11)

The vector of variations δu(n+1)(jn−1, . . . , j1; x) ,
[
δu(n)(jn−2, . . . , j1; x);

δa(n)(jn−1, . . . , j1; x)
]†

is the solution of the G-differentiated (n + 1)th-LFS represented

by Equations (4) and (5), which is equivalent concatenating the nth-LVSS to the sys-
tem of equations obtained by G-differentiating the nth-LASS while being subject to the
corresponding boundary conditions. The nth-LVSS is assumed to be correct as given
in Table 5, namely:[

V(n)
]

2n×2n
δu(n)(jn−2, . . . , j1; x) = q(n)

V

[
jn−2, . . . , j1; u(n)(jn−2, . . . , j1; x);α; δα

]
(12)
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b(n)
V ,

[
b(n−1)

V , δb(n−1)
A

]†
= [0, 0]† (13)

The G-differential of the nth-LASS is obtained from Equation (3), in the following form:[
A(n)

]
2n×2n

δa(n)(jn−1, . . . , j1; x) = p(n)
(

jn−1, , j1; u(n+1);α; δα
)

, (14)

δb(n)
A

[
a(n)(jn−1, . . . , j1; x); u(n)(jn−2, . . . , j1; x);α

]
= 0 (15)

where

p(n)
(

jn−1, . . . , j1; u(n+1);α; δα
)

,
∂
{

s(n)A

[
jn−1, . . . , j1; u(n)(jn−2, . . . , j1; x);α

]
−A(n)a(n)

}
∂α

δα. (16)

Concatenating Equations (12)−(15) yields the following (n + 1)th-Level Variational
Sensitivity System [(n + 1)th-LVSS] for the function δu(n+1)(jn−1, . . . , j1; x):[

V(n+1)
]

2n+1×2n+1
δu(n+1)(jn−1, . . . , j1; x) = q(n+1)

V

[
jn−1, . . . , j1; u(n+1)(jn−1, . . . , j1; x);α; δα

]
, (17)

b(n+1)
V

(
δu(n+1); δα

)
,

 b(n)
V

(
δu(n); δα

)
δb(n)

A

(
δa(n) ; δα

)  =

(
[0]
[0]

)
, x ∈ ∂Ωx

(
α0
)

, (18)

where:[
V(n+1)

]
2n+1×2n+1

,


[
V(n)

]
2n×2n

[0]2n×2n[
V(n+1)

21

]
2n×2n

[
V(n+1)

22

]
2n×2n


2n+1×2n+1

; V(n)
22 (j1) , A(n);

V(n+1)
21 ,

∂

{[
A(n)

]
2n×2n

a(n)(jn−1, . . . , j1; x)
}

∂u(n)
−

∂
{

s(n)A

[
jn−1, . . . , j1; u(n)(jn−2, . . . , j1; x);α

]}
∂u(n)

;

(19)

q(n+1)
V

[
jn−1, . . . , j1; u(n+1);α; δα

]
,

(
q(n)

V [jn−2, . . . , j1;α; δα]

p(n)
[

jn−1, . . . , j1; u(n+1);α; δα
] )

≡
[
. . . . . q(n+1)

k

(
jn−1, . . . , j1; u(n+1);α; δα

)
. . .
]†

, k = 1, . . . , 2n+1.

(20)

In principle, the (n + 1)th-LVSS, comprising Equations (17) and (18), could be solved
to determine the variational vector δu(n+1)(jn−1, . . . , j1; x) which could be used, in turn, to
determine the indirect-effect term

{
δR(n)

(
jn, . . . , j1; u(n+1);α; δu(n+1)

)
α0

}
ind

. On the other

hand, the need for solving the (n + 1)th-LVSS can be avoided by expressing the indirect-effect
term

{
δR(n)

(
jn, . . . , j1; u(n+1);α; δu(n+1)

)
α0

}
ind

in an alternative way, which does not

involve the function δu(n+1)(jn−1 . . . j1; x). This alternative expression will be obtained by
using the solution of a (n + 1)th-Level Adjoint Sensitivity Systems [(n + 1)th-LASS], which will
be constructed below by implementing the same sequence of logical steps as were followed
for constructing the 1st-LASS (and all of the other lower-level adjoint sensitivity systems).

The (n + 1)th-LASS is constructed in a Hilbert space, denoted as Hn+1, comprising block-

vector elements of the form η(n+1)(x) ∈ Hn+1,η(n+1)(x) ,
[
. . . ,η(n+1)

k (x), . . .
]†

; k = 1, . . . ,2n+1

with elements having the following structure: η(n+1)
k (x) ,

[
η
(n+1)
k,1 (x), . . . , η

(n+1)
k,TD (x)

]†
.
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The inner product between two elements, η(n+1)(x) ∈ Hn+1 and ξ(n+1)(x) ∈ Hn+1, of the
Hilbert space Hn+1, will be denoted as

〈
η(n+1)(x),ξ(n+1)(x)

〉
n+1

and is defined as follows:

〈
η(n+1)(x),ξ(n+1)(x)

〉
n+1

,
2n+1

∑
k=1

〈
η
(n+1)
k (x),ξ(n+1)

k (x)
〉

0
. (21)

Using the definition provided in Equation (21), form the inner product in Hn+1 of
Equation (12) with a yet undefined vector-valued function a(n+1)(jn, . . . , j1; x) ,[

. . . , a(n+1)
k (jn, . . . , j1; x), . . .

]†
∈ Hn+1; k = 1, . . . , 2n+1, j1 = 1, . . . , TP, j2 = 1, . . . , j1;

jn+1 = 1, . . . , jn, to obtain the following relation:{〈
a(n+1)(jn, . . . , j1; x),

[
V(n+1)

]
δu(n+1)

〉
n+1

}
α0

=,{〈
a(n+1)(jn, . . . , j1; x), q(n+1)

V

[
jn−1 . . . j1; u(n+1)(jn−1, . . . , j1; x);α; δα

] 〉
n+1

}
α0

=

{〈
δu(n+1), A(n+1)a(n+1)(jn, . . . , j1; x)

〉
n+1

}
α0

+
{

P(n+1)
[
δu(n+1); a(n+1);α; δα

]}
α0

,

(22)

where
{

P(n+1)
[
δu(n+1); a(n+1);α; δα

]}
α0

denotes the bilinear concomitant defined on

the phase-space boundary x ∈ ∂Ωx
(
α0), evaluated at the nominal values of the model

parameter and respective functions, and where:

[
A(n+1)

]
2n+1×2n+1

,
[
V(n+1)

]∗
2n+1×2n+1

=


[
V(n)

]
2n×2n

[0]2n×2n[
V(n+1)

21

]
2n×2n

[
V(n+1)

22

]
2n×2n

∗ =
 A(n+1)

[
V(n+1)

21

]∗
[0]2n×2n

[
V(n+1)

22

]∗
 (23)

The first term on right-side of the second equality in Equation (22) is now required to
represent the indirect-effect term

{
δR(n)

(
jn, . . . , j1; u(n+1);α; δu(n+1)

)
α0

}
ind

,

which is achieved by requiring that the (n + 1)th-level adjoint function

a(n+1)(jn, . . . , j1; x) ,
[
. . . , a(n+1)

k (jn, . . . , j1; x), . . .
]†
∈ Hn+1; k = 1, . . . , 2n+1, be the so-

lution of the following (n + 1)th-Level Adjoint Sensitivity System, for j1 = 1, . . . , TP ;
j2 = 1, . . . , j1; . . . jn = 1, . . . , jn−1:[

A(n+1)
]

2n+1×2n+1
a(n+1)(jn, . . . , j1; x) = s(n+1)

A (jn, . . . , j1;α), (24)

{
b(n+1)

A

[
a(n+1)(jn, . . . , j1; x); u(n+1)(jn−1, . . . , j1; x);α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (25)

where the vector s(n+1)
A (jn, . . . , j1;α) ,

[
. . . , s(n+1)

k (jn, . . . , j1;α), . . .
]†

, k = 1, . . . , 2n+1,

comprises 2n+1 components defined as follows, for each j1 = 1, . . . , TP ; j2 = 1, . . . , j1;
. . . ;jn = 1, . . . , jn−1:

s(n+1)
1 (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂ϕ
, (26)

s(n+1)
2 (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂ψ
, (27)

s(n+1)
2+k (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂a(1)k

; k = 1, 2; (28)



Energies 2021, 14, 8314 10 of 42

s(n+1)
22+k (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂a(2)k (j1)
; k = 1, . . . , 22; (29)

s(n+1)
23+k (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂a(3)k (j2; j1)
; k = 1, . . . , 23 ; (30)

s(n+1)
2n−1+k(jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂a(n−1)
k (jn−2, . . . , j1)

; k = 1, . . . , 2n−1; (31)

s(n+1)
2n+k (jn, . . . , j1;α) ,

∂S(n)
(

jn, . . . , j1; u(n+1);α
)

∂a(n)k (jn−1, . . . , j1)
; k = 1, . . . , 2n. (32)

The (n + 1)th-level adjoint boundary conditions represented by Equation (25) are
selected so as to eliminate, in conjunction with the boundary conditions represented by
Equation (18), all of the unknown values of the functions δu(n+1)(jn−1, . . . , j1; x) in the
expression of the bilinear concomitant

{
P(n+1)

[
δu(n+1); a(n+1);α; δα

]}
α0

. This bilinear
concomitant may vanish after implementing the boundary conditions represented by
Equations (18) and (25); if it does not vanish, this bilinear concomitant will be reduced
to a residual quantity which will comprise only known values of a(n+1)(jn, . . . , j1; x),
u(n+1)(jn−1 . . . j1; x), α and δα, and will be denoted as

{
P̂(n+1)

(
a(n+1); u(n+1);α; δα

)}
α0

.

Using the equations underlying the 4th-LASS together with the relation provided in
Equation in Equation yields the following expression for the indirect-effect term{

δR(n)
(

jn, . . . , j1; u(n+1);α; δu(n+1)
)
α0

}
ind

in terms of the (n + 1)th-level adjoint functions

a(n+1)(jn, . . . , j1; x), for each j1 = 1, . . . , TP ; j2 = 1, . . . , j1; . . . ;jn = 1, . . . , jn−1:{
δR(n)

[
jn, . . . , j1; u(n+1);α; δu(n+1)

]
α0

}
ind

= −
{

P̂(n+1)
(

a(n+1); u(n+1);α; δα
)}
α0

+

{〈
a(n+1)(jn, . . . , j1; x), q(n+1)

V

[
jn−1, . . . , j1; u(n+1)(jn−1, . . . , j1; x);α; δα

] 〉
n+1

}
α0

.
(33)

Adding the result obtained in Equation (33) for the indirect effect term to the result
provided in Equation (9) for the direct effect term yields the following expression for the
total nth-order G-variation (of the response) defined in Equation (8):{

δR(n)
(

jn, . . . , j1; u(n+1);α; δu(n+1); δα
)}
α0

=

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(n)
(

jn, . . . , j1; u(n+1);α
)

α0

δα,

+

{〈
a(n+1)(jn, . . . , j1; x), q(n+1)

V

[
jn−1, . . . , j1; u(n+1)(jn−1, . . . , j1; x);α; δα

] 〉
n+1

}
α0

−
{

P̂(n+1)
(

a(n+1); u(n+1);α; δα
)}
α0
≡

TP

∑
jn+1=1

{
R(n+1)

(
jn+1, . . . , j1; u(n+1); a(n+1);α

)}
(α0)

δαjn+1 .

(34)

where R(n+1)
(

jn+1, . . . , j1; u(n+1); a(n+1);α
)

denotes the (n + 1)th-order partial sensitivity of

the response R
[
u(1)(x);α

]
with respect to the model parameters, evaluated at the nominal

parameter values α0. The results obtained in this Subsection are summarized in Table 6.
The results summarized in Table 6 were obtained by applying the general principles

underlying adjoint sensitivity analysis methodology to the nth-order sensitivities, consid-
ered as “model responses.” The expression of the (n + 1)th-order sensitivities were obtained
by determining the first-order differential of the nth-order sensitivities, which yields an
expression that is identical to the expression that would be obtained by advancing the
index, from n to (n + 1), of the expressions of the nth-order sensitivities. Thus, the proof by
induction of the general framework is thereby completed.
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Table 6. (n + 1)th-Order Sensitivities.

(n + 1)th-Level Forward System

nth − Level Forward System + nth − LASS : F(n+1)u(n+1)(x) = q(n+1)
F ;

F(n+1)(α; x) , diag
(

F(n), A(n)
)

; b(n+1)
F

(
u(n+1); α

)
,
(

b(n)
F , b(n)

A

)†
= [0, 0]†

u(n+1)(jn−1, . . . , j1; x) =
[
u(n)(jn−2, . . . , j1; x), a(n)(jn−1, . . . , j1; x)

]†

(n + 1)th-LVSS

[
V(n+1)

]
2n+1×2n+1

δu(n+1)(jn−1, . . . , j1; x) = q(n+1)
V

(
jn−1, . . . , j1; u(n+1);α; δα

)
δu(n+1)(jn−1, . . . , j1; x) =

[
δu(n)(jn−2, . . . , j1; x); δa(n)(jn−1, . . . , j1; x);

]†

b(n+1)
V ,

[
b(n)

V , δb(n)
A

]†
= [0, 0]†;

[
V(n+1)

]
2n+1×2n+1

,

(
V(n) [0]2n×2n

V(n+1)
21 V(n+1)

22

)
(n + 1)th-Level Hilbert Space; Inner
Product Hn;

〈
η(n+1)(x),ξ(n+1)(x)

〉
n
,

2n+1

∑
i=1

〈
η
(n+1)
i (x),ξ(n+1)

i (x)
〉

0
.

(n + 1)th-LASS State Function a(n+1)(jn, . . . , j1; x) ,
[
. . . , a(n+1)

k (jn, . . . , j1; x), . . .
]
; k = 1, . . . , 2n+1

(n + 1)th-LASS

[
A(n+1)

]
2n+1×2n+1

a(n+1)(jn, . . . , j1; x) = s(n+1)
A

[
jn, . . . , j1; u(n+1)(jn−1, . . . , j1; x);α

]
;[

A(n+1)
]

2n+1×2n+1
,[

V(n+1)
]∗

2n+1×2n+1
; b(n+1)

A

[
a(n+1)(jn, . . . , j1; x); u(n+1)(jn−1, . . . , j1; x);α

]
= 0

No. of Distinct Sensitivities

TP(TP + 1)(TP + 2) . . . (TP + n)/(n + 1)!
R(n+1)

[
jn+1, . . . , j1; u(n+1)(jn−1, . . . , j1; x); a(n+1)(jn, . . . , j1; x);α

]
, ∂n+1R[ϕ(x),ψ(x);α]/∂αj1 . . . ∂αjn+1 ; j1 = 1, . . . , TP; j2 = 1, . . . , j1; . . . . . jn+1 = 1, . . . , jn

3. Particular Case: The 5th-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Coupled Forward/Adjoint Linear Systems (5th-CASAM-L)

As an additional application of the general framework of the nth-CASAM, this Subsec-
tion will present the “5th-Order Comprehensive Adjoint Sensitivity Analysis Methodology
for Coupled Forward/Adjoint Linear Systems” (5th-CASAM-L). The derivation of the
5th-CASAM-L will be performed explicitly, by starting with the results produced by the
4th-CASAM-L, which are presented in Section 5 and summarized in Table 4. It will be
shown that the results thus obtained for the 5th-CASAM-L coincide with the results that
would be predicted by the nth-CASAM-L (Table 5) for the particular value n = 5.

The 5th-CASAM-L commences by recalling the end-products of the
4th-CASAM-L, namely the expressions of the 4th-order partial sensitivity{

R(4)
[

j4, j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α
]}

(α0)
of the response with respect to the

model parameters, which was obtained in Equation (203) in Section 5, and which can be
written in the following form:{

R(4)
[

j4, j3, j2, j1; u(5)(j3, j2, j1; x);α
]}

(α0)
, ∂4R[ϕ(x),ψ(x);α]/∂αj1 . . . ∂αj4

,
TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(4)
[

j4, . . . , j1; u(5)(j3, j2, j1; x);α
]

.
(35)

The function u(5)(j3, j2, j1; x) ,
[
u(4)(j2, j1; x), a(4)(j3, j2, j1; x)

]†
is the solution of

the following 5th-Level Forward System (5th-LFS), which is obtained by concatenating
Equations (179), (180), (195) and (196) from Section 5, which are written in block-matrix form
as follows:{

F(5)(α; x)u(5)(j3, j3, j1; x)
}
α0

=
{

q(5)
F

(
j4, . . . , j1; u(4); x;α

)}
α0

, x ∈ Ωx

(
α0
)

(36)

{
b(5)

F

[
u(5)(j4, . . . , j1; x); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (37)
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where:

F(5)(α; x) ,


[
F(4)

]
24×24

[0]24×24

[0]24×24

[
A(4)

]
24×24

; u(5)(j3, j2, j1; x) ,

(
u(4)(j2, j1)

a(4)(j3, j2, j1)

)
;

q(5)
F (j4, . . . , j1; x;α) ,

(
q(4)

F
s(4)A

)
; b(5)

F

[
u(5)(j3, j2, j1; x); α

]
,

(
b(4)

F
b(4)

A

)
.

(38)

The 5th-order total differential of the response R
[
u(1)(x);α

]
is obtained by

G-differentiating the 4th-order total G-differential of the response, to obtain the
following expression:{

δR(4)
(

j4, . . . , j1; u(5);α; δu(5); δα
)}
α0

,

 d
dε

[
TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(4)
(

j4, . . . , j1 ; u(5) + εδu(5);α+ εδα
)]
α0


ε=0

=
{

δR(4)
(

j4, . . . , j1; u(5);α; δα
)
α0

}
dir

+
{

δR(4)
(

j4, . . . , j1; u(5);α; δu(5)
)
α0

}
ind

,

(39)

where the direct effect term
{

δR(4)
(

j4, . . . , j1; u(5);α; δα
)
α0

}
dir

depends directly on the

vector of parameter variations δα, and is defined as follows, for j1 = 1, . . . , TP; j2 = 1, . . . ,
j1; . . . ; j4 = 1, . . . , j3:{

δR(4)
(

j4, . . . , j1; u(5);α; δα
)
α0

}
dir

,

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(4)
(

j4, . . . , j1; u(5);α
)

α0

δα, (40)

and where the indirect-effect term
{

δR(4)
(

j4, . . . , j1; u(5);α; δu(5)
)
α0

}
ind

is defined

as follows:{
δR(4)

(
j4, . . . , j1; u(5);α; δu(5)

)
α0

}
ind

,


TI

∏
i=1

ωi(α)∫
λi(α)

dxi

∂S(4)
(

j4, . . . , j1; u(5);α
)

∂u(5)(j3, j2, j1; x)


α0

δu(5), (41)

with
∂[ ]

∂u(5)(j3,j2,j1;x)
δu(5)(j3, j2, j1; x) ≡ ∂[ ]

∂ϕδϕ(x) + ∂[ ]
∂ψδψ(x) +

2
∑

k=1

∂[ ]

∂a(1)k

δa(1)k (x)

+
22

∑
k=1

∂[ ]

∂a(2)k (j1)
δa(2)k (j1; x) +

23

∑
k=1

∂[ ]

∂a(3)k (j2,j1)
δa(3)k (j2, j1; x) +

24

∑
k=1

∂[ ]

∂a(4)k (j3,j2,j1)
δa(4)k (j3, j2, j1; x),

(42)

The vector of variations δu(5)(j3, j2, j1; x) ,
[
δu(4)(j2, j1; x); δa(4)(j3, j2, j1; x)

]†
is the so-

lution of the G-differentiated 5th-LFS represented by Equations (36) and (37), which is equiv-
alent concatenating the 4th-LVSS to the system of equations obtained by G-differentiating
the 4th-LASS while being subject to the corresponding boundary conditions. The 4th-LVSS
has been determined in Section 5 and is provided in Equations (186) and (187). On the
other hand, the G-differential of the 4th-LASS is obtained from Equations (195) and (196),
and has the following form:[

A(4)
]

24×24
δa(4)(j3, j2, j1; x) = p(4)

(
j3, j2, j1; u(5);α; δα

)
, (43)

δb(4)
A

[
a(4)(j3, j2, j1; x); u(4)(j2, j1; x);α

]
= 0 (44)

where

p(4)
(

j3, j2, j1; u(5);α; δα
)

,
∂
{

s(4)A

[
j3, j2, j1; u(4)(j2, j1; x);α

]
−A(4)a(4)

}
∂α

δα. (45)
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Concatenating the 4th-LVSS with the 4th-LASS yields the following 5th-Level Variational
Sensitivity System (5th-LVSS) for the function δu(5)(j3, j2, j1; x):[

V(5)
]

25×25
δu(5)(j3, j2, j1; x) = q(5)

V

[
j3, j2, j1; u(5)(j3, j2, j1; x);α; δα

]
, (46)

b(5)
V

(
δu(5); δα

)
,

 b(4)
V

(
δu(4); δα

)
δb(4)

A

(
δa(4) ; δα

)  =

(
[0]
[0]

)
, x ∈ ∂Ωx

(
α0
)

, (47)

where:[
V(5)

]
25×25

,


[
V(4)

]
24×24

[0]24×24[
V(5)

21

]
24×24

[
V(5)

22

]
24×24

; V(4)
22 , A(4); V(5)

21 ,
∂
{

A(4)a(4)−s(4)A

}
∂u(4) ;

(48)

q(5)
V

[
j3, j3, j1; u(5);α; δα

]
,

(
q(4)

V
p(4)

)
≡
[
. . . . . q(5)

k

(
j3, j2, j1; u(5);α; δα

)
. . .
]†

, k = 1, . . . , 25. (49)

In principle, the 5th-LVSS, comprising Equations (46) and (47), could be solved
to determine the variational vector δu(5)(j3, j2, j1; x) which could be used, in turn, to
determine the indirect-effect term

{
δR(4)

(
j4, . . . , j1; u(5);α; δu(5)

)
α0

}
ind

. However, the

need for solving the 5th-LVSS can be avoided by expressing the indirect-effect term{
δR(n)

(
jn, . . . , j1; u(n+1);α; δu(n+1)

)
α0

}
ind

in terms of the solution of a 5th-Level Adjoint

Sensitivity Systems (5th-LASS), which is constructed in a Hilbert space, denoted as H5,

comprising block-vector elements of the form η(5)(x) ∈ H5,η(5)(x) ,
[
. . . ,η(5)k (x), . . .

]†
;

k = 1, . . . , 25, with elements having the following structure: η(5)k (x) ,
[
η
(5)
k,1 (x), . . . ,η(5)k,TD(x)

]†
.

The inner product between two elements, η(5)(x) ∈ H5 and ξ(5)(x) ∈ H5 will be denoted
as
〈
η(5)(x),ξ(5)(x)

〉
5

and is defined as follows:

〈
η(5)(x),ξ(5)(x)

〉
5
,

25

∑
k=1

〈
η
(5)
k (x),ξ(5)k (x)

〉
0
. (50)

Using the definition provided in Equation (50), form the inner product in H5 of
Equation (46) with a yet undefined vector-valued function a(5)(j4, . . . , j1; x) ,[

. . . , a(5)k (j4, . . . , j1; x), . . .
]†
∈ H5; k = 1, . . . , 25,j1 = 1, . . . , TP, j2 = 1, . . . , j1; . . . ;

j5 = 1, . . . , j5, to obtain the following relation:{〈
a(5)(j4, . . . , j1; x), V(5)δu(5)

〉
5

}
α0

=
{〈

a(5)(j4, . . . , j1; x), q(5)
V

[
j3, j2, j1; u(5)(j3, j2, j1; x);α; δα

] 〉
5

}
α0

=
{〈

δu(5), A(5)a(5)(j4, . . . , j1; x)
〉

5

}
α0

+
{

P(5)
[
δu(5); a(5);α; δα

]}
α0

,
(51)

where
{

P(5)
[
δu(5); a(5);α; δα

]}
α0

denotes the bilinear concomitant defined on the phase-

space boundary x ∈ ∂Ωx
(
α0), evaluated at the nominal values of the model parameter

and respective functions, and where:[
A(5)

]
25×25

,
[
V(5)

]∗
25×25

=


[
V(4)

]
24×24

[0] 24×24[
V(5)

21

]
24×24

[
V(5)

22

]
24×24

∗ =
 A(5)

[
V(5)

21

]∗
[0]24×24

[
V(5)

22

]∗
 (52)

The first term on right-side of the second equality in Equation (51) is now required to
represent the indirect-effect term

{
δR(4)

(
j4, . . . , j1; u(5);α; δu(5)

)
α0

}
ind

, which is achieved
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by requiring that the 5th-level adjoint function a(5)(j4, . . . , j1; x) ,
[
. . . , a(5)k (j4, . . . , j1; x), . . .

]†

∈ H5; k = 1, . . . , 25, be the solution of the following 5th-Level Adjoint Sensitivity System
(5th-LASS), for j1 = 1, . . . , TP ; j2 = 1, . . . , j1; . . . ;j4 = 1, . . . , j3:[

A(5)
]

25×25
a(5)(j4, . . . , j1; x) = s(5)A (j4, . . . , j1;α) , (53)

{
b(5)

A

[
a(5)(j4, . . . , j1; x); u(5)(j3, j2, j1; x);α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (54)

where the vector s(5)A (j4, . . . , j1;α) ,
[
. . . , s(5)k (j4, . . . , j1;α), . . .

]†
, k = 1, . . . , 25, comprises

25 components defined as follows, for each j1 = 1, . . . , TP ; j2 = 1, . . . , j1; . . . ;j4 = 1, . . . , j3:

s(5)1 (j4, . . . , j1;α) ,
∂S(4)

(
j4, . . . , j1; u(5);α

)
∂ϕ

, (55)

s(5)2 (j4, . . . , j1;α) ,
∂S(4)

(
j4, . . . , j1; u(5);α

)
∂ψ

, (56)

s(5)2+k(j4, . . . , j1;α) ,
∂S(4)

(
j4, . . . , j1; u(5);α

)
∂a(1)k

; k = 1, 2; (57)

s(5)22+k(j4, . . . , j1;α) ,
∂S(4)

(
j4, . . . , j1; u(5);α

)
∂a(2)k (j1)

; k = 1, . . . , 22; (58)

s(5)23+k(j4, . . . , j1;α) ,
∂S(4)

(
j4, . . . , j1; u(5);α

)
∂a(3)k (j2; j1)

; k = 1, . . . , 23 ; (59)

s(5)24+k(j4, . . . , j1;α) ,
∂S(4)

(
jn, . . . , j1; u(5);α

)
∂a(4)k (j3, j3, j1)

; k = 1, . . . , 24. (60)

The 5th-level adjoint boundary conditions represented by Equation (54) are selected so
as to eliminate, in conjunction with the boundary conditions represented by
Equation (47), all of the unknown values of the functions δu(5)(j3, j2, j1; x) in the expression
of
{

P(5)
[
δu(5); a(5);α; δα

]}
α0

. This bilinear concomitant may vanish after implementing
the boundary conditions represented by Equations (47) and (54); if it does not vanish,
this bilinear concomitant will be reduced to a residual quantity which will comprise
only known values of a(5)(j4, . . . , j1; x), u(5)(j3, j2, j1; x), α and δα, and will be denoted as{

P̂(5)
(

a(5); u(5);α; δα
)}
α0

.

Using the equations underlying the 4th-LASS together with the relation provided in
Equation (51) in Equation (41) yields the following expression for the indirect-effect term{

δR(4)
(

j4, . . . , j1; u(5);α; δu(5)
)
α0

}
ind

in terms of the 5th-level adjoint functions

a(5)(j4, . . . , j1; x), for each j1 = 1, . . . , TP ; j2 = 1, . . . , j1; . . . ;j4 = 1, . . . , j3:{
δR(4)

(
j4, . . . , j1; u(5);α; δu(5)

)
α0

}
ind

= −
{

P̂(5)
(

a(5); u(5);α; δα
)}
α0

+
{〈

a(5)(j4, . . . , j1; x), q(5)
V

[
j3, j2, j1; u(5)(j3, j2, j1; x);α; δα

] 〉
5

}
α0

.
(61)

Adding the result obtained in Equation (61) for the indirect effect term to the result
provided in Equation (40) for the direct effect term yields the following expression for the
total nth-order G-variation (of the response) defined in Equation (39):
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{
δR(4)

(
j4, . . . , j1; u(5);α; δu(5); δα

)}
α0

=

{
∂

∂α

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(4)
(

j4, . . . , j1; u(5);α
)}
α0

δα,

−
{

P̂(5)
(

a(5); u(5);α; δα
)}
α0

+
{〈

a(5)(j4, . . . , j1; x), q(5)
V

[
j3, j2, j1; u(5)(j3, j2, j1; x);α; δα

] 〉
5

}
α0

.

≡
TP
∑

j5=1

{
R(5)

(
j5, . . . , j1; u(5); a(5);α

)}
(α0)

δαj5 .

(62)

where R(5)
(

j5, . . . , j1; u(5); a(5);α
)

denotes the 5th-order partial sensitivity of the response

R
[
u(1)(x);α

]
with respect to the model parameters, evaluated at the nominal parameter

values α0. The results obtained in this Subsection are summarized in Table 7.

Table 7. Fifth-Order Sensitivities (n = 5).

5th-Level Forward System

4th − Level Forward System + 4th − LASS : F(5)u(5)(x) = q(5)
F ;

F(5) , diag
(

F(4), A(4)
)

; b(5)
F

(
u(5); α

)
,
(

b(4)
F , b(4)

A

)†
= [0, 0]†

u(5)(j3, j2, j1; x) =
[
u(4)(j2, j1; x); a(4)(j3, j2, j1; x);

]†

5th-LVSS

[
V(5)

]
25×25

δu(5)(j3, j2, j1; x) = q(5)
V

[
j3, j2, j1; u(5)(j3 j2, j1; x);α; δα

]
δu(5)(j3, j2, j1; x) =

(
δu(4), δa(4)

)†

b(5)
V ,

(
b(4)

V , δb(4)
A

)†
= [0, 0]†;

[
V(5)

]
25×25

,

(
V(4) [0](24×24)

V(5)
21 V(5)

22

)
25×25

5th-Level Hilbert Space; Inner Product H5;
〈
η(5)(x),ξ(5)(x)

〉
5
,

25

∑
i=1

〈
η
(5)
i (x),ξ(5)i (x)

〉
0
.

5th-LASS State Function a(5)(j4, . . . , j1; x) ,
[
. . . , a(5)k (j4, . . . , j1; x), . . .

]
; k = 1, . . . , 25

5th-LASS

[
A(5)

]
25×25

a(5)(j4, . . . , j1; x) = s(5)A

[
j4, . . . , j1; u(5)(j3, j2, j1; x);α

]
;[

A(5)
]

25×25
,
[
V(5)

]∗
25×25

; b(5)
A

[
a(5)(j4, . . . , j1; x); u(5)(j3, j2, j1; x);α

]
= 0

No. of Distinct Sensitivities

TP(TP + 1)(TP + 2)(TP + 3)(TP + 4)/5!
R(5)

[
j5, . . . , j1; u(5)(j3, j2, j1; x); a(5)(j4, . . . , j1; x);α

]
, ∂5R[ϕ(x),ψ(x);α]/∂αj1 . . . ∂αj5 ; j1 = 1, . . . , TP; j2 = 1, . . . , j1; . . . . .; j5 = 1, . . . , j4

4. Mathematical Modeling of Response-Coupled Linear Forward and Adjoint Systems

The mathematical model of a physical system comprises independent variables
(e.g., space, time, etc.), dependent variables (aka “state functions”; e.g., temperature,
mass, momentum, etc.) and various parameters (appearing in correlations, coordinates of
physical boundaries, etc.), which are all interrelated by equations that usually represent
conservation laws. The model parameters usually stem from processes that are external
to the system under consideration and are seldom, if ever, known precisely. Without
loss of generality, the model parameters can be considered to be real scalar quantities,
having known nominal (or mean) values and, possibly, known higher-order moments
or cumulants (i.e., variance/covariances, skewness, kurtosis), which are usually deter-
mined from experimental data and/or processes external to the physical system under
consideration. These imprecisely known model parameters will be denoted as α1, . . . ,αTP,
where the subscript “TP” indicates “Total (number of) Parameters”. It will be convenient
to consider that these parameters are components of a “vector of parameters” denoted as
α , (α1, . . . , αTP)

† ∈ RTP, where RTP denotes the TP-dimensional subset of the set of real
scalars. These model parameters are considered to include imprecisely known geometrical
parameters that characterize the physical system’s boundaries in the phase-space of the
model’s independent variables. Thus, α ∈ RTP is a TP-dimensional column vector and its
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components are considered to include all of the uncertain model parameters, including
those that may enter into defining the system’s boundary in the phase-space of independent
variables. For subsequent developments, it is convenient to denote matrices and vectors
using capital and, respectively, lower case bold letters. The symbol “,” will be used to
denote “is defined as” or “is by definition equal to”. Transposition will be indicated by a
dagger (†) superscript.

The model is considered to comprise TI independent variables which will be denoted
as xi, i = 1, . . . , TI, and which will be considered as the components of a TI-dimensional
column vector denoted as x , (x1, . . . , xTI)

† ∈ RTI , where the sub/superscript “TI”
denotes the “Total (number of) Independent variables”. The vector x ∈ RTI of indepen-
dent variables is considered to be defined on a phase-space domain, denoted as Ω(α),
Ω(α) , {−∞ ≤ λi(α) ≤ xi ≤ ωi(α) ≤ ∞; i = 1, . . . , TI}. The lower boundary-point of
an independent variable is denoted as λi(α) (e.g., the inner radius of a sphere or cylinder,
the lower range of an energy-variable, etc.), while the corresponding upper boundary-
point is denoted as ωi(α) (e.g., the outer radius of a sphere or cylinder, the upper range
of an energy-variable, etc.). A typical example of boundary conditions that depend on
imprecisely known model and geometrical parameters is provided by models based on
diffusion theory where the boundaries of the physical domain are facing vacuum. For such
models, the boundary conditions for the respective state variables (i.e., particle flux and/or
current) are imposed not on the physical boundary but on the “extrapolated boundary”
of the respective spatial domain. The “extrapolated boundary” depends both on the im-
precisely known physical dimensions of the problem’s domain and also on the medium’s
properties, i.e., atomic number densities and microscopic transport cross sections. The
boundary of Ω(α), which will be denoted as ∂Ω(α), comprises the set of all of the end-
points λi(α), ωi(α), i = 1, . . . , TI, of the respective intervals on which the components of
x are defined, i.e., ∂Ω(α) , {λi(α) ∪ ωi(α), i = 1, . . . , TI}.

A linear physical system is generally modeled by a system of coupled linear operator-
equations which can be generally represented as follows:

L(x;α)ϕ(x) = qϕ(x;α), x ∈ Ω(α) (63)

where ϕ(x) , [ϕ1(x), . . . , ϕTD(x)]
† is a TD-dimensional column vector of dependent

variables, where the sub/superscript “TD” denotes the “Total (number of) Dependent
variables”. The functions ϕi(x), i = 1, . . . , TD, denote the system’s “dependent vari-
ables” (also called “state functions”). The matrix L(x;α) ,

[
Lij(x;α)

]
, i, j = 1, . . . , TD,

has dimensions TD × TD. The components Lij(x;α) are operators that act linearly on
the dependent variables ϕj(x) and also depend (in general, nonlinearly) on the uncer-
tain parameters α. The components of the TD-dimensional column vector qϕ(x;α) ,[
qϕ,1(x;α), . . . ., qϕ,TD(x;α)

]† represent inhomogeneous source terms. The components
qϕ,i(x;α) of qϕ(x;α), where the subscript “ϕ” indicates sources associated with the “for-
ward” system of equations, are also nonlinear functions of α. Since the right-side of
Equation (63) may contain distributions, the equality in this equation is considered to
hold in the weak (i.e., “distributional”) sense. Similarly, all of the equalities that involve
differential equations in this work will be considered to hold in the distributional sense.

When L(x;α) contains differential operators, a set of boundary and/or initial condi-
tions which define the domain of L(x;α) must also be given. Since the complete mathe-
matical model is considered to be linear in ϕ(x), the boundary and/or initial conditions
needed to define the domain of L(x;α) must also be linear in ϕ(x). Such linear boundary
and/or initial conditions are represented in the following operator form:

Bϕ(x;α)ϕ(x)-cϕ(x;α) = 0, x ∈ ∂Ωx(α). (64)

In Equation (64), the components Bij(x;α); i = 1, . . . , NB; j = 1, . . . , TD, of the
NB × TD-dimensional matrix-operator Bϕ(x;α) are operators that act linearly on ϕ(x)
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and nonlinearly on α; the quantity NB denotes the total number of boundary and initial
conditions. The operator cϕ(x;α) ,

[
cϕ,1(x;α), . . . , cϕ,NB(x;α)

]† is a NB-dimensional
vector comprising components that are operators which in general act nonlinearly on
α. The subscript “ϕ” in Equation (64) indicates boundary conditions associated with
the forward state function ϕ(x). In this work, capital bold letters will be used to denote
matrices while lower case bold letter will be used to denote vectors; the components of
these matrices and vectors may be operators rather than just functions.

Physical problems modeled by linear systems and/or operators are naturally defined
in Hilbert spaces. The dependent variables ϕi(x), i = 1, . . . , TD, for the physical system
represented by Equations (63) and (64) are considered to be square-integrable functions of
the independent variables and are considered to belong to a Hilbert space which will be
denoted as H0, where the subscript “zero” denotes “zeroth-level“ or “original”. Higher-
level Hilbert spaces, which will be denoted as H1, H2, etc., will also be introduced and
used in this work. The Hilbert space H0 is considered to be endowed with the following
inner product, denoted as 〈ϕ(x),ψ(x)〉0, between two elementsϕ(x) ∈ H0 andψ(x) ∈ H0:

〈ϕ(x),ψ(x)〉0 ,
∫

Ωx

ϕ(x)·ψ(x)dx ,
TI
∏
i=1

ωi(α)∫
λi(α)

ϕ(x)·ψ(x) dx

=
TI
∑

i=1

ω1(α)∫
λ1(α)

. . .
ωi(α)∫
λi(α)

. . .
ωTI(α)∫
λTI(α)

ϕi(x)ψi(x) dx1 dx2 . . . dxi . . . dxTI .

(65)

The dot in Equation (65) indicates the “scalar product of two vectors”, which is defined
as follows:

ϕ(x)·ψ(x) ,
TD

∑
i=1

ϕi(x)ψi(x) (66)

while the product-notation
TI
∏
i=1

ωi(α)∫
λi(α)

[ ] dxi in Equation (65) denotes the respective multiple

integrals. The linear operator L(x;α) admits an adjoint operator, denoted as L∗(x;α),
which is defined through the following relation for a vector ψ(x) ∈ H0:

〈ψ(x), L(x;α)ϕ(x)〉0 = 〈L∗(x;α)ψ(x), ϕ(x)〉0 (67)

In Equation (67), the formal adjoint operator L∗(x;α) is the TD× TD matrix compris-
ing elements L∗ji(x;α) obtained by transposing the formal adjoints of the forward operators
Lij(x;α), i.e.,

L∗(x;α) ,
[

L∗ji(x;α)
]
, i, j = 1, . . . , TD , (68)

Hence, the system adjoint to the linear system represented by Equations (63) and (64)
can generally be represented as follows:

L∗(x;α)ψ(x) = qψ(x;α), x ∈ Ωx(α) , (69)

Bψ(x;α)ψ(x)-cψ(x;α) = 0, x ∈ ∂Ωx(α) . (70)

When L(x;α) comprises differential operators, the operations (e.g., integration by
parts) that implement the transition from the left-side to the right side of Equation (67)
give rise to boundary terms which are collectively called the “bilinear concomitant”. The
domain of L∗(x;α) is determined by selecting adjoint boundary and/or initial conditions
so as to ensure that the bilinear concomitant vanishes when the selected adjoint boundary
conditions are implemented together with the forward boundary conditions given in
Equation (64). The adjoint boundary conditions thus selected are represented in operator
form by Equation (70), where the subscript “ψ” indicates adjoint boundary and/or initial
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conditions associated with the adjoint state function ψ(x). In most practical situations, the
Hilbert space H0 is self-dual.

The system of equations comprising Equations (63), (64), (69) and (70) will be called
the 1st-Level Forward System (1st-LFS), since it is the starting point for the computation of
the model’s response, and its solution will be needed for the subsequent computation of
the first-order sensitivities of the model’s response with respect to the model parameters.
The 1st-LFS can be written compactly in block-matrix form as follows:

F(1)(α; x)u(1)(x) = q(1)
F (x;α), x ∈ Ωx

(
α0
)

(71)

b(1)
F

(
u(1); α

)
= 0, x ∈ ∂Ωx

(
α0
)

, (72)

where the following definitions were used:

F(1)(α; x) ,
(

L(α; x) 0
0 L∗(α; x)

)
; u(1)(x) ,

(
ϕ(x)
ψ(x)

)
; qF(x;α) ,

(
qϕ(x;α)
qψ(x;α)

)
; (73)

b(1)
F

(
u(1); α

)
,
(

Bϕ(x;α)ϕ(x)-cϕ(x;α)
Bψ(x;α)ψ(x;α)-cψ(x;α)

)
. (74)

The nominal solution of Equations (63) and (64), which will be denoted as ϕ0(x),
and the nominal solution of Equations (69) and (70), which will be denoted as ψ0(x),
are obtained by solving these equations at the nominal (or mean) values of the model
parameter α0. The superscript “zero” will henceforth be used to denote “nominal” (or,
equivalently, “expected” or “mean” values). Thus, the vectors ϕ0(x), ψ0(x) and α0 satisfy
the following equations:

L
(
x;α0)ϕ0(x) = qϕ

(
x;α0), x ∈ Ωx

(
α0), Bϕ

(
x;α0)ϕ0(x)-cϕ

(
x;α0) = 0, x ∈ ∂Ωx

(
α0),

L∗
(
x;α0)ψ0(x) = qψ

(
x;α0), x ∈ Ωx

(
α0), Bψ

(
x;α0)ψ0(x)-cψ

(
x;α0) = 0, x ∈ ∂Ωx

(
α0),

or, equivalently, {
F(1)(α; x)u(1)(x)

}
α0

=
{

q(1)
F (x;α)

}
α0

, x ∈ Ωx

(
α0
)

(75)

{
b(1)

F

(
u(1); α

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (76)

In Equations (75) and (76), the notation { }α0 has been used to indicate that the
quantity within the brackets is to be evaluated at the nominal values of the parameters and
state functions. This simplified notation is justified by the fact that when the parameters
take on their nominal values, it implicitly means that the corresponding state functions
also take on their corresponding nominal values. This simplified notation will be used
throughout this work.

The relationship shown in Equation (67), which is the basis for defining the adjoint
operator, also provides the following fundamental “reciprocity-like” relation between the
sources of the forward and the adjoint equations, cf. Equations (63) and (69), respectively:〈

ψ(x), qϕ(x;α)
〉

0
=
〈

qψ(x;α), ϕ(x)
〉

0
(77)

The functional on the right-side of Equation (77) represents a “detector response”, i.e.,
reaction-rate between the particles and the medium represented by qψ(x;α) which is equiv-
alent to the “number of counts” of particles incident on a detector of particles that “mea-
sures” the particle fluxϕ(x). Thus, the source term qψ(x;α) ,

[
qψ,1(x;α), . . . ., qψ,TD(x;α)

]†

in Equation (77) is usually associated with the “result of interest” to be measured and/or
computed, which is customarily called the system’s “response”. In particular, if qψ(x;α) =

δ(x− xd), then
〈

qψ(x;α), ϕ(x)
〉

0
= ϕ(xd), which means that, in such a case, the right-side
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of Equation (77) provides the value of the dependent variable (particle flux, temperature,
velocity, etc.) at the point in phase-space where the respective measurement is performed.

The relation given in Equation (77) indicates that for linear physical systems, the
system’s response may depend not only on the model’s state-functions and on the system
parameters, but may also depend on the adjoint function The system’s response will be
denoted as R[ϕ(x),ψ(x);α] and, in the most general case, is a nonlinear operator acting
on the model’s forward and adjoint state functions, as well as on imprecisely known
parameters, both directly and indirectly through the state functions. The nominal value of
the response, R

[
ϕ0(x),ψ0(x);α0

]
, is determined by using the nominal parameter values

α0, the nominal value ϕ0(x) of the forward state function and the nominal value ψ0(x) of
the adjoint function.

In general, a function-valued (operator) response Rop[ϕ(x),ψ(x);α] can be repre-
sented by a spectral expansion in multidimensional orthogonal polynomials or Fourier
series of the form:

Rop[ϕ(x),ψ(x);α] = ∑
m1

. . .∑
mTI

cm1 ...mTI Pm1(x1)Pm2(x2) . . . PmTI (xTI), (78)

where the quantities Pmi (xi), i = 1, . . . , TI, denote the corresponding spectral functions
(e.g., orthogonal polynomials or Fourier exponential/trigonometric functions) and where
the spectral Fourier coefficients cm1 ...mTI are defined as follows:

cm1 ...mTI ,
TI

∏
i=1

ωi(α)∫
λi(α)

Rop[ϕ(x),ψ(x);α]Pm1(x1) . . . Pmi (xi) . . . PmTI (xNx )dxi (79)

The coefficients cm1 ...mTI can themselves be considered as system responses since the
spectral polynomials Pmi (xi) are perfectly well known while the expansion coefficients will
contain all of the dependencies of the respective response on the imprecisely known model
and response parameters. This way, the sensitivity analysis of operator-valued responses
can be reduced to the sensitivity analysis of scalar-valued responses.

A measurement of a physical quantity can be represented as a response
Rp
[
ϕ
(
xp
)
,ψ
(
xp
)
;α
]

located at a specific point, xp, in phase-space, having the
following form:

Rp
[
ϕ
(
xp
)
,ψ
(
xp
)
;α
]
,

TI

∏
i=1

ωi(α)∫
λi(α)

R[ϕ(x),ψ(x);α]δ
(
x− xp

)
dxi (80)

where δ
(
x− xp

)
denotes the multidimensional Dirac-delta functional. Responses that occur

in many fields (e.g., optimization, control, model verification, data assimilation, model
validation, model calibration, predictive modeling) are Lagrangians having the following
functional form:

R[ϕ(x),ψ(x);α] ,
TI

∏
i=1

ωi(α)∫
λi(α)

{
ϕ(x)qψ(x;α) +ψ(x)

[
L(α)ϕ(x)− qϕ(x;α)

]}
dxi (81)

A particular form of the response defined in Equation (81) is the Schwinger
“normalization-free Lagrangian”, which takes on the following form [1,2]:

R[ϕ(x),ψ(x);α] ,

{
TI
∏
i=1

ωi(α)∫
λi(α)

ϕ(x)qψ(x;α)dxi

}{
TI
∏
i=1

ωi(α)∫
λi(α)

ψ(x)qϕ(x;α)dxi

}
TI
∏
i=1

ωi(α)∫
λi(α)

ψ(x)L(x;α)ϕ(x; x)dxi

. (82)
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The system responses defined in Equation (78) through (82) indicate that their sensi-
tivities (i.e., functional derivatives) with respect to the model parameters can be studied by
considering a generic scalar-valued response, which will be denoted as R[ϕ(x),ψ(x);α],
of the following form:

R[ϕ(x),ψ(x);α] ,
TI

∏
i=1

ωi(α)∫
λi(α)

S [ϕ(x),ψ(x);α]dxi, (83)

where S [ϕ(x),ψ(x);α] denotes a suitably Gateaux- (G-) differentiable function of the
indicated arguments. In general, S [ϕ(x),ψ(x);α] is nonlinear in ϕ(x), ψ(x), and α, and
the components of α are considered to also include parameters that may specifically appear
only in the definition of the response under consideration (but which might not appear
in the definition of the model). Thus, the (physical) “system” is defined in this work to
comprise both the system’s computational model and the system’s response.

The generic response defined in Equation (83) provides the basis for constructing any
other responses of specific interest and will therefore be used for the generic “nth-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint
Linear Systems”, which will be abbreviated as “nth-CASAM-L” (where “n” is a finite number
that indicates any desired, arbitrarily-high, order) and which will be developed in the
remainder of this work. Note that the generic response defined in Equation (83) is, in
general, a nonlinear function of all of its arguments, i.e., S [ϕ(x),ψ(x);α] is nonlinear in
ϕ(x), ψ(x), and α.

5. The nth-CASAM-L Methodology for n = 1, 2, 3, 4

5.1. The 1st-CASAM-L: Summary

The model parameters αi are imprecisely known quantities, so their actual values may
differ from their nominal values by quantities denoted as δαi , αi − α0

i , i = 1, . . . , TP.
Since the model parameters α and the state functions are related to each other through the
forward and adjoint systems, it follows that variations δα , (δα1, . . . , δαTP) in the model
parameters will cause corresponding variations δϕ , (δϕ1, . . . , δϕTD), δϕi , ϕi − ϕ0

i ,
i = 1, . . . , TD and δψ , (δψ1, . . . , δψTD), δψi , ψi − ψ0

i , i = 1, . . . , TD in the forward
and, respectively, adjoint state functions. In turn, the variations δα, δϕ, and δψ will cause
a response variation R

(
ϕ0 + δϕ;ψ0 + δψ;α0 + δα

)
around the nominal response value

R
[
ϕ0(x),ψ0(x);α0

]
.

The first-order total G-variation δ fi[η1(x), . . . , ηK(x); h1(x), . . . , hK(x)] of a function
f [η1(x), . . . , ηK(x)] for arbitrary variations h , (h1, . . . , hK)

† is defined as follows:

{δ f [η1(x), . . . , ηK(x); h1(x), . . . , hK(x)]}η0 ,
{

d
dε

f
[
η0

1(x) + εh1(x), . . . , η0
K(x) + εhK(x)

]}
ε=0

. (84)

The first-order G-variation δ f (η; h) is an operator defined on the same domain as
F(η), and has the same range as F(η). The G-variation δ f (η; h) satisfies the relation
f (η+ εh) − f (η) = δ f (η; h) + ∆(h), with lim

ε→0
[∆(εh)]/ε = 0. The existence of the G-

variation δ f (η; h) does not guarantee its numerical computability. Numerical methods
(e.g., Newton’s method and variants thereof) most often require that δ f (η; h) be linear
in the variations h in a neighborhood

(
η0 + εh

)
around η0. The necessary and sufficient

conditions for the G-differential δ f (η; h) of a nonlinear operator f (η) to be linear in the
variations h in a neighborhood (η+ εh) around η are as follows:

(i). f (η) satisfies a weak Lipschitz condition at η0; i.e.,∥∥∥ f
(
η0 + εh

)
− f

(
η0
)∥∥∥ ≤ k

∥∥∥εη0
∥∥∥, k < ∞ (85)



Energies 2021, 14, 8314 21 of 42

(ii). For two arbitrary vectors of variations h1 and h2, the operator f (η) satisfies the
relation

f
(
η0 + εh1 + εh2

)
− f

(
η0 + εh1

)
− f

(
η0 + εh2

)
+ f

(
η0
)
= o(ε) (86)

In practice, it is not necessary to investigate if f (η) satisfies the conditions presented
in Equations (85) and (86) since it is usually evident if the right-side of Equation (84) is
linear (or not) in the variations h. A total variation δ f (η; h) which is linear in h is called
the “total differential of f (u)” and is usually denoted as D f (η; h). In this case, the partial
variation δ f (η1, . . . , ηK; hi) is called the “partial differential δ f (η1, . . . , ηK; hi) of F(η) with
respect to ηi”. Thus, the total differential D f (η; h) is linear in the variations hi and the
following representation holds:

D f (η1, . . . , ηK; h1, . . . , hK) =
K

∑
k=1

∂ f (η1, . . . , ηK)

∂ηi
hi (87)

where the quantities ∂ f (η1, . . . , ηK)/∂ηi denote the partial derivatives of f (η) with respect
to its arguments ηi. It will henceforth be assumed that all of the operators considered in
this work satisfy the conditions presented in Equations (85) and (86), and therefore admit
partial G-derivatives such that the representation shown in Equation (87) exists.

Since this work ultimately aims at deriving the explicit expressions of the nth-order
(i.e., arbitrarily-high order) sensitivities of the response R[ϕ(x),ψ(x);α] with respect to the
model parameters, the proliferation of indices, superscripts and subscripts is unavoidable.
To avoid the use of “subscripted-subscripts” as much as possible, the subscripts which will
be used for denoting the sensitivities (i.e., partial G-derivatives) of the model response with
respect to the model parameters will have the following form: (i) j1 = 1, . . . , TP, for first-
order sensitivities; (ii) j1; j2 = 1, . . . , TP, for 2nd-order sensitivities; (iii) j1; j2; j3 = 1, . . . , TP,
for 3rd-order sensitivities, and so on. Thus, the indices j1; j2; . . . ; jn = 1, . . . , TP will be used
for the nth-order sensitivities.

The 1st-order Gateaux- (G-) variation, denoted as δR
(
ϕ0,ψ0,α0; δϕ, δψ, δα

)
, of the

response R(e) for arbitrary variations δϕ(x), δψ(x), δα in the model parameters and
state functions, in a neighborhood

[
ϕ0(x) + εδϕ(x),ψ0(x) + εδψ(x);α0 + εδα

]
around(

ϕ0,ψ0,α0
)

, where ε ∈ F is a real scalar (F denotes the underlying field of scalars), is
defined as follows:

{δR(ϕ,ψ,α; δϕ, δψ, δα)}α0 ,
{

d
dε R
[
ϕ0(x) + εδϕ(x),ψ0(x) + εδψ(x);α0 + εδα

]}
ε=0

, {[δR(ϕ,ψ,α; δα)]α0}dir + {[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind.
(88)

In Equation (88), the “indirect-effect” term {[δR(ϕ,ψ,α; δα)]α0}ind depends only on
the variations δϕ and δψ in the state functions, and is defined as follows:

{[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind ,
TI

∏
i=1


ωi(α)∫

λi(α)

dxi

[
∂S [ϕ(x),ψ(x);α]

∂ϕ
δϕ+

∂S [ϕ(x),ψ(x);α]
∂ψ

δψ

]
α0

. (89)

while the “direct-effect” term {[δR(ϕ,ψ,α; δα)]α0}dir depends only on the parameter
variations δα and is defined as follows:
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{[δR(ϕ,ψ,α; δα)]α0}dir ,

{
∂

∂α

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS [ϕ(x),ψ(x);α]

}
α0

δα

=
TI
∏
i=1

{
ωi(α)∫
λi(α)

dxi
∂S [ϕ(x),ψ(x);α]

∂α δα

}
α0

+
TI
∑

j=1

TI
∏

i=1,i 6=j

{
ωi(α)∫
λi(α)

dxiS
[
ϕ
(
. . . , ωj, . . . , xNx

)
,ψ
(
. . . , ωj, . . .

)
;α
] ∂ωj(α)

∂α

}
α0

δα

−
TI
∑

j=1

TI
∏

i=1,i 6=j

{
ωi(α)∫
λi(α)

dxiS
[
ϕ
(
. . . , λj, . . .

)
,ψ
(
. . . , λj, . . .

)
;α
] ∂λj(α)

∂α

}
α0

δα,

(90)

where
∂[ ]

∂α
δα ,

TP

∑
i=1

∂[]

∂αi
δαi (91)

In Equations (89) and (90), the notation {}α0 is used to indicate that the quantity
within the brackets is to be evaluated at the nominal values of the parameters and state
functions. As has been previously mentioned, this simplified notation is justified by
the fact that when the parameters take on their nominal values, it implicitly means that
the corresponding state functions also take on their corresponding nominal values. The
“direct effect” term {[δR(ϕ,ψ,α; δα)]α0}dir defined in Equation (90) depends directly
on the parameter variations δα, and can be computed immediately since it does not
depend on the variations δϕ and δψ(x). On the other hand, the “indirect effect” term
{[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind defined in Equation (89) depends indirectly on the parameter
variations δα, through the variations δϕ(x) and δψ(x) in the forward state functions ϕ(x)
and ψ(x), and can be computed only after having computed the values of the variations
δϕ(x) and δψ(x).

The variations δϕ(x) and δψ(x) are the solutions of the equations obtained by the
G-differentiating Equations (63), (64), (69) and (70), which yields the following system:,
which will be called the 1st-Level Variational Sensitivity System (1st-LVSS):{(

L (α; x) 0
0 L∗(α; x)

)(
δϕ(x)
δψ(x)

)}
α0

=

{(
q(1)

1 (ϕ;α; δα)

q(1)
2 (ψ;α; δα)

)}
α0

, x ∈ Ωx, (92)

{
b(1)

V

(
u(1);α; δu(1) ; δα

)}
α0

,

{(
δb(1)

1 (ϕ;α; δϕ; δα)

δb(1)
2 (ψ;α; δψ; δα)

)}
α0

=

(
0
0

)
, x ∈ ∂Ωx

(
α0
)

, (93)

where {
q(1)

1 (ϕ,α; δα)
}
α0

,

∂
[
qϕ(α)− L(α)ϕ

]
∂α


α0

δα, (94)

{
q(1)

2 (ψ,α; δα)
}
α0

,

∂
[
qψ(α)− L∗(α)ψ(x)

]
∂α


α0

δα, (95)

The matrices ∂qϕ(α)/∂α and ∂[L(α)ϕ]/∂α, which appear on the right-side of Equa-
tion (94), are defined as follows:

∂qϕ(α)

∂α
,


∂qϕ,1
∂α1

. . .
∂qϕ,1
∂αTP

...
. . .

...
∂qϕ,Nϕ

∂α1
· · ·

∂qϕ,Nϕ

∂αTP

,
∂[L(α)ϕ]

∂α
,



∂

[
TD
∑

j=1
L1,j(α)ϕj

]
∂α1

. . .
∂

[
TD
∑

j=1
L1,j(α)ϕj

]
∂αTP

...
. . .

...

∂

[
TD
∑

j=1
LNϕ ,j(α)ϕj

]
∂α1

· · ·
∂

[
TD
∑

j=1
LNϕ ,j(α)ϕj

]
∂αTP


. (96)
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The matrices ∂qψ(α)/∂α and ∂[L∗(α)ψ]/∂α, which appear on the right-side of
Equation (96), have the same structures as the matrices ∂qϕ(α)/∂α and
∂[L(α)ϕ]/∂α, respectively.

Considering the definitions provided in Equations (91), (94) and (95), it follows from
Equation (92) that the state functions ϕ(x) and ψ(x) are implicit functions of the model
parameters α; therefore, the variations of the variations δϕ(x) and δψ(x) can be considered
to represent the following total differentials:

δϕ =
TP

∑
i=1

∂ϕ

∂αi
δαi; δψ =

TP

∑
i=1

∂ψ

∂αi
δαi. (97)

Using the results provided in Equations (91), (94)−(97) into Equations (92) and (93),
and identifying the expressions that multiply each parameter variation δαi yields the
following system of equations:{(

L(α; x) 0
0 L∗(α; x)

)(
∂ϕ/∂αj1
∂ψ/∂αj1

)}
α0

=

{(
q(1)

1 /∂αj1

q(1)
2 /∂αj1

)}
α0

; x ∈ Ωx; j1 = 1, . . . , TP, (98)

with the functions ∂ϕ/∂αj1 and ∂ψ/∂αj1 subject to the corresponding boundary
conditions derived from Equation (93). It is evident from Equation (98) that the de-
terminations of the functions ∂ϕ/∂αj1 and ∂ψ/∂αj1 by solving the 1st-LVSS would re-
quire TP large-scale computations, which would be prohibitively expensive in terms of
computational resources.

The alternative path for determining the indirect-effect term {[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind
defined in Equation (89), which avoids the need to compute the functions ∂ϕ/∂αj1 and
∂ψ/∂αj1 , is provided by the first-order adjoint sensitivity analysis methodology which
was conceived by Cacuci [7,8], which will be presented in this subsection in its extended
framework, including the computation of response sensitivities to parameters underlying
boundary and interface conditions. This extended framework is called the “Adjoint Sensi-
tivity Analysis Methodology for Response-Coupled Forward and Adjoint Linear Systems,”
and is abbreviated as 1st-CASAM-L. The starting point for the 1st-CASAM-L is the 1st-LVSS,
cf. Equations (92) and (93), which will be written in the following block-matrix form:{

V(1)(α; x)δu(1)(x)
}
α0

=
{

q(1)
V

(
u(1);α; δα

)}
α0

x ∈ Ωx, (99)

{
b(1)

V

[
u(1);α; δu(1); δα

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (100)

where [
V(1)(α; x)

]
2×2

, F(1)(α; x); δu(1)(x) , [δϕ(x), δψ(x)]†

q(1)
V

(
u(1);α; δα

)
,
[
q(1)

1 (ϕ;α; δα); q(1)
2 (ψ;α; δα)

]†
.

(101)

The solution δu(1)(x) of the “1st-Level Variational Sensitivity System” (1st-LVSS) will be
called the “1st-level variational sensitivity function, as highlighted by the superscript “(1)”.

The indirect-effect term {[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind defined in Equation (89) can be
computed by applying of the “First-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Response-Coupled Forward and Adjoint Linear Systems”, abbreviated
as 1st-CASAM-L, which avoids the need for computing the functions δϕ(x) and δψ(x).
The 1st-CASAM-L uses a Hilbert space, denoted as H1, which comprises square-integrable

functions vector-valued elements of the form η(1)(x) ,
[
η
(1)
1 (x),η(1)2 (x)

]†
, η(1)i (x) ,[

η
(1)
i,1 (x), . . . , η

(1)
i,j (x), . . . , η

(1)
i,TD(x)

]†
, i = 1, 2, and which is endowed with an inner product
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between two elements, η(1)(x) ∈ H1, ξ(1)(x) ∈ H1, denoted as
〈
η(1)(x),ξ(1)(x)

〉
1

and
defined as follows: 〈

η(1)(x),ξ(1)(x)
〉

1
,

2

∑
i=1

〈
η
(1)
i (x),ξ(1)i (x)

〉
0

(102)

In the Hilbert H1, form the inner product of Equation (92) with a yet undefined

vector-valued function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
∈ H1 to obtain the following relation:{〈

a(1)(x), V(1)(x;α)δu(1)(x)
〉

1

}
α0

=
{〈

a(1)(x), q(1)
V

(
u(1);α; δα

) 〉
1

}
α0

=
{〈

δu(1)(x), A(1)(x;α)a(1)(x)
〉

1

}
α0

+
{

P(1)
[
δu(1)(x); a(1)(x);α; δα

]}
α0

,
(103)

where
{

P(1)
[
δu(1)(x); a(1)(x);α; δα

]}
α0

denotes the bilinear concomitant defined on the

phase-space boundary x ∈ ∂Ωx
(
α0), and where

[
A(1)(α; x)

]
2×2

is the operator formally

adjoint to V(1)(α; x), i.e.,[
A(1)(α; x)

]
2×2

,
[
V(1)(α; x)

]∗
2×2

=

(
L∗(α; x) 0

0 L(α; x)

)
(104)

Require the first term on right-side of the second equality in Equation (103) to represent
the indirect-effect term defined in (89), to obtain the following relation:[

A(1)(α; x)
]

2×2
a(1)(x) = s(1)A

(
u(1)(x);α

)
, (105)

where the subscript “A” denotes “adjoint” and where the source term s(1)A

(
u(1)(x);α

)
is

defined as follows:

s(1)A

[
u(1)(x);α

]
,


[
s(1)1

(
u(1);α

)]†[
s(1)2

(
u(1);α

)]†

 ,


[
∂S
(

u(1);α
)

/∂ϕ
]†[

∂S
(

u(1);α
)

/∂ψ
]†

. (106)

Implement the boundary conditions given in Equation (93) into Equation (103), thereby
eliminating the remaining unknown boundary-values of the functions δϕ and δψ from
the expression of the bilinear concomitant

{
P(1)

[
δu(1)(x); a(1)(x);α

]}
α0

by selecting ap-

propriate boundary conditions for the function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
, to ensure that

Equation (105) is well-posed while being independent of unknown values of δϕ, δψ, and

δα. The boundary conditions thus chosen for the function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
can

be represented in operator form as follows:{
b(1)

A

[
u(1)(x); a(1)(x);α;

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (107)

The selection of the boundary conditions for the adjoint function a(1)(x) ,[
a(1)1 (x), a(1)2 (x)

]†
represented by (107) eliminates the appearance of the unknown values

of δu(1)(x) in
{

P(1)
[
δu(1)(x); a(1)(x);α; δα

]}
α0

and reduces this bilinear concomitant to a

residual quantity that contains boundary terms involving only known values ofϕ(x),ψ(x),
a(1)(x), α and δα. This residual quantity will be denoted as

{
P̂(1)

[
u(1)(x); a(1)(x);α; δα

]}
α0

.
In general, this residual quantity does not automatically vanish, although it may do
so occasionally.
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The system of equations comprising Equation (105) together with the boundary
conditions represented by Equation (107) constitutes the 1st-Level Adjoint Sensitivity System

(1st-LASS). The solution a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
of the 1st-LASS is called the 1st-level

adjoint function. The 1st-LASS is called “first-level” (as opposed to “first-order”) because
it does not contain any differential or functional-derivatives, but its solution, a(1)(x), will
be used below to compute the first-order sensitivities of the response with respect to the
model parameters. This terminology will be also used in the sequel, when deriving the
expressions for the higher-order sensitivities.

It follows from Equations (103) and (105) that the indirect-effect term
{[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind can be expressed in terms of the 1st-level adjoint function

a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
as follows:

{[δR(ϕ,ψ,α; δϕ, δψ)]α0}ind =
{〈

a(1)(x), q(1)
V

(
u(1);α; δα

) 〉
1

}
α0
−
{

P̂(1)
[
u(1); a(1);α; δα

]}
α0

=

{
2
∑

k=1

〈
a(1)k (x), q(1)

k

(
u(1);α; δα

)〉
0

}
α0
−
{

P̂(1)
[
u(1); a(1);α; δα

]}
α0
≡
{

δR
(

u(1); a(1);α; δα
)}

ind
.

(108)

As indicated by the last equality in Equation (108), the variations δϕ and δψ have
been eliminated from the original expression of the indirect-effect term, which now instead

depends on the 1st-level adjoint function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
. As indicated in

Equation (105), solving the 1st-LASS entails the following operations: (i) inverting (i.e.,

solving) the original left-side of the adjoint equation with the source
[
∂S
(

u(1);α
)

/∂ϕ
]†

to obtain the 1st-level adjoint function a(1)1 (x); and (ii) inverting the original left-side of

the forward equation with the source
[
∂S
(

u(1);α
)

/∂ψ
]†

to obtain the 1st-level adjoint

function a(1)2 (x). It is very important to note that the 1st-LASS is independent of parameter
variations δα. Hence, the 1st-LASS needs to be solved only once (as opposed to the 1st-LVSS,
which would need to be solved anew for each parameter variation) to determine the 1st-

level adjoint function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
. Subsequently, the “indirect-effect term”

{[δR(ϕ, ψ,α; δϕ, δψ)]α0}ind is computed efficiently and exactly by simply performing the

integrations over the adjoint function a(1)(x) ,
[
a(1)1 (x), a(1)2 (x)

]†
, as indicated on the

right-side of Equation (108).
The total 1st-order sensitivity of the response R[ϕ(x),ψ(x);α] to the model parameters

is obtained by adding the expressions of the direct-effect term defined in Equation (90) and
indirect-effect term as obtained in Equation (108), which yields the following expression:

{
δR
[
u(1)(x),α; δϕ, δψ, δα

]}
α0

=
TI
∏
i=1

{
ωi(α)∫
λi(α)

dxi
∂S [ϕ(x),ψ(x);α]

∂α δα

}
α0

+
TI
∑

j=1

TI
∏

i=1,i 6=j

{
ωi(α)∫
λi(α)

dxiS
[
ϕ
(
. . . , ωj, . . . , xNx

)
,ψ
(
. . . , ωj, . . .

)
;α
] ∂ωj(α)

∂α

}
α0

δα

−
TI
∑

j=1

TI
∏

i=1,i 6=j

{
ωi(α)∫
λi(α)

dxiS
[
ϕ
(
. . . , λj, . . .

)
,ψ
(
. . . , λj, . . .

)
;α
] ∂λj(α)

∂α

}
α0

δα,

+

{
2
∑

k=1

〈
a(1)k (x), q(1)

k

(
u(1);α; δα

)〉
0

}
α0
−
{

P̂(1)
[
u(1); a(1);α; δα

]}
α0

≡
{

δR
[
u(1)(x); a(1)(x);α; δα

]}
α0

.

(109)

As indicated in the last equality in Equation (109), the expression of the first-order G-
variation δR

[
u(1)(x); a(1)(x);α; δα

]
no longer depends on the variations δϕ and δψ, which

are expensive to compute, but instead depends on the 1st-level adjoint function a(1)(x) ,
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[
a(1)1 (x), a(1)2 (x)

]†
, which is as inexpensive to compute as the original state function(s). In

particular, the expression in Equation (109) also reveals that the sensitivities of the response
R[ϕ(x),ψ(x);α] to parameters that characterize the system’s boundary and/or internal
interfaces can arise both from the direct-effect and indirect-effect terms. It also follows
from Equation (109) that the total 1st-order G-variation δR

[
u(1)(x); a(1)(x);α; δα

]
can be

expressed in terms of the 1st-level adjoint functions as follows:

{
δR
[
u(1)(x); a(1)(x);α; δα

]}
α0

=
TP

∑
j1=1

∂R
[
u(1)(x); a(1)(x);α

]
∂αj1


α0

δαj1 (110)

where the quantities
{

∂R
[
u(1)(x); a(1)(x);α

]
/∂αj1

}
α0

represent the 1st-order response sen-
sitivities with respect to the model parameters, evaluated at the nominal values of the
state functions and model parameters. For the subsequent computation of higher-order
responses sensitivities, it is convenient to represent the 1st-order response sensitivities
as follows:

∂R[u(1)(x);a(1)(x);α]
∂αj1

, R(1)
[

j1; u(1)(x); a(1)(x);α
]

,
TI
∏

k=1

ωk(α)∫
λk(α)

dxkS(1)
[

j1; u(1)(x); a(1)(x);α
]

, j1 = 1, . . . , TP.
(111)

In particular, if the residual bilinear concomitant is non-zero, the functions
S(1)

[
j1; u(1)(x); a(1)(x);α

]
would contain suitably defined Dirac delta-functionals for ex-

pressing the respective non-zero boundary terms as volume-integrals over the phase-space
of the independent variables. Dirac-delta functionals would also be needed to represent,
within S(1)

[
j1; u(1)(x); a(1)(x);α

]
, the terms containing the derivatives of the boundary

end-points with respect to the model and/or response parameters. As indicated by Equa-
tion (111), the computation of the 1st-order response sensitivities to all model parameters
requires two large-scale computations (which is just as many as solving the original
system) namely: one large-scale computation for computing the first-level adjoint state
function a(1)1 (x) and one large-scale computation for computing the first-level adjoint state

function a(1)2 (x).

5.2. The 2nd-CASAM-L: Summary

For each value of the index j1 = 1, . . . , TP, the first-order sensitivity
R(1)

[
j1; u(1)(x); a(1)(x);α

]
will be considered to play the role of a “model response.” The

starting point for the development of the 2nd-CASAM-L is provided by the expressions
of the sensitivities provided in terms of the 1st-level adjoint functions, namely Equation (111),
which indicates that the computation of the first-order sensitivities R(1)

[
j1; u(1)(x); a(1)(x);α

]
using the 1st-CASAM-L requires the determination of the functions u(1)(x) and a(1)(x). In
view of the developments underlying the 1st-CASAM-L, the functions u(1)(x) and a(1)(x)
are the solutions of the following system of equations, written in block-matrix form:{

F(2)(α; x)u(2)(x)
}
α0

=
{

q(2)
F

(
u(1); x;α

)}
α0

, x ∈ Ωx

(
α0
)

(112)

{
b(2)

F

(
u(2); α

)}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (113)

where
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F(2)(α; x) ,


[
F(1)(α; x)

]
2×2

0

0
[
A(1)(α; x)

]
2×2

; u(2)(x) ,

(
u(1)(x)
a(1)(x)

)
;

q(2)
F

(
u(1); x;α

)
,

(
q(1)

F (x;α)
s(1)
(

u(1)(x);α
) ); b(2)

F

(
u(2); α

)
,

(
b(1)

F (x;α)
b(1)

A

[
u(1)(x); a(1)(x);α;

] ) (114)

The system of equations represented by Equations (112) and (113) will be called the
2nd-Level Forward System, (2nd-LFS) since it plays the same role as the First-Level (original)
Forward System (1st-LFS) has played for the computation of the first-order response
sensitivities. In terms of the function u(2)(x), each 1st-order sensitivity can be compactly
written, for each j1 = 1, . . . , TP, as follows:

∂R(ϕ;ψ;α)/∂αj1 ≡ R(1)
[

j1; u(2)(x);α
]
≡

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(1)
[

j1; u(2)(x);α
]
. (115)

There are TP(TP + 1)/2! distinct 2nd-order sensitivities of the response with respect to
the model and response parameters. The 2nd-order total sensitivity of the model response is
obtained by applying the definition of the 1st-order G-differential to Equation (111), which
yields the following result, for each j1 = 1, . . . , TP:{

δR(1)
[

j1; u(2)(x);α; δu(2)(x); δα
]}
α0

,
{

d
dε

 TI
∏
i=1

ωi(α
0+εδα)∫

λi(α0+εδα)

dxiS(1)(j1;u(2) + εδu(2);

α+ εδα)]α0}ε=0 =
{

δR(1)
[

j1; u(2)(x);α; δα
]
α0

}
dir

+
{

δR(1)
[

j1; u(2)(x);α; δu(2)(x)
]
α0

}
ind

,

(116)

where the direct-effect term
{

δR(1)
[

j1; u(2)(x);α; δα
]
α0

}
dir

is defined as follows:

{
δR(1)

[
j1; u(2)(x);α; δα

]
α0

}
dir

,

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(1)
[

j1; u(1)(x); a(1)(x);α
]
α0

δα, (117)

while the indirect-effect term
{

δR(1)
[

j1; u(2)(x);α; δu(2)(x)
]
α0

}
ind

is defined as follows:

{
δR(1)

[
j1; u(2)(x);α; δu(2)(x)

]
α0

}
ind

,
TI

∏
i=1

ωi(α)∫
λi(α)

∂S(1)
(

j1; u(1); a(1);α
)

∂u(2)
δu(2)(x)


α0

, (118)

where

∂[ ]

∂u(2)
δu(2)(x) ,

∂[ ]

∂ϕ
δϕ(x) +

∂[ ]

∂ψ
δψ(x) +

∂[ ]

∂a(1)1

δa(1)1 (x) +
∂[ ]

∂a(1)2

δa(1)2 (x). (119)

As indicated by the subscript “zero,” the expression in Equation (118) is to be com-
puted at nominal parameter and state function values.

The direct-effect term
{

δR(1)
[

j1; u(2)(x);α; δα
]
α0

}
dir

can be computed immediately.

The indirect-effect term,
{

δR(1)
[

j1; u(2)(x);α; δu(2)(x)
]
α0

}
ind

, however, depends on the

variation δu(2)(x). In turn, the variation δu(2)(x) is the solution of G-differentiated 2nd-LFS
or, equivalently, the solution of the system obtained by concatenating the 1st-LVSS with the
equations obtained by G-differentiating the 1st-LASS, cf. Equations (105) and (107). Either
way, one obtains the following system of equations:{[

V(2)
(

u(1);α
)]

22×22
δu(2)(x)

}
α0

=
{

q(2)
V

(
u(2);α; δα

)}
α0

, x ∈ Ωx, (120)
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{
b(2)

V

[
u(2);α; δu(2)(x); δα

]}
α0

,


 b(1)

V

(
u(1);α; δu(1); δα

)
δb(1)

A

(
u(2);α; δu(2); δα

) 
α0

=

(
0
0

)
, x Ωx

(
α0
)

, (121)

where:

[
V(2)

(
u(1);α

)]
22×22

,

(
V(1) [0]2×2

V(2)
21 V(2)

22

)
=


L(α) 0 0 0

0 L∗(α) 0 0

− ∂2S(u(1);α)
∂ϕ∂ϕ − ∂2S(u(1);α)

∂ϕ∂ψ L∗(α) 0

− ∂2S(u(1);α)
∂ψ∂ϕ − ∂2S(u(1);α)

∂ψ∂ψ 0 L(α)


V(2)

21 ,

 − ∂2S(u(1);α)
∂ϕ∂ϕ − ∂2S(u(1);α)

∂ϕ∂ψ

− ∂2S(u(1);α)
∂ψ∂ϕ − ∂2S(u(1);α)

∂ψ∂ψ

; V(1) =
[
F(1)(α; x)

]
2×2

; V(2)
22 =

[
A(1)(α)

]
2×2

;

(122)

δu(2)(x) ,

(
δu(1)(x)
δa(1)(x)

)
=


δϕ(x)
δψ(x)

δa(1)1 (x)
δa(1)2 (x)

; q(2)
V

(
u(2);α; δα

)
,


q(2)

1

(
u(1);α; δα

)
q(2)

2

(
u(1);α; δα

)
q(2)

3

(
u(2);α; δα

)
q(2)

4

(
u(2);α; δα

)

 ,


q(1)

1 (ϕ;α; δα)

q(1)
2 (ψ;α; δα)

p(2)
1

(
u(2);α; δα

)
p(2)

2

(
u(2);α; δα

)

. (123)

p(2)
1

(
ϕ;ψ; a(1)1 ;α; δα

)
,

∂2S
(

u(1);α
)

∂α∂ϕ
δα−

∂
[
L∗(α)a(1)1

]
∂α

δα, (124)

p(2)
2

(
u(1); a(1)2 ;α; δα

)
,

∂2S
(

u(1);α
)

∂α∂ψ
δα−

∂
[
L(α)a(1)2

]
∂α

δα, (125)

{
δb(1)

A

(
u(1); a(1);α; δu(1); δa(1)1 ; δa(1)2 ; δα

)}
α0

,
{

∂b(1)
A (u(1);a(1);α)

∂ϕ δϕ+
∂b(1)

A (u(1);a(1);α)
∂ψ δψ

}
α0

+

{
∂b(1)

A (u(1);a(1);α)
∂a(1)1

δa(1)1 +
∂b(1)

A (u(1);a(1);α)
∂a(1)2

δa(1)2

}
α0

+

{
∂b(1)

A (u(1);a(1);α)
∂α δα

}
α0

= 0, x ∈ ∂Ωx
(
α0). (126)

The system comprising Equations (120) and (121) will be called the “2nd-Level Varia-
tional Sensitivity System” (2nd-LVSS), and its solution, δu(2)(x), will be called the 2nd-level
variational function.

All of the components of the matrices and vectors defined in Equations (120) and (121)
are to be computed at nominal parameter and state function values. The matrix V(2)

21
depends only the system’s response and is responsible for coupling the forward and adjoint
systems. Although the forward and adjoint systems are coupled, they could nevertheless
be solved successively rather than simultaneously, because the matrix

[
V(2)

(
u(1);α

)]
22×22

is a 4 × 4 block-diagonal matrix.
In principle, the 2nd-LVSS could be solved for each possible component δαj2 , j2 = 1, . . . , j1,

of the vector of parameter variations δα to obtain the 2nd-level variational function δu(2)(x).
Subsequently, δu(2)(x) could be used together with the known parameter variations δα in
Equation (118) to compute the indirect-effect term

{
δR(1)

[
j1; u(2)(x);α; δu(1)(x); δa(1)(x)

]}
ind

.

Computing
{

δR(1)
[

j1; u(2)(x);α; δu(1)(x); δa(1)(x)
]}

ind
would require at least 2TP(TP + 1)

large-scale computations for solving the 2nd-LVSS for every independent component
(αj2 , αj1 , j1 = 1, . . . , TP; j2 = 1, . . . , j1) of the vectors of parameter variations δα.

Following the principles introduced by Cacuci (2018), the application of the 2nd-
CASAM-L avoids the need for solving the 2nd-LVSS, by expressing the indirect-effect term{

δR(1)(j1)
}

ind
defined in Equation (118) in an alternative manner, in terms of the solution of

a 2nd-Level Adjoint Sensitivity System (2nd-LASS), which is constructed so as to eliminate the
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appearance of the 2nd-level variational vector δu(2)(x) in the alternative expression of the
indirect-effect term

{
δR(1)(j1)

}
ind

. The construction of the requisite 2nd-LASS commences
by introducing a Hilbert space, denoted as H2, comprising square-integrable vector-valued

elements of the form η(2)(x) ,
[
η
(2)
1 (x),η(2)2 (x),η(2)3 (x),η(2)4 (x)

]†
∈ H2, with components

η
(2)
i (x) ,

[
η
(2)
i,1 (x), . . . , η

(2)
i,j (x), . . . , η

(2)
i,TD(x)

]†
, i = 1, 2, 3, 4,. The inner product between

two elements, η(2)(x) ∈ H2 and ξ(2)(x) ∈ H2, in this Hilbert space will be denoted as〈
η(2)(x),ξ(2)(x)

〉
2

and is defined as follows:

〈
η(2)(x),ξ(2)(x)

〉
2
,

2

∑
i=1

〈
η
(2)
i (x),ξ(2)i (x)

〉
2
=

22

∑
k=1

〈
η
(2)
k (x),ξ(2)k (x)

〉
0

(127)

In the Hilbert H2, form the inner product of Equation (120) with a yet undefined

function a(2)(j1; x) ,
[
a(2)1 (j1; x), a(2)2 (j1; x), a(2)3 (j1; x), a(2)4 (j1; x)

]†
∈ H2,j1 = 1, . . . , TP, to

obtain the following relation:{〈
a(2)(j1; x), V(2)

(
u(1);α

)
δu(2)(x)

〉
2

}
α0

=
{〈

a(2)(j1; x), q(2)
(

u(2);α; δα
) 〉

2

}
α0

=
{〈

δu(2)(x), A(2)
(

u(1);α
)

a(2)(j1; x)
〉

2

}
α0

+
{

P(2)
[
δu(2)(x); u(1)(x); a(2)(j1; x);α; δα

]}
α0

,
(128)

where
{

P(2)
[
δu(2)(x); u(1)(x); a(2)(j1; x);α; δα

]}
α0

denotes the bilinear concomitant de-

fined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where

[
A(2)

(
u(1);α

)]
22×22

,[
V(2)

(
u(1);α

)]∗
22×22

is the operator formally adjoint to
[
V(2)

(
u(1);α

)]
22×22

, having the

following form:

[
A(2)

(
u(1);α

)]
22×22

=

 A(1)(α)
[
V(2)

21

(
u(1);α

)]∗
[0](2×2) V(1)(α)


22×22

=


L∗(α) 0 − ∂2S(u(1);α)

∂ϕ∂ϕ − ∂2S(u(1);α)
∂ψ∂ϕ

0 L(α) − ∂2S(u(1);α)
∂ϕ∂ψ − ∂2S(u(1);α)

∂ψ∂ψ

0 0 L(α) 0
0 0 0 L∗(α)


22×22

.

(129)

The first term on right-side of the second equality in Equation (128) is now
required to represent the indirect-effect term

{
δR(1)(j1)

}
ind

defined in Equation (118).

This requirement is satisfied requiring that the 2nd-level adjoint function a(2)(j1; x) ,[
a(2)1 (j11; x), . . . , a(2)k (j1; x), . . . , a(2)4 (j1; x)

]†
; k = 1, . . . , 22,j1 = 1, . . . , TP be the solution

of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS):{[
A(2)

(
u(1);α

)]
22×22

a(2)(j1; x)
}
α0

=
{

s(2)A

(
j1; u(2);α

)}
α0

, j1 = 1, . . . , TP, (130)

{
b(2)

A

[
u(2)(x); a(2)(j1; x);α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, j1 = 1, . . . , TP. (131)

where the following definitions were used for each j1 = 1, . . . , TP:

s(2)A

(
j1; u(2);α

)
,
[
s(2)1

(
j1; u(2); x

)
, s(2)2

(
j1; u(2); x

)
, s(2)3

(
j1; u(2); x

)
, s(2)4

(
j1; u(2); x

)]†

,
[

∂S(1)(j1;u(2);α)
∂ϕ ,

∂S(1)(j1;u(2);α)
∂ψ ,

∂S(1)(j1;u(2);α)
∂a(1)1

,
∂S(1)(j1;u(2);α)

∂a(1)2

]†
.

(132)
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The adjoint boundary conditions represented by Equation (131) are selected so as to
eliminate, in conjunction with the boundary conditions provided in Equation (121), all of
the unknown values of the functions δu(2)(x) in the expression of the bilinear concomitant{

P(2)
[
u(2)(x); a(2)(j1; x);α; δu(2)(x); δα

]}
α0

. The bilinear concomitant may vanish after
these boundary conditions are implemented, but if it does not, it will be reduced to a
residual quantity which will be denoted as P̂(2)

[
u(2)(x); a(2)(j1; x);α; δα

]
and which will

comprise only known values of u(2)(x), a(2)(j1; x), α and δα.
The results provided in Equation (130), (131) and (128) are employed in

Equation (118) to obtain the following expression for the indirect-effect term{
δR(1)

[
j1; u(2)(x);α; δu(1)(x); δa(1)(x)

]}
ind

in terms of the 2nd-level adjoint functions a(2)(j1; x):

For j1 = 1, . . . , TP :
{

δR(1)
[

j1; u(2)(x);α; δu(1)(x); δa(1)(x)
]}

ind
=
{〈

a(2)(j1; x), q(2)
(

u(2);α; δα
) 〉

2

}
α0
−
{

P̂(2)
[
u(2)(x); a(2)(j1; x);α; δα

]}
α0

.
(133)

Inserting the expressions that define the vector q(2)
(

u(2);α; δα
)

from Equation (122)
into Equation (133) and adding the resulting expression for the indirect-effect term with the
expression of the direct-effect term given in Equation (117) yields the following expression
for the total second-order G-differential of the response R[ϕ(x),ψ(x);α]:{

δR(1)
[

j1; u(2)(x);α; δu(2)(x); δα
]}
α0

=

{
∂

∂α

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(1)
(

j1; u(2);α
)}
α0

δα

+

{
22

∑
k=1

〈
a(2)k (j1; x), q(1)

k (ϕ;α; δα)
〉

0

}
α0

≡
TP
∑

j2=1

{
R(2)

[
j2, j1; u(2)(x); a(2)(j1; x);α

]}
α0

δαj2 ,

(134)

where R(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]

denotes the 2nd-order partial sensitivity of the re-
sponse with respect to the model parameters, evaluated at the nominal parameter values
α0, and has the following expression for j1 = 1, . . . , TP; j2 = 1, . . . , j1:

R(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]
≡ ∂R(1)[j1;u(1)(x);a(1);α]

∂αj2
≡ ∂2R[u(1)(x);α]

∂αj2 ∂αj1

= ∂
∂αj2

{
TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(1)
(

j1; u(2);α
)}
α0

+

{〈
a(2)1 (j1; x),

∂
[
qϕ(α)−L(α)ϕ(x)

]
∂αj2

〉
0

}
α0

+

{〈
a(2)2 (j1; x),

∂
[
qψ(α)−L∗(α)ψ(x)

]
∂αj2

〉
0

}
α0

+

{〈
a(2)3 (j1; x),

∂2S(u(1)(x);α)
∂αj2 ∂ϕ −

∂
[
L∗(α)a(1)1

]
∂αj2

〉
0

}
α0

+

{〈
a(2)4 (j1; x),

∂2S(u(1)(x);α)
∂αj2 ∂ψ −

∂
[
L(α)a(1)2

]
∂αj2

〉
0

}
α0

−
{

∂
∂αj2

P̂(2)
[
u(2)(x); a(2)(j1; x);α

]}
α0

.

(135)

Since the 2nd-LASS is independent of parameter variations δα, the exact computation
of all of the partial second-order sensitivities R(2)

[
j2, j1; u(2)(x); a(2)(j1; x);α

]
requires at

most TP large-scale (adjoint) computations using the 2nd-LASS, rather than O
(
TP2) large-

scale computations as would be required by forward methods. It is important to note that by
solving the 2nd-LASS TP-times, the “off-diagonal” 2nd-order mixed sensitivities ∂2R/∂αj1 ∂αj2
will be computed twice, in two different ways (i.e., using distinct 2nd-level adjoint functions),
thereby providing an independent intrinsic (numerical) verification that the 1st- and 2nd-
order response sensitivities are computed accurately. The information provided by the
1st-order sensitivities usually indicates which 2nd-order sensitivities are important and
which could be neglected. Therefore, it is useful to prioritize the computation of the
2nd-order sensitivities by using the rankings of the relative magnitudes of the 1st-order
sensitivities as a “priority indicator”: the larger the magnitude of the relative 1st-order
sensitivity, the higher the priority for computing the corresponding 2nd-order sensitivities.
Also, since vanishing 1st-order sensitivities may indicate critical points of the response
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in the phase-space of model parameters, it is also of interest to compute the 2nd-order
sensitivities that correspond to vanishing 1st-order sensitivities. In practice, only those
2nd-order partial sensitivities which are deemed important would need to be computed.

Dirac delta-functionals in Equation (135) may need to be used for expressing the
non-zero residual terms in the respective residual bilinear concomitant and/or the terms
containing derivatives with respect to the lower- and upper-boundary points, so that the
expression of the partial second-order sensitivities R(2)

[
j2, j1; u(2)(x); a(2)(j1; x);α

]
can be

written in the following form, in preparation for computing the 3rd-order sensitivities:

R(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]
=

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]
. (136)

5.3. The 3rd-CASAM-L: Summary

For each value of the indices j1 = 1, . . . , TP,j2 = 1, . . . , j1, the 2nd-order sensitiv-
ity R(2)

[
j2, j1; u(2)(x); a(2)(j1; x);α

]
will be considered to play the role of a “model re-

sponse.” The starting point for the development of the 3rd-CASAM-L is provided by
the expressions of the sensitivities provided in terms of the 1st-level adjoint functions,
namely Equation (136), which indicates that the computation of the 2nd-order sensitivities
R(2)

[
j2, j1; u(2)(x); a(2)(j1; x);α

]
using the 2nd-CASAM-L requires the determination of the

functions u(2)(x) and a(2)(j1; x). Recalling the developments of the 2nd-CSASM-L presented
in Section 5.2, the functions u(2)(x) and a(2)(j1; x) are the solutions of the following system
of equations, written in block-matrix form:{

F(3)(α; x)u(3)(j1; x)
}
α0

=
{

q(3)
F

(
u(2); x;α

)}
α0

, x ∈ Ωx

(
α0
)

(137)

{
b(3)

F

[
u(3)(j1); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (138)

where:

F(3)(α; x) ,


[
F(2)(α; x)

]
2×2

0

0
[
A(2)(α; x)

]
2×2

; u(3)(j1; x) ,

(
u(2)(x)

a(2)(j1; x)

)
;

q(3)
F

(
u(2); x;α

)
,

(
q(2)

F (x;α)
s(2)
(

u(2)(x);α
) ); b(3)

F

[
u(3)(j1; x); α

]
,

 b(2)
F

(
u(2); α

)
b(2)

A

[
u(3)(j1; x);α;

] .

(139)

The system of equations represented by Equations (137) and (138) can be called the
3rd-Level Forward System. In terms of the function u(3)(j1; x), each 2nd-order sensitivity can
be compactly written as follows:

∂2R(ϕ;ψ;α)/∂αj1 ∂αj2 ≡ R(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]

≡ R(2)
[

j2, j1; u(3)(j1; x);α
]
=

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(2)
[

j2, j1; u(3)(j1; x);α
]

.
(140)

There are TP(TP + 1)(TP + 2)/3! distinct 3rd-order sensitivities of the response with
respect to the model and response parameters. The third-order sensitivities of the re-
sponse R[ϕ(x),ψ(x);α] with respect to the model parameters are obtained by deter-
mining the first-order G-differential of the 2nd-order sensitivities R(2)

[
j2, j1; u(3)(j1; x);α

]
,

which are defined in Equations (136) or (140). By definition, the total G-differential of
R(2)

[
j2, j1; u(3)(j1; x);α

]
is obtained as follows:
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{
δR(2)

[
j2, j1; u(3)(j1; x);α

]}
α0

,

 d
dε

 TI
∏
i=1

ωi(α
0+εδα)∫

λi(α0+εδα)

dxiS(2)
(

j2, j1; u(3) + εδu(3);α+ εδα
)
α0


ε=0

=
{

δR(2)
[

j2, j1; u(3)(j1; x);α; δα
]
α0

}
dir

+
{

δR(2)
[

j2, j1; u(3)(j1; x);α; δu(3)
]
α0

}
ind

,

(141)

where the direct-effect term
{

δR(2)[j2, j1; . . . ; δα]
}

dir
depends directly on the parameter

variations and is defined as follows:{
δR(2)

[
j2, j1; u(3)(j1; x);α; δα

]
α0

}
dir

,

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxkS(2)
[

j2, j1; u(3)(j1; x);α
]
α0

δα, (142)

while the “indirect-effect term”
{

δR(2)
[

j2, j1; u(3)(j1; x);α; δu(3)
]
α0

}
ind

depends indirectly

on the parameter variations through the variations in the forward and adjoint state func-
tions and is defined as follows:{

δR(2)
[

j2, j1; u(3)(j1; x);α; δu(3)
]
α0

}
ind

,


TI

∏
i=1

ωi(α)∫
λi(α)

dxi

∂S(2)
[

j2, j1; u(2)(x); a(2)(j1; x);α
]

∂u(3)(j1; x)


α0

δu(3), (143)

where

∂[ ]

∂u(3)(j1;x)
δu(3)(j1; x)

≡ ∂[ ]
∂ϕδϕ(x) + ∂[ ]

∂ψδψ(x) +
2
∑

k=1

∂[ ]

∂a(1)k

δa(1)k (x) +
22

∑
k=1

∂[ ]

∂a(2)k (j1)
δa(2)k (j1; x),

(144)

The indirect-effect term defined in Equation (143) can be computed only

after having determined the vector of variations δu(3)(j1; x) ,
[
δu(2)(x); δa(2)(j1; x)

]†
,

which is the solution of the G-differentiated 3rd-LFS. The variation
δa(2)(j1; x) ,

[
δa(2)1 (j1; x), δa(2)2 (j1; x), δa(2)3 (j1; x), δa(2)4 (j1; x)

]†
is the solution of the G-

differentiated 2nd-LASS, while δu(2)(x) is the solution of the 2nd-LVSS. Thus, the G-
differentiated 3rd-LFS is obtained by concatenating the 2nd-LVSS with the G-differentiated
2nd-LASS (including the corresponding boundary/initial conditions), which yields the
following system of 8 coupled equations, which can be represented in the block-matrix
form, for j1 = 1, . . . , TP, as follows:

V(3)
[

j1; u(2)(x)
]

δu(3)(j1; x) = q(3)
V

[
j1; u(3)(j1; x);α; δα

]
, x ∈ Ωx, (145)

b(3)
V

[
j1; u(3);α; δu(3); δα

]
,

 b(2)
V

[
u(2);α; δu(2); δα

]
δb(2)

A

[
j1; u(3);α; δu(3); δα

]  =

(
0
0

)
, x ∈ ∂Ωx

(
α0
)

. (146)

The system represented by Equations (145) and (146) is called the 3rd-Level Variational
Sensitivity System (3rd-LVSS) and the solution, δu(3)(x), of the 3rd-LVSS will be called the
“3rd-level variational sensitivity function.” The components of the matrices and vectors
which appear in the 3rd-LVSS are to be computed at nominal parameter and state function
values, although the corresponding indication has been omitted in order to simplify the
notation. The matrices and vectors which appear in the 3rd-LVSS, Equations (145) and (146),
are defined as follows:
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q(3)
V

[
u(3)(j1; x);α; δα

]
,

 q(2)
V

(
u(2);α; δα

)
p(2)

[
j1; u(3)(j1; x);α; δα

] 
,
[
q(3)

1 , q(3)
2 , q(3)

3 , q(3)
4 , q(3)

5 (j1), q(3)
6 (j1), q(3)

7 (j1), q(3)
8 (j1)

]†
;

(147)

p(2)
1

[
j1; u(3)(j1; x) ;α; δα

]
, −

∂
[
L∗(α)a(2)1 (j1;x)

]
∂α δα+

[
∂3S(u(1);α)

∂α∂ϕ∂ϕ δα

]
a(2)3 (j1; x)

+

[
∂3S(u(1);α)

∂α∂ψ∂ϕ δα

]
a(2)4 (j1; x) +

∂2S(1)(j1; u(2);α)
∂α∂ϕ δα,

(148)

p(2)
2

[
j1; u(3)(j1; x) ;α; δα

]
, −

∂
[
L(α)a(2)2 (j1;x)

]
∂α δα+

[
∂3S(u(1);α)

∂α∂ϕ∂ψ δα

]
a(2)3 (j1; x)

+

[
∂3S(u(1);α)

∂α∂ψ∂ψ δα

]
a(2)4 (j1; x) +

∂S(1)(j1;u(2);α)
∂α∂ψ δα,

(149)

p(2)
3

[
j1; u(3)(j1; x) ;α; δα

]
, −

∂
[
L(α)a(2)3 (j1; x)

]
∂α

δα+
∂2S(1)

(
j1; u(2);α

)
∂α∂a(1)1

δα, (150)

p(2)
4

[
j1; u(3)(j1; x) ;α; δα

]
, −

∂
[
L∗(α)a(2)4 (j1; x)

]
∂α

δα+
∂2S(1)

(
j1; u(2);α

)
∂α∂a(1)2

δα , (151)

[
V(3)

(
j1; u(2)

)]
23×23

,

 V(2)
(

u(1)
)

[0]4×4

V(3)
21

(
j1; u(2)

)
V(3)

22

(
u(1)

) 
23×23

;

[
V(3)

22

(
u(1)

)]
4×4

,


L∗(α) 0 − ∂2S(u(1);α)

∂ϕ∂ϕ − ∂2S(u(1);α)
∂ψ∂ϕ

0 L(α) − ∂2S(u(1);α)
∂ϕ∂ψ − ∂2S(u(1);α)

∂ψ∂ψ

0 0 L(α) 0
0 0 0 L∗(α)

;

(152)

The components v(3)
21 (i, j) of the matrix V(3)

21 (j1) ,
[
v(3)

21 (i, j)
]

4×4
; i, j = 1, . . . , 4 are

defined as follows:

v(3)
21 (1, 1) = −

∂3S
(

u(1);α
)

∂ϕ∂ϕ∂ϕ
a(2)3 (j1; x) −

∂3S
(

u(1);α
)

∂ψ∂ϕ∂ϕ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂ϕ
, (153)

v(3)
21 (1, 2) = −

∂3S
(

u(1);α
)

∂ϕ∂ϕ∂ψ
a(2)3 (j1; x) −

∂2S
(

u(1);α
)

∂ψ∂ψ∂ϕ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂ψ
, (154)

v(3)
21 (1, 3) = −

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂a(1)1

, v(3)
21 (1, 4) = −

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂a(1)2

, (155)

v(3)
21 (2, 1) = −

∂3S
(

u(2);α
)

∂ϕ∂ϕ∂ψ
a(2)3 (j1; x)−

∂3S
(

u(1);α
)

∂ϕ∂ψ∂ψ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂ψ
, (156)

v(3)
21 (2, 2) = −

∂3S
(

u(1);α
)

∂ϕ∂ψ∂ψ
a(2)3 (j1; x)−

∂3S
(

u(1);α
)

∂ψ∂ψ∂ψ
a(2)4 (j1; x)−

∂2S(1)
(

j1; u(2);α
)

∂ψ∂ψ
, (157)

v(3)
21 (2, 3) = −

∂2S(1)
(

j1; u(2);α
)

∂a(1)1 ∂ψ
, v(3)

21 (2, 4) = −
∂2S(1)

(
j1; u(2);α

)
∂a(1)2 ∂ψ

, (158)
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v(3)
21 (3, 1) = −

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂a(1)1

, v(3)
21 (3, 2) = −

∂2S(1)
(

j1; u(2);α
)

∂ψ∂a(1)1

, (159)

v(3)
21 (3, 3) = −

∂2S(1)
(

j1; u(2);α
)

∂a(1)1 ∂a(1)1

, v(3)
21 (3, 4) = −

∂2S(1)
(

j1; u(2);α
)

∂a(1)2 ∂a(1)1

, (160)

v(3)
21 (4, 1) = −

∂2S(1)
(

j1; u(2);α
)

∂ϕ∂a(1)2

, v(3)
21 (4, 2) = −

∂2S(1)
(

j1; u(2);α
)

∂ψ∂a(1)2

, (161)

v(3)
21 (4, 3) = −

∂2S(1)
(

j1; u(2);α
)

∂a(1)1 ∂a(1)2

, v(3)
21 (4, 4) = −

∂2S(1)
(

j1; u(2);α
)

∂a(1)2 ∂a(1)2

. (162)

The need for solving the 3rd-LVSS can be avoided by expressing the indirect-effect
term

{
δR(2)

[
j2; j1; u(3)(j1; x);α; δu(3)

]
α0

}
ind

defined in Equation (143) in terms of the

solutions of a 3rd-Level Adjoint Sensitivity System (3rd-LASS), which does not involve
any variations in the state functions and which is constructed by implementing the
same sequence of logical steps as used to construct the 1st-LASS and the 2nd-LASS. The
3rd-LASS is constructed in a Hilbert space, denoted as H3, which comprises vector-

valued elements of the form η(3)(x) ,
[
η
(3)
1 (x), . . . ,η(3)8 (x)

]†
∈ H3, with η(3)i (x) ,[

η
(3)
i,1 (x), . . . , η

(3)
i,j (x), . . . , η

(3)
i,TD(x)

]†
, i = 1, , 8. The inner product between two elements,

η(3)(x) ∈ H3 and ξ(3)(x) ∈ H3, is denoted as
〈
η(3)(x),ξ(3)(x)

〉
3

and is defined as follows:

〈
η(3)(x),ξ(3)(x)

〉
3
,

8

∑
i=1

〈
η
(3)
i (x),ξ(3)i (x)

〉
0
. (163)

In the Hilbert H3, form the inner product of Equation (145) with a yet undefined

vector-function a(3)(j2, j1; x) ,
[
a(3)1 (j2, j1; x), . . . , a(3)8 (j2, j1; x)

]†
∈ H3,j1 = 1, . . . , TP;

j1 = 1, . . . , j2, to obtain the following relation:{〈
a(3)(j2, j1; x), V(3)

[
j1; u(2)(x)

]
δu(3)(x)

〉
3

}
α0

=
{〈

a(3)(j2, j1; x), q(3)
V

[
j1; u(3)(j1; x);α; δα

] 〉
3

}
α0

.

=
{〈

δu(3)(x), A(3)(j1)a(3)(j2, j1; x)
〉

3

}
α0

+
{

P(3)
[
δu(3)(x); a(3)(j2, j1; x); u(3)(j1; x);α; δα

]}
α0

,
(164)

where
{

P(3)
[
δu(3)(x); a(3)(j2, j1; x); u(3)(j1; x);α; δα

]}
α0

denotes the bilinear concomitant

defined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where

[
A(3)

(
j1; u(2)

)]
23×23

,[
V(3)

(
j1; u(2)

)]∗
23×23

has the following form:

[
A(3)

(
j1; u(2)

)]
23×23

=

 A(2)
[
V(3)

21

(
j1; u(2)

)]∗
[0]4×4

[
V(3)

22

]∗


23×23

. (165)

The first term on right-side of the second equality in Equation (164) is now required
to represent the indirect-effect term

{
δR(2)

[
j2, j1; u(2); a(2)(j1);α; δu(2); δa(2)(j1)

]
α0

}
ind

de-

fined in Equation (142). This requirement is satisfied by requiring that the 3rd-level ad-

joint function a(3)(j2, j1; x) ,
[
a(3)1 (j2, j1; x), . . . , a(3)8 (j2, j1; x)

]†
,
[
. . . , a(3)k (j2, j1; x), . . .

]†
;
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k = 1, . . . , 23; j1 = 1, . . . , TP; j2 = 1, . . . , j1, be the solution of the following 3rd-Level Adjoint
Sensitivity System (3rd-LASS):{

A(3)(j1)a(3)(j2, j1; x)
}
α0

=
{

s(3)A

[
j2, j1; u(3)(j1; x);α

]}
α0

, (166)

{
b(3)

A

[
a(3)(j2, j1; x); u(3)(j1; x);α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (167)

The block-vector s(3)A

[
j2, j1; u(3)(j1; x);α

]
,

[
s(3)1

(
j2, j1; u(3)(j1; x);α

)
, . . . , s(3)8(

j2, j1; u(3)(j1; x);α
)]†

on the right-side of Equation (166) comprises, for each j1 = 1, . . . ,
TP ; j2 = 1, . . . , j1, eight components (which are themselves block-vectors) defined
as follows:

s(3)1

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂ϕ
, (168)

s(3)2

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂ψ
, (169)

s(3)3

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(1)1

, (170)

s(3)4

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(1)2

, (171)

s(3)5

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(2)1 (j1; x)
, (172)

s(3)6

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(2)2 (j1; x)
, (173)

s(3)7

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(2)3 (j1; x)
, (174)

s(3)8

[
j2, j1; u(3)(j1; x);α

]
,

∂S(2)
[

j2, j1; u(3)(j1; x);α
]

∂a(2)4 (j1; x)
. (175)

The adjoint boundary conditions represented by Equation (167) are selected so as to
eliminate, in conjunction with the boundary conditions represented by Equation (146), all of
the unknown values of the functions δu(3)(x) in the expression of the bilinear concomitant{

P(3)
[
δu(3)(x); a(3)(j2, j1; x); u(3)(j1; x);α; δα

]}
(α0)

, which may vanish but if it does not, it

will be reduced to a residual quantity which will be denoted
as P̂(3)

[
a(3)(j2, j1; x); u(3)(j1; x);α; δα

]
and which will comprise only known values of

a(3)(j2, j1; x), u(3)(j1; x), α and δα.
The equations underlying the 3rd-LASS together with the relation expressed by

Equation (164) are employed in Equation (142) to obtain the following expression for
the indirect-effect term

{
δR(2)

[
j2, j1; u(3)(j1; x);α; δu(3)

]
α0

}
ind

in terms of the 3rd-level

adjoint function a(3)(j2, j1; x), for j1 = 1, . . . , TP ; j2 = 1, . . . , j1:
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{
δR(2)

[
j2, j1; u(3)(j1; x);α; δu(3)

]
α0

}
ind

=
{〈

a(3)(j2, j1; x), q(3)
V

[
u(3)(j1; x);α; δα

] 〉
3

}
α0

−
{

P̂(3)
[
u(3)(j1; x); a(3)(j2, j1; x);α; δα

]}
α0
≡
{

δR(2)
[

j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α; δα
]
α0

}
ind

.
(176)

As the identity in the last line of Equation (176) indicates, the dependence of the
indirect-effect term

{
δR(2)

[
j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α; δα

]}
ind

on the variations

δu(3)(j1; x) has been eliminated, by having replaced this dependency by the dependence
on the 3rd-level adjoint function a(3)(j2, j1; x).

Adding the expression for the indirect-effect term
{

δR(2)
[

j2, j1; u(3)(j1; x);

a(3)(j2, j1; x);α; δα
]}

ind
provided in Equation (176) to the expression of the direct-effect

term given in Equation (142) yields the following expression for the total third-order G-
differential of the response R[ϕ(x),ψ(x);α], for f or j1 = 1, . . . , TP ; j2 = 1, . . . , j1, which
was defined in Equation (141):{

δR(2)
[

j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α; δα
]}
α0

=

{
23

∑
k=1

〈
a(3)k (j2, j1; x), q(1)

k (ϕ;α; δα)
〉

0

}
α0

−
{

P̂(3)
[
u(3)(j1; x); a(3)(j2, j1; x);α; δα

]}
α0

+

{
∂

∂α

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(2)
[

j2, j1; u(3)(j1; x);α
]}
α0

δα

,
TP
∑

j3=1

{
R(3)

[
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α

]}
α0

δαj3 ,

(177)

where

R(3)
[

j3, j2, j1; u(3)(j1; x); a(3)(j2; j1; x);α
]
,

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(3)
[

j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α
]

(178)

denotes the 3rd-order partial sensitivity of the response with respect to the model parameters,
evaluated at the nominal parameter values α0.

5.4. The 4th-CASAM-L: Summary

The fourth-order sensitivities of the response R[ϕ(x),ψ(x);α] with respect to the
model parameters are obtained by determining the first-order G-differential of the 3rd-order
sensitivities R(3)

[
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α

]
≡ ∂3R(ϕ;ψ;α)/∂αj3 ∂αj2 ∂αj1 , which

are defined in Equation (178). Recalling the developments of the 3rd-CSASM-L presented
in Section 5.3, the functions u(3)(j1; x) and a(3)(j2, j1; x) are the solutions of the following
system of equations, written in block-matrix form:{

F(4)(α; x)u(4)(j2, j1; x)
}
α0

=
{

q(4)
F

(
j2, j1; u(3); x;α

)}
α0

, x ∈ Ωx

(
α0
)

(179)

{
b(4)

F

[
u(4)(j2, j1; x); α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

, (180)

where:

F(4)(α; x) ,


[
F(3)(α; x)

]
23×23

0

0
[
A(3)(j1)

]
23×23

; u(4)(j2, j1; x) ,

(
u(3)(j1; x)

a(3)(j2, j1; x)

)
;

q(4)
F

(
j2, j1; u(3); x;α

)
,

(
q(3)

F
s(3)A

)
; b(4)

F

[
u(4)(j2, j1; x); α

]
,

(
b(3)

F
b(3)

A

)
.

(181)

The system of equations represented by Equations (179) and (180) will be called the
4th-Level Forward System.

There are TP(TP + 1)(TP + 2)(TP + 3)/4! distinct 4th-order sensitivities of the re-
sponse with respect to the model and response parameters. In view of the definition intro-
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duced in Equation (181), the 3rd-order sensitivity R(3)
[

j3, j2; j1; u(3)(j1; x); a(3)(j2, j1; x);α
]

becomes a function of u(4)(j2, j1; x), and its total G-differential is obtained, by definition,
as follows:{

δR(3)
[

j3, j2; j1; u(4)(j2, j1; x);α; δu(4); δα
]}
α0

,

 d
dε

[
TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(3)
(

j3, j2, j1; u(4)(j2; j1; x) + εδu(4);α+ εδα
)]
α0


ε=0

=
{

δR(3)
[

j3, j2, j1; u(4); δα
]
α0

}
dir

+
{

δR(3)
[

j3, j2, j1; u(4); δu(4)
]
α0

}
ind

,

(182)

where the direct-effect term
{

δR(3)
[

j3, j2, j1; u(4); δα
]
α0

}
dir

depends directly on the pa-

rameter variations and is defined as follows:

{
δR(3)

[
j3, j2, j1; u(4); δα

]
α0

}
dir

,

 ∂

∂α

TI

∏
i=1

ωi(α)∫
λi(α)

dxiS(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]
α0

δα, (183)

while the “indirect-effect term”
{

δR(3)
[

j3, j2, j1; u(4); δu(4)
]
α0

}
ind

is defined as follows:

{
δR(3)

[
j3, j2, j1; u(4); δu(4)

]
α0

}
ind

,


TI

∏
i=1

ωi(α)∫
λi(α)

dxi

∂S(3)
[

j3, j2, j1; u(4)(j1; x);α
]

∂u(4)(j2, j1; x)


α0

δu(4) (184)

where

∂[ ]

∂u(4)(j2;j1;x)
δu(4)(j2, j1; x) ≡ ∂[ ]

∂ϕ δϕ(x) + ∂[ ]
∂ψ δψ(x) +

2
∑

k=1

∂[ ]

∂a(1)k

δa(1)k (x)

+
22

∑
k=1

∂[ ]

∂a(2)k (j1)
δa(2)k (j1; x) +

23

∑
k=1

∂[ ]

∂a(3)k (j2,j1;x)
δa(3)k (j2, j1; x) .

(185)

The vectors of variations δu(3)(j1; x) and δa(3)(j2; j1; x) are related to each other and
must be determined by solving simultaneously the coupled system of equations obtained
by concatenating the 3rd-LVSS to the system of equations obtained by G-differentiating the
3rd-LASS while being subject to the boundary conditions obtained by concatenating the
boundary conditions which belong to the 3rd-LVSS with the boundary conditions obtained
by G-differentiating the boundary conditions belonging to the 3rd-LASS. Concatenating
all of these equations and boundary conditions yields the following 16 × 16 block-matrix
equation which constitutes the 4th-Level Variational Sensitivity System (4th-LVSS):[

V(4)(j2, j1)
]

24×24
δu(4)(j2, j1; x) = q(4)

V

[
j2, j1; u(4)(j2, j1; x);α; δα

]
, (186)

b(4)
V

[
u; a(1); a(2)(j1);α; δϕ(x); δψ(x); δa(2)(j1; x); δα

]
,

 b(3)
V

[
j1; u(3)(j1; x);α; δu(3)(j1; x); δα

]
δb(3)

A

[
u(2)(j1; x);α; δa(3)(j2, j1; x) ; δα

]
 =

(
0
0

)
, x ∈ ∂Ωx

(
α0), (187)

where:

u(4)(j2, j1; x) ,

(
u(3)(j1; x)

a(3)(j2, j1; x)

)
; δu(4)(j2, j1; x) ,

(
δu(3)(j1; x)

δa(3)(j2, j1; x)

)
; (188)
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[
V(4)(j2, j1)

]
24×24

=

(
V(3)

(
j1; u(2)

)
[0]23×22

V(4)
21 (j2, j1) V(4)

22 (j1)

)
24×24

; V(4)
22 (j1) , A(3)

(
j1; u(2)

)
;

V(4)
21 ,

∂
{

A(3)[j1;u(2)(j1;x)]a(3)(j2,j1;x)(3)[j2,j1;u(3)(j1;x);α]
}

∂u(3) ;

(189)

q(4)
V

[
j2, j1; u(4)(j2, j1; x);α; δα

]
,

 q(3)
[

j1; u(3)(j1; x);α; δα
]

p(3)
[

j2, j1; u(4)(j2, j1; x);α; δα
] 

=
{

q(4)
1

[
j2, j1; u(4)(j2, j1; x);α; δα

]
, . . . , q(4)

16

[
j2, j1; u(4)(j2, j1; x);α; δα

]}†
,

(190)

p(3)
[

j2, j1; u(3)(j1; x); a(3)(j2, j1; x);α; δα
]

,
∂
{

s(3)[j2,j1;u(3)(j1;x);α]−A(3)(u(2))a(3)(j2,j1;x)
}

∂α δα.
(191)

The need for solving the 4th-LVSS can be avoided by expressing the indirect-effect
term

{
δR(3)

(
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x); δu(4)(j2, j1; x)

)}
ind

defined in Equation (184)

an alternative way, which does not involve the function δu(4)(j2; j1; x). This alternative
expression will be obtained by using the solution of a 4th-Level Adjoint Sensitivity Systems
(4th-LASS), which is constructed by implementing the same sequence of logical steps as
were followed for constructing the 1st, 2nd, and 3rd-LASS. The 4th-LASS is constructed in
a Hilbert space, denoted as H4, comprising block-vector elements of the form η(4)(x) ,[
η
(4)
1 (x), . . . ,η(4)16 (x)

]†
∈ H4, with η(4)i (x) ,

[
η
(4)
i,1 (x), . . . , η

(4)
i,TD(x)

]†
, for i = 1, , 16. The

inner product between two elements, η(4)(x) ∈ H4 and ξ(4)(x) ∈ H4, of the Hilbert space
H4, will be denoted as

〈
η(4)(x),ξ(4)(x)

〉
4

and is defined as follows:

〈
η(4)(x),ξ(4)(x)

〉
4
,

16

∑
i=1

〈
η
(4)
i (x),ξ(4)i (x)

〉
0
. (192)

Using the definition provided in Equation (192), form the inner product in H4 of
Equation (186) with a yet undefined vector-valued function denoted as a(4)(j3, j2, j1; x) ,[
a(4)1 (j3, j2, j1; x), . . . , a(4)16 (j3, j2, j1; x)

]†
∈ H4,j1 = 1, . . . , TP ; j1 = 1, . . . , j2, to obtain the

following relation:{〈
a(4)(j3, j2, j1; x), V(4)

(
u(3)

)
δu(4)

〉
4

}
α0

=
{〈

a(4)(j3, j2, j1; x), q(4)
V

[
j2, j1; u(4);α; δα

] 〉
4

}
α0

=
{〈

δu(4), A(4)(j2; j1)a(4)(j3, j2; j1; x)
〉

4

}
α0

+
{

P(4)
[
δu(4)(j2, j1; x); a(4)(j3, j2, j1; x);α; δα

]}
α0

,
(193)

where
{

P(4)
[
δu(4)(j2, j1; x); a(4)(j3, j2, j1; x);α; δα

]}
α0

denotes the bilinear concomitant de-

fined on the phase-space boundary x ∈ ∂Ωx
(
α0) and where:

[
A(4)

(
j2, j1; u(3)

)]
24×24

,
[
V(4)

(
u(3)

)]∗
24×24

=

 V(3)
(

u(1)
)

[0]23×23

V(4)
21

(
j1; u(2)

)
V(4)

22

(
u(1)

) ∗ =
 A(3)

[
V(4)

21

]∗
[0]23×23

[
V(4)

22

]∗
 (194)

The first term on right-side of the second equality in Equation (193) is now required to rep-
resent the indirect-effect term

{
δR(3)

(
j3, j2, j1; u(3); a(3); δu(3); δa(3)

)}
ind

, which is achieved

by requiring that the 4th-level adjoint function a(4)(j3, j2, j1; x) ,
[
. . . , a(4)k (j3, j2, j1; x), . . .

]†
;
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k = 1, . . . , 24; be the solution of the following 4th-Level Adjoint Sensitivity System, for
j1 = 1, . . . , TP ; j2 = 1, . . . , j1; j3 = 1, . . . , j2:[

A(4)
(

j2, j1; u(3)
)]

24×24
a(4)(j3, j2, j1; x) = s(4)A

[
j3, j2, j1; u(4)(j2, j1; x);α

]
, (195)

{
b(4)

A

[
a(4)(j3, j2, j1; x); u(4)(j2, j1; x);α

]}
α0

= 0, x ∈ ∂Ωx

(
α0
)

. (196)

where the vector s(4)A

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,
[
s(4)1 (j3, j2, j1; x), . . . , s(4)16 (j3, j2, j1; x)

]†
com-

prises, for each j1 = 1, . . . , TP ; j2 = 1, . . . , j1; j3 = 1, . . . , j2, sixteen components defined
as follows:

s(4)1

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,

∂S(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]

∂ϕ
, (197)

s(4)2

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,

∂S(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]

∂ψ
, (198)

s(4)2+k

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,

∂S(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]

∂a(1)k

; k = 1, 2; (199)

s(4)4+k

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,

∂S(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]

∂a(2)k (j1)
; k = 1, . . . , 22; (200)

s(4)8+k

[
j3, j2, j1; u(4)(j2, j1; x);α

]
,

∂S(3)
[

j3, j2, j1; u(4)(j2, j1, x);α
]

∂a(3)k (j2, j1)
; k = 1, . . . , 23 . (201)

The 4th-level adjoint boundary conditions represented by Equation (196) are selected so
as to eliminate, in conjunction with the boundary conditions represented by Equation (187),
all of the unknown values of the functions δu(4)(j3, j2, j1; x) in the expression of the bilinear
concomitant

{
P(4)

[
δu(4)(j2, j1; x); a(4)(j3, j2, j1; x);α; δα

]}
α0

. This bilinear concomitant
may vanish after implementing the boundary conditions represented by Equations (196)
and (187); if it does not vanish, it will be reduced to a residual quantity which will comprise
only known values of a(4)(j3, j2, j1; x), u(4)(j2, j1; x), α and δα, which will be denoted as{

P̂(4)
[
a(4)(j3, j2, j1; x); u(4)(j2, j1; x);α; δα

]}
α0

.

Using the equations underlying the 4th-LASS together with the relation provided in
Equation (193) in Equation (184) yields the following expression for the indirect-effect
term

{
δR(3)

[
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x); δu(3)(j1; x); δa(3)(j2, j1; x)

]}
ind

in terms of the

4th-level adjoint functions a(4)(j3, j2, j1; x), for j1 = 1, . . . , TP ; j2 = 1, . . . , j1; j3 = 1, . . . , j2:{
δR(3)

[
j3, j2, j1; u(3)(j1; x); a(3)(j2, j1; x) ; δu(3)(j1; x); δa(3)(j2, j1; x)

]
α0

}
ind

= −
{

P̂(4)
[
a(4); u(4);α; δα

]}
α0

+
{〈

a(4)(j3, j2, j1; x), q(4)
V

[
j2, j1; u(4)(j2, j1; x);α; δα

] 〉
4

}
α0

≡
{

δR(3)
[

j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α; δα
]
α0

}
ind

.

(202)

Adding the result obtained in Equation (202) for the indirect effect term to the result
in Equation (183) for the direct effect term yields the following expression for the total
3rd-order G-variation defined in Equation (182):
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{
δR(3)

[
j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α; δα;

]}
(α0)

=

{
∂

∂α

TI
∏
i=1

ωi(α)∫
λi(α)

dxiS(3)
[

j3, j2, j1; u(4)(j2, j1; x);α
]}

α0

δα,

−
{

P̂(4)
[
a(4); u(4);α; δα

]}
α0

+
{〈

a(4)(j3, j2, j1; x), q(4)
V

[
j2, j1; u(4)(j2, j1; x);α; δα

] 〉
4

}
α0

,
TP
∑

j4=1

{
R(4)

[
j4, j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α

]}
(α0)

δαj4 ,

(203)

where R(4)
[

j4, j3, j2, j1; u(4)(j2, j1; x); a(4)(j3, j2, j1; x);α
]

denotes the 4th-order partial sensitiv-
ity of the response with respect to the model parameters.

6. Discussion and Conclusions

This work has presented the “nth-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Response-Coupled Linear Systems” (abbreviation: nth-CASAM-L), where “n”
is a finite number that indicates any desired, arbitrarily-high, order. The nth-CASAM-L
enables the efficient computation of the exact expressions of the nth-order functional deriva-
tives (“sensitivities”) of a general system response, which depends on both the forward
and adjoint state functions, with respect to all of the parameters (including boundary and
initial conditions) underlying the respective forward and adjoint systems. Since nonlinear
operators do not admit adjoint operators (only linearized versions of nonlinear operators
can admit a bona-fide adjoint operator), responses that simultaneously depend on forward
and adjoint functions can arise only in conjunction with linear systems. Particularly im-
portant model responses that involve both the forward and adjoint functions are various
forms of Lagrangian functionals, the Roussopoulos functional for computing reaction rates,
the Raleigh quotient for computing eigenvalues and/or separation constants when solving
partial differential equations, the Schwinger functional for “normalization-free” solutions,
and many others, (e.g., [1,2]). These functionals play a fundamental role in various opti-
mization and control procedures, derivation of numerical methods for solving (differential,
integral, integro-differential) equations, etc. The sensitivity analysis of responses that
simultaneously involve both forward and adjoint state functions makes it necessary to treat
linear models/systems in their own right, rather than treating them as particular cases of
nonlinear systems (in which the responses can depend only on the forward functions).

This work has shown that the mathematical framework underlying the nth-CASAM-L
is set in linearly increasing higher-dimensional Hilbert spaces, as opposed to exponentially
increasing parameter-dimensional spaces. In particular, for a scalar-valued valued response
associated with a nonlinear model comprising TP parameters, the 1st-CASAM-L requires 1
additional large-scale adjoint computation (as opposed to TP large-scale computations, as
required by other methods) for computing exactly all of the 1st-order response sensitivities.
All of the (mixed) 2nd-order sensitivities are computed exactly by the 2nd-CASAM-L in at
most TP computations, as opposed to TP(TP + 1)/2 computations required by all other
methods, and so on. For every lower-order sensitivity of interest, the nth-CASAM-L
computes the “TP next-higher-order” sensitivities in one adjoint computation performed in
a linearly increasing higher-dimensional Hilbert space. Very importantly, the nth-CASAM-L
computes the higher-level adjoint functions using the same forward and adjoint solvers
(i.e., computer codes) as used for solving the original forward and adjoint systems, thus
requiring relatively minor additional software development for computing the various-
order sensitivities.

The nth-CASAM presented in this work is the only practically implementable method-
ology for obtaining the exact expressions (i.e., free of methodologically-introduced approx-
imations) of arbitrarily-high order sensitivities (functional derivatives) of model responses
to model parameters, for coupled forward/adjoint linear systems. By enabling the practi-
cal computation of any arbitrarily-order response sensitivities to model parameters, the
nth-CASAM-L makes it possible to compare the relative values of the sensitivities of var-
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ious order, in order to assess which sensitivities are important and which may actually
be neglected, thus enabling future investigations of the convergence of the (multivariate)
Taylor series expansion of the response in terms of parameter variations, as well as inves-
tigating the actual validity of expressions that are derived from Taylor-expansion of the
response (e.g., response variances/covariance, skewness, kurtosis, etc.) as a function of
the model’s parameters. The larger the number of model parameters, the more efficient
the C-ASAM-L becomes for computing arbitrarily high-order response sensitivities. The
nth-CASAM-L also enables the direct derivation, on paper, of the expression of a specific
high-order sensitivity of interest, which can subsequently be computed directly; such a
direct computation is not possible with any statistical method.

The nth-CASAM-L presented in this work provides a fundamentally important step
in the quest to overcome the “curse of dimensionality” in sensitivity analysis, uncertainty
quantification and predictive modeling. Ongoing work aims at developing the “nth-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviation:
nth-CASAM-N) for the practical, efficient, and exact computation of arbitrarily-high order
sensitivities of responses to model parameters for nonlinear systems. The nth-CASAM-L,
together with the nth-CASAM-N, are expected to revolutionize all of the fields of activ-
ities which require response sensitivities, including the fields of uncertainty quantifica-
tion, model validation, optimization, data assimilation, model calibration, sensor fusion,
reduced-order modeling, inverse problems, and predictive modeling.
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