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Abstract: This work illustrates the application of the nth-order comprehensive adjoint sensitivity analysis
methodology for response-coupled forward/adjoint linear systems (abbreviated as “nth-CASAM-L”) to a
paradigm model that describes the transmission of particles (neutrons and/or photons) through
homogenized materials, as encountered in radiation protection and shielding. The first-, second-,
and third-order sensitivities of responses that depend on both the forward and adjoint particle fluxes
are obtained exactly, in closed-form, underscoring the principles and methodology underlying the
nth-CASAM-L. The results presented in this work underscore the fundamentally important role of
the nth-CASAM-L in the quest to overcome the “curse of dimensionality” in sensitivity analysis,
uncertainty quantification and predictive modeling.

Keywords: high-order adjoint sensitivity systems; high-order sensitivities; monoenergetic neu-
tron/photon transport; particle detector response; particle leakage response; reaction rate response;
contributon-response flux

1. Introduction

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is pre-
sented in the accompanying work [1], enables the most efficient computation of exactly
obtained expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system
response with respect to all of the parameters (including boundary and initial conditions
−hence the qualifier “comprehensive”) underlying the respective forward/adjoint systems.
The application of the nth-CASAM-L is illustrated in this work by considering paradigm
model which describes the transmission of particles produced by a distributed source
through a shield which surrounds the source. Such models are of interest in radiation
and/or particle protection and shielding [2–5]. The particular model chosen in this work is
sufficiently simple to admit closed-form exact expressions for the response sensitivities of
any order yet contains sufficiently many imprecisely known parameters to pose extreme,
if not insurmountable, challenges to conventional statistical or finite-difference methods.
The mathematical equations underlying this illustrative model are presented in Section 2,
including the most important types of responses for such models, namely point-detector
responses, particle leakage responses, reaction rate responses and “contributon-response
fluxes” [2–5]. Sections 3–5 illustrate the application of the nth-CASAM-L (for n = 1,2,3) to
the paradigm model, highlighting the efficient computation of exact expressions for the
1st, 2nd- and 3rd-order response sensitivities to model parameters, including imprecisely
known internal (interfaces) and external boundaries of physical domains/materials. The
discussion presented in Section 6 concludes this work, emphasizing the salient points
underlying the computation of arbitrarily-high order of sensitivities to imprecisely known
model parameters, interfaces and domain boundaries.
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2. Paradigm Model for Illustrating the Application of the nth-CASAM-L: Particle
Transmission through a Medium with Imprecisely Known Properties, Internal and
External Boundaries

The paradigm model chosen to illustrate the application of the nth-CASAM-L describes
the transmission of particles produced by a distributed source through a shield which
surrounds it. For simplicity, the geometry is chosen to be one-dimensional. A source of
monoenergetic particles (e.g., gamma ray photons), denoted as q, is distributed within a
one-dimensional homogenized inner slab of thickness 2b1 [cm]. The various quantities
that characterize this inner slab will be denoted using the subscript “s” to indicate “source”
material properties. Thus, the inner slab is considered to comprise Ms distinct nuclides,
each nuclide being characterized by its total microscopic cross interaction cross section
with the source particles, denoted as σs,i, and by its atomic number density, denoted as Ns,i,
for i = 1, . . . , Ms. The inner slab is shielded on each of its outer surfaces by an adjacent
outer slab of thickness b2 [cm], neither of which contain sources. Each of the outer slabs
is made of a homogenized material comprising M distinct nuclides, each nuclide being
characterized by its total microscopic cross section, denoted as σi, and its atomic number
density, denoted as Ni, for i = 1, . . . , M. All of the number densities and cross sections
are considered to be imprecisely known. The thicknesses of the slabs are also considered
to be subject to manufacturing tolerances; hence, the internal boundaries (i.e., internal
interface between the slabs) as well as the outer boundaries are also imprecisely known.
The result of interest (i.e., model response) is the dose of uncollided particles at the outer
boundaries. This paradigm model captures the essential physical processes involved in
the transmission (or evolution) of the uncollided flux of particle through materials yet will
be shown to admit closed-form exact solutions for all sensitivities, in order to illustrate
exactly the impact of the response sensitivities to the model parameters (including the
physical material boundaries), enabling their importance ranking in affecting changes in
the response.

Since the chosen physical model is symmetrical with respect to the midplane of the
inner slab, it is convenient to choose the origin of the one-dimensional coordinate system,
which will de denoted as the “z-direction”, to be at the inner slab’s midplane. Conse-
quently, the transport equation governing the uncollided angular flux of monoenergetic
photons, denoted as us(z,ω), through the inner slab in the positive z-direction has the
following form:

ω
dus(z,ω)

dz
+ µsus(z,ω) = q, 0 < z < b1, 0 ≤ ω ≤ 1, (1)

whereω denotes the cosine of the angle between the gamma ray’s direction and the z-axis
internal sources while µs denotes the interaction coefficient of photons with the inner slab’s
homogenized material and is defined as follows:

µs ,
Ms

∑
i=1

Ns,iσs,i. (2)

Due to the model’s symmetry when choosing the origin of the coordinate system at
the inner slab’s midplane, the appropriate boundary condition for Equation (1) is:

dus(z,ω)

dz
= 0, at z = 0, 0 ≤ ω ≤ 1. (3)

The solution of Equations (1) and (3) is the following constant function:

us(z,ω) =
q
µs

, 0 < z < b1, 0 ≤ ω ≤ 1, (4)

Due to the model’s symmetry, the expression obtained in Equation (4) remains valid
for all particle directions, i.e., for −1 ≤ ω ≤ 1.
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The photon transport equation governing the uncollided angular flux of monoener-
getic photons, denoted as ϕ(z,ω), through the outer slab in particle directions 0 ≤ ω ≤ 1
has the following form:

ω
dϕ(z,ω)

dz
+ µϕ(z,ω) = 0, b1 < z < b2, 0 ≤ ω ≤ 1. (5)

where the interaction coefficient µ is defined as follows:

µ ,
M1

∑
i=1

Niσi, (6)

The uncollided flux is continuous across the interface at z = b1:

ϕ(b1,ω) = us(b1,ω) =
q
µs

. (7)

For subsequent verification of the expressions to be obtained for the response sensitiv-
ities to parameters, the closed-form expression of the uncollided flux ϕ(z,ω), which is the
solution of Equations (5) and (7), is provided below:

ϕ(z,ω) =
q
µs

exp
[ µ
ω
(b1 − z)

]
, b1 ≤ z ≤ b2, 0 ≤ ω ≤ 1. (8)

The linear particle transport model described by Equations (5) and (7) is naturally
set in a Hilbert space which is endowed with the following inner-product, denoted as
〈ϕ(z,ω),ψ(z,ω)〉0, between two square integrable functions ϕ(z,ω) and ψ(z,ω):

〈ϕ(z,ω),ψ(z,ω)〉0 ,

1∫
0

dω
b2∫

b1

ϕ(z,ω)ψ(z,ω)dz. (9)

The Hibert endowed with the inner product defined in Equation (9) will be denoted as
H0, where the subscript “zero” denotes “zeroth-level“ or “original”. Higher-level Hilbert
spaces, which will be denoted as H1, H2, etc., will also be introduced and used in this work.

In the Hibert space H0, the adjoint model corresponding to the original forward model
represented by Equations (5) and (7) is readily constructed by forming using the inner
product defined in Equation (9) to obtain the following relation for the adjoint function
ψ(z,ω):

1∫
0

dω
b2∫

b1

ψ(z,ω)
[
ω

dϕ(z,ω)
dz + µϕ(z,ω)

]
dz =

1∫
0

dω
b2∫

b1

ϕ(z,ω)
[
−ω dψ(z,ω)

dz + µψ(z,ω)
]
dz

+
1∫

0
ωdω[ψ(b2,ω)ϕ(b2,ω)−ψ(b1,ω)ϕ(b1,ω)] .

(10)

It follows from the relation in Equation (10) that the adjoint model for the adjoint
function ψ(z,ω) is as follows:

−ωdψ(z,ω)

dz
+ µψ(z,ω) = q∗(z,ω), b1 < z < b2, 0 ≤ ω ≤ 1. (11)

ψ(b2,ω) = 0, (12)

where q∗(z,ω) is a source-term that is usually determined by the model response under
consideration, while the boundary condition provided in Equation (12) has been chosen
in order to eliminate the appearance of the unknown function ϕ(b2,ω) from the bilinear
concomitant represented by the second term on the right-side of Equation (10).
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2.1. Point-Detector Response

Doses of uncollided particles, including from point-doses, particle leakage and reaction
rates, are of interest in many shielding applications [2–5]. In particular, the result of a
measurement of the particle flux at any phase-space point, denoted as (zd,ωd), within or
on the surface of the medium, b1 ≤ zd ≤ b2, 0 < ωd < 1, will be denoted as R(ϕ;α) and is
represented the following mathematical expression:

R(ϕ;α) = µd

1∫
0

dωδ(ω−ωd)

b2∫
b1

ϕ(z,ω) δ(z− zd)dz, 0 < ωd < 1, b1 < zd < b2, (13)

where the phase-space coordinates (zd,ωd) of the detector’s location are also imprecisely
known, and where the detector’s effective macroscopic cross section is considered to be an
imprecisely known parameter denoted as µd and defined as follows:

µd ,
Md

∑
i=1

Nd,iσd,i, (14)

where Md denotes the number of distinct nuclides comprising the detector’s response
function, and where σd,i denotes the total microscopic interaction cross section of the
respective nuclide with the source particles, while Nd,i denotes the respective nuclide’s
atomic number density, for i = 1, . . . , Md.

The uncertain parameters that describe the properties (microscopic cross sections,
atomic number densities, source, slab boundaries.) characterizing the two materials and
the detector, will be generically denoted as αi, i = 1, . . . , TP, where TP denotes the “total
number of model parameters”. These parameters will be considered to be the components
of the (column) “vector of imprecisely known model parameters” defined as follows

α , (α1, . . . ,αTP)
† , [Ns,1, . . . , Ns,Ms ;σs,1, . . . ,σs,Ms ;

N1, . . . , NM;σ1, . . . ,σM; Nd,1, . . . , Nd,Md
;σd,1, . . . ,σd,Md

; q; zd,ωd; b1, b2
]†.

(15)

In this work, the dagger “†” denotes “transposition” and all vectors are column vectors
except if the contrary is explicitly stated.

All of the components of the vector of parameters α are considered to be imprecisely
known (i.e., uncertain). It is assumed that only the parameters’ nominal values, which will
be denoted using the superscript “0” (i.e., α0

i , q0, z0
d, a0, etc.), are known/available. The

nominal values of the model parameters are considered to be components of the column
vector of “nominal parameter values”, denoted as α0 and defined as follows:

α0 ,
(
α0

1, . . . ,α0
Nα

)†
,
[

N0
s,1, . . . , N0

s,Ms
;σ0

s,1, . . . ,σ0
s,Ms

;

N0
1 , . . . , N0

M;σ0
1, . . . ,σ0

Ms
; N0

d,1, . . . , N0
d,Md

;σ0
d,1, . . . ,σ0

d,Md
; q0; z0

d,ω0
d; b0

1, b0
2

]†
.

(16)

The parameters which appear as components of the vector defined in Equation (15)
are the model’s fundamental parameters. A variation in any of these fundamental parameters
is independent of any variation in any of the other fundamental parameters. Not all of
the fundamental parameters necessarily appear in explicitly in the model’s equations or in
definition of the model’s response. A model and/or response may depend explicitly on
derived parameters or correlations, which are functions of the fundamental parameters. For
example, in the particle transport model under consideration, the interaction coefficients
appear explicitly in the definition of the model’s response and in the particle conservation
equations that underly the paradigm model. Conversely, the nuclide number densities
and/or microscopic cross sections (which are independent/fundamental parameters) do
not appear explicitly in either the definition of the response or in the equations that underly
the model. Parameters such as the interaction coefficients could be called derived parameters
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and they are important because they may act like independent parameters in the definition
of the model’s underlying equations and/or response, in which case it suffices to determine
the sensitivities of the response to these derived parameters using the model. Subsequently,
the sensitivities of the response to the underlying fundamental parameters can be computed
separately, by simple differentiations. For example, in the paradigm model under consider-
ation, after having determined the sensitivities of the form ∂R/∂µ of the detector response
with respect to the interaction coefficient using the model’s equation, the sensitivities to
the underlying fundamental parameters (i.e., corresponding nuclide number densities and
microscopic cross sections) can be determined by using the chain rule without involving
the model’s equations, since ∂R/∂σi = [∂R/∂µ][∂µ/∂σi] = Ni[∂R/∂µ], and so on. This
observation may enable a significant reduction in the number of computations needed
to determine the sensitivities of the response to the fundamental parameters. Notably,
such simplifications occur only in linear systems since the parameters that characterize such
systems cannot be functions of the dependent variable (e.g., the interaction coefficients
are independent of the particle flux). In nonlinear systems, this simplification is not possi-
ble when the derived parameters depend on the state function (i.e., dependent variable).
Obvious examples are heat conduction models: when the conductivity is independent of
the medium’s temperature (dependent variable), the respective model is linear, and the
conductivity can be considered either a primary parameter (if it does not stem from some
correlation) or a derived parameters (if it stems from a temperature-independent corre-
lation). In a nonlinear conduction model, the heat conduction coefficient would depend
on the temperature to be determined and could not be used as either a fundamental or a
derived parameter. On the other hand, for linear systems, such as the paradigm particle
transport model under consideration, the advantage of using the derived parameters will
become evident in the process of determining the response sensitivities, which will be
performed below.

In view of the above discussion, it is convenient to refer to the model parameters which
appear explicitly in the model’s equations, boundary/initial conditions, and in the model’s
response as primary parameters, since the response sensitivities will be computed initially
with respect to these parameters. The primary parameters could be either fundamental
parameters or derived parameters, as is also the case for the illustrative paradigm particle
transport model considered in this work. After obtaining the response sensitivities to
the model’s primary parameters, if any of these parameters are “derived parameters”,
the sensitivities of the response to the primary parameters which are comprised in the
respective “derived primary parameter” can be computed efficiently and exactly without
needing to use the model’s complete set of equations, thus gaining considerable accuracy
and savings of computational resources. These issues will be illustrated by the derivations
which will be performed in the remainder of this work.

In view of the above discussion, the interaction coefficients will be denoted as µ(α),
µs(α), and µd(α), even though they only depend on some, but not all, of the components
of α. This short-hand notation conveniently simplifies the list of the actual arguments
(i.e., the corresponding nuclide number densities and microscopic cross sections) of the
respective interaction coefficients.

Inserting the expression obtained in Equation (8) into Equation (13) yields the follow-
ing exact, closed-form, expression for the model’s response:

R(zd,ωd;α) =
qµd(α)

µs(α)
exp

[
µ(α)

ωd
(b1 − zd)

]
, b1 ≤ zd ≤ b2, 0 ≤ ωd ≤ 1. (17)

In practice, the closed-form solution provided in Equation (8) is unavailable. Instead,
the nominal value ϕ0(z,ω) is obtained by solving Equations (5) and (7) using the nominal
parameters values represented by Equation (16). The exact, closed-form expression of the
model response provided in Equation (17) is also unavailable in practice, so the value of
the response must be computed by evaluating numerically the expression provided in
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Equation (13) using the nominal value ϕ0(z,ω) of the model’s state function together with
the nominal parameter values α0.

Notably, the response R(zd,ωd;α) can also be represented in terms of an adjoint
functionψ(z,ω) by using the relation provided in Equation (10); the resulting expression is:

R(zd,ωd;α) =
q
µs

1∫
0

ωdω
b2∫

b1

ψ(z,ω)δ(z− b1)dz , (18)

where the adjoint function ψ(z,ω) is the solution of the following adjoint system:

−ωdψ(z,ω)

dz
+ µψ(z,ω) = µdδ(ω−ωd)δ(z− zd), b1 < z < b2, 0 ≤ ω ≤ 1; (19)

ψ(b2,ω) = 0, (20)

The adjoint system comprising Equations (19) and (20) indicates that the adjoint
function ψ(z,ω) plays the role of a Green’s function for the response R(zd,ωd;α). As
highlighted by the expression on the right-side of Equation (18), the adjoint function
ψ(z,ω) also plays the role of an “importance function” in weighing the particle transmitted
from the source q to the response R(zd,ωd;α). Notably, the model response R(zd,ωd;α)
itself plays the role of a Green’s function in slab geometry, in that it can be integrated over
its position coordinates the phase-space coordinates (zd,ωd) to obtain other responses of
interest involving uncollided doses from distributed sources. This property will be shown
in Sections 2.2 and 2.3, below.

2.2. Particle Leakage Response

Another response of significant interest is the leakage of particles through the outer
slab’s surface at z = b2. Such a response will be denoted as RL(ϕ;α) and is represented
mathematically by the following expression:

RL[ϕ(z,ω);α] , µd

1∫
0

dω
b2∫

b1

ϕ(z,ω)δ(z− b2)dz. (21)

Replacing the expression of ϕ(z,ω) obtained in Equation (8) into Equation (21) yields
the following expression for the response RL(ϕ;α):

RL(ϕ;α) =
qµd(α)

µs(α)
E2[(b2 − b1)µ(α)], (22)

where the exponential-integral function is defined as follows:

En(z) ,
∫ 1

0
yn−2e−z/ydy; E0(z) =

e−z

z
; E1(z) ,

∫ 1

0
y−1e−z/ydy =− Ei(−z); E2(0) = 1; (23)

The expression of the leakage response obtained in Equation (22) can be obtained
by setting zd = b2 in the expression of the point-detector response R(zd,ωd;α) and by
considering the point ωd in Equation (17) to be a phase-space variable (rather than a fixed-
point). Thus, integrating Equation (17) overωd yields the expression in Equation (22), i.e.,

1∫
0

dωdR(b2,ωd;α) =
qµd(α)

µs(α)
E2[(b2 − b1)µ(α)] = RL[ϕ(z,ω);α] . (24)
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2.3. Reaction Rate Response

Interaction/reaction rates of particles within the medium they travel through are also
of significant interest. In particular, the interaction/reaction rate of uncollided particles
within the entire slab will be denoted as Rr(ϕ;α) and is represented mathematically by the
following expression:

Rr[ϕ(z,ω);α] , µd

1∫
0

dω
b2∫

b1

ϕ(z,ω) dz. (25)

Replacing the expression of ϕ(z,ω) obtained in Equation (8) into Equation (25) yields
the following expression for the response Rr(ϕ;α):

Rr(ϕ;α) =
qµd(α)

µs(α)µ(α)

{
1
2
− E3[(b2 − b1)µ(α)]

}
. (26)

Just as in the case of the leakage response, cf. Equation (24), the reaction-rate response
Rr(ϕ;α) can also be obtained by considering the phase-space points (zd,ωd) in the expres-
sion of the point-detector response R(zd,ωd;α) as being variable, and integrating over
(zd,ωd) to obtain the following result:

1∫
0

dωd

b2∫
b1

R(zd,ωd;α) dzd =
qµd(α)

µs(α)µ(α)

{
1
2
− E3[(b2 − b1)µ(α)]

}
= Rr(ϕ;α). (27)

The results obtained in Equations (24) and (27) underscore the role as “Green’s Func-
tion” (or “kernel”) played by the point-detector response R(zd,ωd;α).

2.4. Contributon-Response Flux

Bilinear functionals of the forward and adjoint particle fluxes of the form∫
O(x)ϕ(x)ψ(x)dx, where x denotes the vector of independent variable, ϕ(x) and ψ(x)

denote the forward and adjoint particle fluxes, respectively, and O(x) denotes a function
that does not depend on the fluxes, occur in most Lagrangian, Raleigh, Roussopoulos and
Schwinger functionals (to mention just the most prominent such functionals), which are
used in many practical applications [2–5]. Perhaps the simplest example of a response
that depends simultaneously on both the forward and the adjoint particle flux is the so-
called “contributon-response flux”, which has the form

∫
δ(x− x0)ϕ(x)ψ(x)dx and which

is encountered in “channel theory” or “contributon theory”, with applications in particle
shielding analysis [4,5]. The contributon-response flux retains the essential features which
characterize the sensitivity analysis of such responses.

For the illustrative paradigm model of uncollided particle transmission through the
slab b1 ≤ z ≤ b2 governed by Equations (5) and (7), the “contributon-response flux” at a
location z is defined as follows:

ρ(z) =
1∫

0

ϕ(z,ω)ψ(z,ω)dω, b1 ≤ zd ≤ b2, (28)

where the function ψ(z,ω) is the solution of the following adjoint particle transport model:

−ωdψ(z,ω)

dz
+ µψ(z,ω) = q∗, b1 ≤ z ≤ b2, 0 ≤ ω ≤ 1, (29)

ψ(b2,ω) = 0, 0 ≤ ω ≤ 1. (30)
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The adjoint source parameter q∗ characterizes particles that reach a detector within
or on the outside surface of the slab. The adjoint particle transport model comprising
Equations (29) and (30) has the following closed-form solution:

ψ(z,ω) =
q∗

µ(α)

{
1− exp

[
(z− b2)

µ(α)

ω

]}
, b1 ≤ z ≤ b2, 0 ≤ ω ≤ 1. (31)

The model response considered in this section is the “contributon-response flux” at a
location z0 within the slab b1 ≤ z0 ≤ b2, which is defined as follows:

ρ(z0) =

1∫
0

dω
b1∫

b1

ϕ(z,ω)ψ(z,ω)δ(z− z0), b1 ≤ z0 ≤ b2. (32)

The closed-form expression of ρ(z0) is readily obtained by inserting the expressions
of ϕ(z,ω) and ψ(z,ω) from Equations (8) and (31), respectively, to obtain the following
result:

ρ(z0) =
qq∗

µsµ
{E2[(z0 − b1)µ]− E2[(b2 − b1)µ]}. (33)

3. Application of the 1st-CASAM-L to Compute First-Order Response Sensitivities to
Imprecisely Known Parameters

Consider arbitrary parameter variations δα around the parameters’ nominal values,
α0, where the vector δα is defined as follows:

δα , (δα1, . . . , δαTP)
† , [δNs,1, . . . , δNs,Ms ; δσs,1, . . . , δσs,Ms ; δN1, . . . , δNM;

δσ1, . . . , δσM; δNd,1, . . . , δNd,Md
; δσd,1, . . . , δσd,Md

; δq; δzd, δωd; δb1, δb2
]†.

(34)

Such parameter variations will cause variations in the model’s response, both directly
and also indirectly, through variations they cause, via the model’s underlying equations,
in the model’s state functions (i.e., dependent variables). The 1st-order sensitivities of the
model responses considered in Section 2 will be determined in this section by applying the
general principled underlying the First-Order Comprehensive Adjoint Sensitivity Analysis
Methodology (1st-CASAM-L).

3.1. Point-Detector Response

The total first-order sensitivity of the response defined in Equation (13) to the model’s
primary parameters (including interface and boundary locations) is proved by the Gateaux-
(G-) differential {δR(ϕ;α; δϕ; δα)}α0 of the response R(ϕ;α) for arbitrary variations
(δϕ, δα) around the nominal parameter and state functions values, which is defined
as follows:

δR(ϕ;α; δϕ; δα)α0 , d
dε{[(µd + εδµd)

1∫
0

dω
b2+εδb2∫

b1+εδb1

(ϕ+ εδϕ)δ(z− zd − εδzd)

×δ(ω−ωd − εδωd)]α0 dz}ε=0 = {δR(ϕ;α; δα)α0}dir + {δR(ϕ;α; δϕ)α0}ind,
(35)

where the “direct-effect” term depends only on variations δα in the parameters, is defined
as follows:

{δR(ϕ;α; δα)α0}dir ,

{
δµd

1∫
0

dω δ(ω−ωd)
b2∫

b1

dz ϕ(z,ω)δ(z− zd)

}
α0

−(δzd)

{
µd

1∫
0

dωδ(ω−ωd)
b2∫

b1

ϕ(z,ω) δ′(z− zd)dz

}
α0

−(δωd)

{
µd

1∫
0

dωδ′(ω−ωd)
b2∫

b1

ϕ(z,ω) δ(z− zd)dz

}
α0

,

(36)
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and where the “indirect-effect” term depends only on variations δϕ(z,ω) in the dependent
variable (state function) and is defined as follows:

{δR(ϕ;α; δϕ)α0}ind ,

µd

1∫
0

dωδ(ω−ωd)

b2∫
b1

δϕ(z,ω) δ(z− zd)dz


α0

, b1 ≤ zd ≤ b2, 0 ≤ ωd ≤ 1. (37)

The direct-effect term in Equation (36) can be computed immediately at this stage,
since the parameter variations are known, i.e.,:

δµs =
Ms
∑

i=1
[(δNs,i)σs,i + Ns,i(δσs,i)]; δµ =

M
∑

i=1
[(δNi)σi + Ni(δσi)];

δµd =
Md
∑

i=1
[(δNd,i)σd,i + Nd,i(δσd,i)];

. (38)

On the contrary, the “indirect-effect” terms in Equation (37) cannot be computed at
this stage since the 1st-order variation, δϕ(z,ω), is not available at this stage, but could
be determined by solving the 1st-Level Variational Sensitivity System (1st-LVSS) obtained by
G-differentiating Equations (5) and (7) at the nominal parameter values, to obtain:{

ω
d
dε

[
d(ϕ+ εδϕ)

dz
+ (µ+ εδµ)(ϕ+ εδϕ)

]
α0

}
ε=0

= 0, b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (39)

{
d
dε

[
ϕ
(

z = b0
1 + εδb1;ω

)
+ εδϕ

(
z = b0

1 + εδb1;ω
)]}

ε=0
=

{
d
dε

[
q + εδq

µs(α) + εδµs

]
α0

}
ε=0

. (40)

Carrying out the differentiations with respect to ε in Equations (39) and (40) yields the
following 1st-LVSS to be satisfied by the 1st-order variation δϕ(z,ω):{

ω
d
dz

[δϕ(z,ω)] + µ[δϕ(z,ω)]

}
α0

= −(δµ){ϕ(z,ω)}α0 ; b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (41)

{δϕ(z,ω)}z=b0
1
=

{
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

}
α0
− δb1

{
dϕ(z,ω)

dz

}
z=b0

1

; z = b0
1, 0 ≤ ω ≤ 1. (42)

The quantity {dϕ/dz}z=b0
1
, which appears in Equation (42) can be evaluated by using

either Equation (5) or Equation (8), to obtain the following boundary condition for the
variation δϕ(z,ω):

{δϕ(z,ω)}z=b0
1
=

{
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

}
α0

+ δb1

{
qµ(α)
ωµs(α)

}
α0

; z = b0
1, 0 ≤ ω ≤ 1. (43)

In principle, it is possible to solve the 1st-LVSS for each parameter variation, δαi,
i = 1, . . . , TP, as follows:

(i) For each parameter variation δαi, i = 1, . . . , TP, the 1st-LVSS is equivalent to the
following system of equations:{
ω

d
dz

[δϕi(z,ω)] + µ[δϕi(z,ω)]

}
α0

= −(δαi)

{
∂µ(α)

∂αi
ϕ(z,ω)

}
α0

; b0
1 < z < b0

2 , 0 ≤ ω ≤ 1, (44)

{δϕi(z,ω)}z=b0
1
=

{
(δq)
µs(α)

− q
µ2

s (α)

∂µs(α)

∂αi
δαi

}
α0
− δb1

{
dϕ(z,ω)

dz

}
z=b0

1

; z = b0
1 , 0 ≤ ω ≤ 1. (45)

(ii) If the parameter variations δαi, i = 1, . . . , TP, are independent of each other, Equa-
tions (44) and (45) can be solved by setting δαi = δij, i, j = 1, . . . , TP, where δij
represents the Kronecker delta-functional, which is defined as follows: δij = 1, i = j;
δij = 0, i 6= j.
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It is evident that solving Equations (41) and (42) would require at least TP large-scale
computations (i.e., at least one large-scale computation for each parameter variation) to
obtain the 1st-order variation δϕ(z,ω) for every parameter variation. Performing so many
large-scale computations is impractical for large-scale systems involving many parameters.
The alternative to solving repeatedly the 1st-LVSS for every possible variation in the
system’s imprecisely known parameters is to use the First-Level Adjoint Sensitivity System
(1st-LASS), which is constructed by applying the following sequence of steps:

1. Consider that the function δϕ(z,ω) belongs to a Hilbert space, which will be denoted
as H1(Ωz), Ωz , {ω ∈ [0, 1]⊗ z ∈ [b1, b2]}. This Hilbert space is endowed with an
inner product of two functions ϕ(z,ω) ∈ H1 and ψ(z,ω) ∈ H1, which is denoted as
〈ϕ(z,ω),ψ(z,ω)〉1 and is defined as follows:

〈ϕ(z,ω),ψ(z,ω)〉u ,

1∫
0

dω

b0
2∫

b0
1

ϕ(z,ω)ψ(z,ω) dz =


1∫

0

dω
b2∫

b1

ϕ(z,ω)ψ(z,ω) dz


α0

. (46)

2. Using the definition provided in Equation (46), construct the inner product of a
function ψ1(z,ω) ∈ Hu with Equation (41) to obtain


1∫

0

dω

b2∫
b1

ψ1(z,ω)

[
ω

d
dz
δϕ(z,ω) +µδϕ(z,ω)

]
dz


α0

= −

(δµ)

1∫
0

dω

b2∫
b1

ψ1(z,ω)ϕ(z,ω)dz


α0

. (47)

3. Integrate by parts, over the independent variable z, the left side of Equation (47)
to obtain {

1∫
0

dω
b2∫

b1

ψ1(z,ω)
[
ω d

dzδϕ(z,ω) + µδϕ(z,ω)
]
dz

}
α0

=
1∫

0
ω dω{ ψ1(b2,ω)δϕ(b2,ω)−ψ1(b1,ω)δϕ(b1,ω)}α0

+

{
1∫

0
dω

b2∫
b1

δϕ(z,ω)
[
−ω d

dzψ1(z,ω) + µψ1(z,ω)
]
dz

}
α0

.

(48)

4. Require the last term on the right side of Equation (48) to represent the indirect-effect
term defined in Equation (37) by imposing the following relationship:{

1∫
0

dω
b2∫

b1

δϕ(z,ω)
[
−ω d

dzψ1(z,ω) + µψ1(z,ω)
]
dz

}
α0

=

{
µd

1∫
0

dωδ(ω−ωd)
b2∫

b1

δϕ(z,ω) δ(z− zd)dz

}
α0

.
(49)

The relation in Equation (49) implies that the following equation holds in the weak
sense at the nominal parameter values:{

−ω d
dz
ψ1(z,ω) + µψ1(z,ω)

}
α0

= {µdδ(ω−ωd)δ(z− zd)}α0 , b0
1 ≤ z ≤ b0

2, 0 ≤ ω ≤ 1. (50)

5. Complete the definition of the function ψ1(z,ω) by requiring that the unknown value
of the function δϕ(z,ω) be eliminated from appearing on the right side of Equation
(48). This requirement is met by imposing the following condition be satisfied by the
function ψ1(z,ω) on the model’s outer boundary:

ψ1

(
b0

2,ω
)
= 0, 0 ≤ ω ≤ 1. (51)
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Together, Equations (50) and (51) constitute a well-posed system, called the First-Level
Adjoint Sensitivity System (1st-LASS), for determining the function ψ1(z,ω) ∈ H1. The
function ψ1(z,ω) ∈ Hu is called the first-level adjoint sensitivity function. Since the 1st-LASS
does not depend on the parameter variations, it needs to be solved only once in order to
obtain the 1st-level adjoint sensitivity function ψ1(z,ω). For the paradigm model under
consideration, the 1st-LASS given by Equations (50) and (51) can be solved exactly to obtain
the following closed-form expression for the 1st-level adjoint function ψ1(z,ω):

ψ1

(
z,ω; z0

d,ω0
d

)
=

{
µdδ(ω−ωd)

ω
[1− H(z− zd)]exp

[
µ(z− zd)

ω

]}
α0

, (52)

where H(z− zd) denotes the Heaviside functional defined as

H(z− zd) =

{
1, z ≥ zd;
0, z < zd.

(53)

Collecting the results obtained in Equations (47) through (51) leads to the following
expression for the indirect-effect term:

{δR(ϕ;α; δϕ)α0}ind =

{
1∫

0
ψ1(b1,ω)

[
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ δb1
ω µϕ(b1,ω)

]
ωdω

}
α0

−
{
(δµ)

1∫
0

dω
b2∫

b1

ψ1(z,ω)ϕ(z,ω)dz

}
α0

, {δR(ϕ;ψ1;α; δα)}ind.
(54)

The appearance of the 1st-level adjoint function ψ1(z,ω) in the list of arguments of
the indirect-effect term {δR(ϕ;ψ1;α; δα)}ind in Equation (54) emphasizes the fact the
appearance of the function δϕ(z,ω) which depends implicitly on parameter variations
has been eliminated. Instead, the indirect-effect term is expressed in terms of the 1st-level
adjoint function ψ1(z,ω), which does not depend on the model parameter variations.
Hence, solving the 1st-LASS to obtain the function ψ1(z,ω), which requires a single large-
scale computation comparable to solving the original equations underlying the model,
suffices to determine subsequently all of the partial response sensitivities included in the
indirect-effect term.

Adding the results obtained in Equations (54) and (36) yields the complete expression
for the total 1st-order sensitivity {δR(ϕ;α; δϕ; δα)}α0 . The specific expression of each
1st-order partial sensitivity of the response R(ϕ;α) to each uncertain parameter is obtained
by identifying the expression that multiplies the respective parameter variation, which
yields the following results:

{
∂R(ϕ;α)

∂µ(α)

}
α0

= −


1∫

0

dω
b2∫

b1

ψ1(z,ω)ϕ(z,ω)dz


α0

, (55)

{
∂R(ϕ;α)

∂q

}
α0

=

 1
µs(α)

1∫
0

ψ1(b1,ω) ω dω


α0

(56)

{
∂R(ϕ;α)
∂µs(α)

}
α0

= −

 q
µ2

s (α)

1∫
0

ψ1(b1,ω) ω dω


α0

(57)

{
∂R(ϕ;α)
∂µd(α)

}
α0

=


1∫

0

dω δ(ω−ωd)

b2∫
b1

dz ϕ(z,ω)δ(z− zd)


α0

, (58)
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{
∂R(ϕ;α)

∂ωd

}
α0

= −

µd

1∫
0

dωδ′(ω−ωd)

b2∫
b1

ϕ(z,ω) δ(z− zd)dz


α0

, (59)

{
∂R(ϕ;α)

∂zd

}
α0

= −

µd

1∫
0

dωδ(ω−ωd)

b2∫
b1

ϕ(z,ω) δ′(z− zd)dz


α0

, (60)

{
∂R(ϕ;α)

∂b1

}
α0

=

µ
1∫

0

ψ1(b1,ω) ϕ(b1,ω) dω


α0

. (61)

If the detector is placed inside the medium, the sensitivity of the response R(ϕ;α) to
the boundary parameter b2 is zero, as would be expected, since the response would not
depend on b2 in such a situation. On the other hand, if the detector lies on the outer surface,
at zd = b2, then the response sensitivity to b2 is provided by the expression in Equation (60),
which would be evaluated at zd = b2, i.e.,:{

∂R(ϕ;α)
∂b2

}
α0

= 0, i f zd 6= b2;{
∂R(ϕ;α)

∂b2

}
α0

= −
{
µd

1∫
0

dωδ(ω−ωd)
b2∫

b1

ϕ(z,ω) δ′(z− b2)dz

}
α0

, i f zd = b2.
(62)

The following conclusions can be drawn based on the results obtained in Equa-
tions (55)–(62):

(i) The indirect-effect term provides the complete 1st-order partial sensitivities of the
response R(ϕ;α) with respect to the parameters µ(α), q and µs(α), which are param-
eters that occur solely in the equations underlying the paradigm model.

(ii) The direct-effect term provides the complete 1st-order partial sensitivities of the
response R(ϕ;α) with respect to the parameters µd(α), zd, and ωd, which are param-
eters that occur solely in the definition of the model’s response.

(iii) Both the direct and the indirect effect terms may, in general, contribute to the par-
tial sensitivities of the response R(ϕ;α) with respect to the interface/boundary pa-
rameters b1 and b2. In this particular case, the indirect-effect provides the entire
contribution for the response sensitivity with respect to the boundary parameter b1,
while the direct-effect term provides the entire contribution for the response sensi-
tivity with respect to the boundary parameter b2, when the detector is placed on the
outer boundary.

Notably, obtaining all of the 1st-order partial response sensitivities to the primary
model parameters has necessitated a single “large-scale” computation for determining the
1st-level adjoint function ψ1(z,ω). This is in contradistinction with the use of the 1st-LVSS,
which would require at least TP large-scale computations to obtain the corresponding TP
first-order sensitivities. Furthermore, the expressions obtained for these sensitivities were
exact, as opposed to approximate, as would have been the case if these sensitivities would
have been computed by, e.g., finite-difference or statistical procedures. Also, many more
large-scale computations would have been necessary to compute these 1st-order partial
response sensitivities by any other (finite-difference or statistical) procedure. Thus, the 1st-
CASAM-L is the most efficient computational method for obtaining the exact expressions
of the 1st-order partial response sensitivities to the primary model parameters.

The primary model parameters q, zd, ωd, b1, b2 are fundamental parameters. On the
other hand, the primary model parameters µs(α), µ(α) and µd(α) are derived parameters,
being themselves functions of the respective nuclide number densities and cross sections
as fundamental parameters. Hence, the response sensitivities to the corresponding funda-
mental parameters can now be determined by taking into account the respective functional
dependencies of the primary model parameters µs(α), µ(α) and µd(α) on the correspond-
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ing nuclide number densities and cross sections. Thus, the response sensitivities to the
nuclide number densities and cross sections included in µs(α) are obtained as follows:

{
∂R(ϕ;α)

∂Ns,i

}
α0

=

{
∂R(ϕ;α)
∂µs(α)

∂µs(α)

∂Ns,i

}
α0

= −

 σs,iq
µ2

s (α)

1∫
0

ψ1(b1,ω) ω dω


α0

; i = 1, . . . , Ms; (63)

{
∂R(ϕ;α)

∂σs,i

}
α0

=

{
∂R(ϕ;α)
∂µs(α)

∂µs(α)

∂σs,i

}
α0

= −

 Ns,iq
µ2

s (α)

1∫
0

ψ1(b1,ω) ω dω


α0

; i = 1, . . . , Ms (64)

The response sensitivities to the remaining nuclide number densities and cross sections
are determined similarly, to obtain the following expressions:

{
∂R(ϕ;α)

∂Ni

}
α0

=

{
∂R(ϕ;α)

∂µ(α)

∂µ(α)

∂Ni

}
α0

= −

σi

1∫
0

dω
b2∫

b1

ψ1(z,ω)ϕ(z,ω)dz


α0

; i = 1, . . . , M; (65)

{
∂R(ϕ;α)

∂σi

}
α0

=

{
∂R(ϕ;α)

∂µ(α)

∂µ(α)

∂σi

}
α0

= −

Ni

1∫
0

dω
b2∫

b1

ψ1(z,ω)ϕ(z,ω)dz


α0

; i = 1, . . . , M; (66)

{
∂R(ϕ;α)

∂Nd,i

}
α0

=

{
∂R(ϕ;α)
∂µd(α)

∂µd(α)

∂Nd,i

}
α0

=

σd,i

1∫
0

dω δ(ω−ωd)

b2∫
b1

dz ϕ(z,ω)δ(z− zd)


α0

; i = 1, . . . , Md; (67)

{
∂R(ϕ;α)

∂σd,i

}
α0

=

{
∂R(ϕ;α)
∂µd(α)

∂µd(α)

∂σd,i

}
α0

=

Nd,i

1∫
0

dω δ(ω−ωd)

b2∫
b1

dz ϕ(z,ω)δ(z− zd)


α0

; i = 1, . . . , Md. (68)

In practice, the integrals involving the 1st-level adjoint function ψ1(z,ω) in Equa-
tions (55)–(68) would be performed numerically, after having obtained ψ1(z,ω) by solving
numerically the 1st-LASS (which would be the only large-scale computation required to
obtain all of the TP first-order sensitivities.

It is noteworthy that the relative sensitivities of the response with respect to the nuclide
densities have the same values as the relative sensitivities of the response with respect to the nuclide
densities, i.e.,

{
∂R(ϕ;α)
∂µs(α)

∂µs(α)
∂Ns,i

Ns,i
R(ϕ;α)

}
α0

= −
{

Ns,iσs,i
R(ϕ;α)

q
µ2

s (α)

1∫
0
ψ1(b1,ω) ω dω

}
α0

=
{

∂R(ϕ;α)
∂µs(α)

∂µs(α)
∂σs,i

σs,i
R(ϕ;α)

}
α0

; i = 1, . . . , Ms;
(69)

{
∂R(ϕ;α)

∂µ(α)
∂µ(α)

∂Ni

Ni
R(ϕ;α)

}
α0

= −
{

Niσi
R(ϕ;α)

1∫
0

dω
b2∫

b1

ψ1(z,ω)ϕ(z,ω)dz

}
α0

=
{

∂R(ϕ;α)
∂µ(α)

∂µ(α)
∂σi

σi
R(ϕ;α)

}
α0

; i = 1, . . . , M;
(70)

{
∂R(ϕ;α)
∂µd(α)

∂µd(α)
∂Nd,i

Nd,i
R(ϕ;α)

}
α0

=

{
σd,i Nd,i
R(ϕ;α)

1∫
0

dω δ(ω−ωd)
b2∫

b1

dz ϕ(z,ω)δ(z− zd)

}
α0

=
{

∂R(ϕ;α)
∂µd(α)

∂µd(α)
∂σd,i

σd,i
R(ϕ;α)

}
α0

; i = 1, . . . , Md;
(71)

The fact that so many relative sensitivities have the same values, as indicated in
Equations (69)–(71), respectively, render quasi-useless the statistical methods that attempt
to rank the sensitivities by their relative values, because such statistical methods break
down in situations when many relative sensitivities have equal values. The only reliable
method for computing response sensitivities accurately (and also most efficiently, from a
computational standpoint) in such situations is the 1st-CASAM-L.
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For the paradigm model considered here, the closed form expressions of ϕ(z,ω) and
ψ1(z,ω) are available (by design, of course), so the closed form expressions of the 1st-order
sensitivities are obtained by inserting the expression of ϕ(z,ω) from Equation (8) and the
expression of the 1st-level adjoint function ψ1(z,ω) from Equation (52) into Equations (55)–
(62), and performing the respective integrations. The results of these operations are the
following closed-form expressions for the partial first-order sensitivities of the response
R(ϕ;α) with respect to the primary parameters:{

∂R(ϕ;α)
∂µ(α)

}
α0

=

{
(b1 − zd)qµd(α)

ωdµs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (72)

{
∂R(ϕ;α)

∂q

}
α0

=

{
µd(α)

µs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (73){
∂R(ϕ;α)
∂µs(α)

}
α0

= −
{

qµd(α)

µ2
s (α)

exp
[
(b1 − zd)µ(α)

ωd

]}
α0

, (74){
∂R(ϕ;α)
∂µd(α)

}
α0

=

{
q

µs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (75)

{
∂R(ϕ;α)

∂ωd

}
α0

= −
{

qµd(α)

µs(α)

(b1 − zd)µ(α)

(ωd)
2 exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (76)

{
∂R(ϕ;α)

∂zd

}
α0

= −
{

qµd(α)

µs(α)

µ(α)

ωd
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (77){
∂R(ϕ;α)

∂b1

}
α0

=

{
qµd(α)

µs(α)

µ(α)

ωd
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

, (78){
∂R(ϕ;α)

∂b2

}
α0

= 0, i f zd 6= b2;{
∂R(ϕ;α)

∂b2

}
α0

= −
{

qµd(α)
µs(α)

µ(α)
ωd

exp
[
(b1−b2)µ(α)

ωd

]}
α0

, i f zd = b2.
(79)

The response sensitivities with respect to the nuclide number densities and cross
sections included in µs(α), µ(α) and µd(α), respectively, have the following closed-form
expressions:{

∂R(ϕ;α)
∂Ns,i

}
α0

=

{
∂R(ϕ;α)
∂µs(α)

∂µs(α)

∂Ns,i

}
α0

= −σs,i

{
qµd(α)

µ2
s (α)

exp
[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , Ms; (80){
∂R(ϕ;α)

∂σs,i

}
α0

=

{
∂R(ϕ;α)
∂µs(α)

∂µs(α)

∂σs,i

}
α0

= −Ns,i

{
qµd(α)

µ2
s (α)

exp
[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , Ms (81){
∂R(ϕ;α)

∂Ni

}
α0

=

{
∂R(ϕ;α)

∂µ(α)

∂µ(α)

∂Ni

}
α0

= σi

{
(b1 − zd)qµdµd(α)

ωdµs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , M; (82){
∂R(ϕ;α)

∂σi

}
α0

=

{
∂R(ϕ;α)

∂µ(α)

∂µ(α)

∂σi

}
α0

= Ni

{
(b1 − zd)qµdµd(α)

ωdµs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , M; (83){
∂R(ϕ;α)

∂Nd,i

}
α0

=

{
∂R(ϕ;α)
∂µd(α)

∂µd(α)

∂Nd,i

}
α0

= σd,i

{
q

µs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , Md; (84){
∂R(ϕ;α)

∂σd,i

}
α0

=

{
∂R(ϕ;α)
∂µd(α)

∂µd(α)

∂σd,i

}
α0

= σd,i Nd,i

{
q

µs(α)
exp

[
(b1 − zd)µ(α)

ωd

]}
α0

; i = 1, . . . , Md (85)

The closed-form expressions obtained in Equations (72)–(85) can be verified directly
by differentiating the closed-form expression of the response provided in Equation (17)
with respect to each of the model parameters.
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3.2. Particle Leakage Response

The 1st-order total sensitivity of RL(ϕ;α) is provided by the first-order G-differential
δRL(ϕ;α; δϕ; δα)α0 of RL(ϕ;α) at the nominal parameter values, which is determined by
applying the definition of the G-differential to Equation (21). This operation yields the
following expression:

δRL(ϕ;α; δϕ; δα)α0 ,

{
d

dε

[
(µd + εδµd)

1∫
0

dω
b2+εδb2∫

b1+εδb1

(ϕ+ εδϕ)δ(z− b2 − εδb2)dz

]
α0

}
ε=0

= {δRL(ϕ;α; δα)α0}dir + {δRL(ϕ;α; δϕ)α0}ind,

(86)

where the direct-effect term {δRL(ϕ;α; δα)α0}dir depends only on the parameter variations
δα and is defined as follows:

{δRL(ϕ;α; δα)α0}dir , (δµd)


1∫

0

dω
b2∫

b1

ϕ(z,ω)δ(z− b2)dz


α0

− (δb2)

µd

1∫
0

dωϕ(z,ω)δ′(z− b2)


α0

, (87)

and where the indirect-effect term {δRL(ϕ;α; δϕ)α0}ind depends only on the variations
δϕ and is defined as follows:

{δRL(ϕ;α; δϕ)α0}ind ,

µd

1∫
0

dω
b2∫

b1

δϕ(z,ω)δ(z− b2)dz


α0

(88)

Following the principles outlined in Section 3.1, the need for computing the func-
tion δϕ(z,ω) is circumvented by expressing the indirect-effect term {δRL(ϕ;α; δϕ)α0}ind
defined in Equation (88) in terms of a 1st-level adjoint function, which will be denoted
as ψL(z,ω), and which is the solution of a 1st-Level Adjoint Sensitivity System (1st-LASS)
constructed by performing the same sequence of operations as indicated in Equations
(46)–(48) but replacing the right-side of Equation (49) by the right-side of Equation (88).
Performing this sequence of operations leads to the following 1st-LASS for the 1st-level
adjoint function ψL(z,ω):{
−ω d

dz
ψL(z,ω) + µψL(z,ω)

}
α0

= {µdδ(z− b2)}α0 , b0
1 ≤ z ≤ b0

2, 0 ≤ ω ≤ 1; (89)

ψL

(
b0

2,ω
)
= 0, 0 ≤ ω ≤ 1. (90)

In terms of the 1st-level adjoint function ψL(z,ω), the indirect-effect term
{δRL(ϕ;α; δϕ)α0}ind will have the same formal expression as in Equation (54) except
that the adjoint function ψ1(z,ω) is replaced by the adjoint function ψL(z,ω), i.e.,

{δRL(ϕ;α; δϕ)α0}ind =

{
1∫

0
ψL(b1,ω)

[
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ δb1
ω µϕ(b1,ω)

]
ωdω

}
α0

−
{
(δµ)

1∫
0

dω
b2∫

b1

ψL(z,ω)ϕ(z,ω)dz

}
α0

, {δRL(ϕ;ψL;α; δα)}ind.
(91)

The total 1st-order G-differential {δRL(ϕ;ψL;α; δα)} is obtained by adding the ex-
pression for the indirect-effect term obtained in Equation (91) with the expression of the
direct-effect term obtained in Equation (87). Identifying in the resulting expression for
{δRL(ϕ;ψL;α; δα)} the quantities that multiply the individual parameter variations yields
the following expressions for the partial sensitivities of the response RL(ϕ;α) with respect
to the various parameters:
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{
∂RL(ϕ;α)

∂µ(α)

}
α0

= −


1∫

0

dω
b2∫

b1

ψL(z,ω)ϕ(z,ω)dz


α0

, (92)

{
∂RL(ϕ;α)

∂q

}
α0

=

 1
µs(α)

1∫
0

ψL(b1,ω) ω dω


α0

, (93)

{
∂RL(ϕ;α)

∂µs(α)

}
α0

= −

 q
µ2

s (α)

1∫
0

ψL(b1,ω) ω dω


α0

, (94)

{
∂RL(ϕ;α)

∂b1

}
α0

=

µ(α)
1∫

0

ψL(b1,ω) ϕ(b1,ω) dω


α0

. (95)

The sensitivities provided in Equations (92)–(94) stem solely from the indirect-effect
term given by Equation (91). On the other hand, the direct-effect term defined in Equa-
tion (87) gives rise to the following sensitivities:

{
∂RL(ϕ;α)

∂µd(α)

}
α0

=


1∫

0

dω
b2∫

b1

dz ϕ(z,ω)δ(z− b2)


α0

, (96)

{
∂RL(ϕ;α)

∂b2

}
α0

= −

µd

1∫
0

dω
b2∫

b1

ϕ(z,ω) δ′(z− b2)dz


α0

. (97)

Solving Equations (89) and (90) yields the following expression for the 1st-level adjoint
function ψL(z,ω):

ψL

(
z,ω; b0

2

)
=

{
µd
ω

[1− H(z− b2)] exp
[
µ(z− b2)

ω

]}
α0

, (98)

where H(z− b2) denotes the Heaviside functional. Replacing the expressions obtained in
Equations (98) and (8) into Equations (92)–(97) and performing the respective integrations
yields the following closed-form expressions for the 1st-order partial sensitivities of the
response RL(ϕ;α) with respect to the model parameters:{

∂RL(ϕ;α)
∂µ(α)

}
α0

=

{
qµd(α)

µs(α)
(b1 − b2)E1[(b2 − b1)µ(α)]

}
α0

, (99)

{
∂RL(ϕ;α)

∂q

}
α0

=

{
µd(α)

µs(α)
E2[(b2 − b1)µ(α)]

}
α0

, (100){
∂RL(ϕ;α)

∂µs(α)

}
α0

= −
{

qµd(α)

µ2
s (α)

E2[(b2 − b1)µ(α)]

}
α0

, (101){
∂RL(ϕ;α)

∂b1

}
α0

=

{
qµd(α)µ(α)

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

, (102){
∂RL(ϕ;α)

∂µd(α)

}
α0

=

{
q

µs(α)
E2[(b2 − b1)µ(α)]

}
α0

, (103){
∂RL(ϕ;α)

∂b2

}
α0

= −
{

qµd(α)µ(α)

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

. (104)
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The expressions obtained in Equations (99)–(104) may be verified by differentiating
directly (with respect to the various parameters) the expression of RL(ϕ;α) provided in
Equation (22), while also considering the following relations:

En(z) =
1

n− 1
[
e−z − zEn−1(z)

]
, f or n > 1;

dEn(z)
dz

= −En−1(z); En(z) =
∫ ∞

z
En−1(y)dy (105)

As expected, the expressions of the sensitivities of RL(ϕ;α) with respect to the model
parameters can be obtained directly from the corresponding sensitivities of the point-
detector response R(ϕ;α) provided in Equations (72)–(79), as follows: (i) set zd = b2 in
Equations (72)–(79); (ii) consider that the parameter ωd plays the role of a “phase-space
variable” and integrate over ωd the resulting expressions. The specific results of these
operations are as follows:

1∫
0

{
∂R(ϕ;α)

∂µ(α)

}
zd=b2

dωd =
(b1 − b2)qµd(α)

µs(α)
E1[(b2 − b1)µ(α)] =

∂RL(ϕ;α)
∂µ(α)

, (106)

1∫
0

{
∂R(ϕ;α)

∂q

}
zd=b2

dωd =
µd(α)

µs(α)
E2[(b2 − b1)µ(α)] =

∂RL(ϕ;α)
∂q

, (107)

1∫
0

{
∂R(ϕ;α)
∂µs(α)

}
zd=b2

dωd = − qµd(α)

µ2
s (α)

E2[(b2 − b1)µ(α)] =
∂RL(ϕ;α)

∂µs(α)
, (108)

1∫
0

{
∂R(ϕ;α)

∂b1

}
zd=b2

dωd =
qµd(α)µ(α)

µs(α)
E1[(b2 − b1)µ(α)] =

∂RL(ϕ;α)
∂b1

, (109)

1∫
0

{
∂R(ϕ;α)
∂µd(α)

}
zd=b2

dωd =
q

µs(α)
E2[(b2 − b1)µ(α)] =

∂RL(ϕ;α)
∂µd(α)

, (110)

1∫
0

{
∂R(ϕ;α)

∂zd

}
zd=b2

dωd =

1∫
0

∂R(ϕ;α)
∂b2

dωd =
∂RL(ϕ;α)

∂b2
. (111)

The explicit indication that the expressions in Equations (106)–(111) are to be evaluated
at the nominal parameter and state function values has been omitted, in order to simplify
the respective notation.

3.3. Reaction Rate Response

The 1st-order total sensitivity of Rr(ϕ;α) is obtained by determining the first-order G-
differential δRr(ϕ;α; δϕ; δα)α0 of Rr(ϕ;α) at the nominal parameter values. By definition,
the G-differential of Equation (25) is obtained as follows:

δRr(ϕ;α; δϕ; δα)α0 ,

{
d

dε

[
(µd + εδµd)

1∫
0

dω
b2+εδb2∫

b1+εδb1

(ϕ+ εδϕ)dz

]
α0

}
ε=0

= {δRr(ϕ;α; δα)α0}dir + {δRr(ϕ;α; δϕ)α0}ind,

(112)

where

{δRr(ϕ;α; δα)α0}dir , (δµd)

{
1∫

0
dω

b2∫
b1

ϕ(z,ω)dz

}
α0

+ (δb2)

{
µd

1∫
0

dωϕ(b2,ω)

}
α0

− (δb1)

{
µd

1∫
0

dωϕ(b1,ω)

}
α0

,
(113)
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and

{δRr(ϕ;α; δϕ)α0}ind ,

µd

1∫
0

dω
b2∫

b1

δϕ(z,ω)dz


α0

. (114)

The need for computing the function δϕ(z,ω) is circumvented by expressing the
indirect-effect term {δRL(ϕ;α; δϕ)α0}ind defined in Equation (114) in terms of a 1st-level
adjoint function, which will be denoted as ψr(z,ω), and which is the solution of a 1st-
Level Adjoint Sensitivity System (1st-LASS) obtained by applying the same principles and
sequence of steps as in Sections 3.1 and 3.2. Performing a sequence of operations similar
to the sequence followed to obtain Equations (46)–(48) but replacing the right-side of
Equation (49) by the right-side of Equation (114) leads to the following 1st-LASS for the
1st-level adjoint function ψr(z,ω):{

−ω d
dz
ψr(z,ω) + µψr(z,ω)

}
α0

= {µd(α)}α0 , b0
1 ≤ z ≤ b0

2, 0 ≤ ω ≤ 1; (115)

ψr

(
b0

2,ω
)
= 0, 0 ≤ ω ≤ 1. (116)

In terms of the 1st-level adjoint function ψr(z,ω), the indirect-effect term
{δRL(ϕ;α; δϕ)α0}ind will have the same formal expression as in Equation (54) except
that the adjoint function ψ1(z,ω) is replaced by the adjoint function ψr(z,ω), i.e.,

{δRr(ϕ;α; δϕ)α0}ind =

{
1∫

0
ψr(b1,ω)

[
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ δb1
ω µϕ(b1,ω)

]
ωdω

}
α0

−
{
(δµ)

1∫
0

dω
b2∫

b1

ψr(z,ω)ϕ(z,ω)dz

}
α0

, {δRr(ϕ;ψr;α; δα)}ind.
(117)

The total 1st-order G-differential {δRr(ϕ;ψL;α; δα)} is obtained by adding the ex-
pression for the indirect-effect term obtained in Equation (117) with the expression of the
direct-effect term obtained in Equation (113). Identifying in the resulting expression for
{δRr(ϕ;ψL;α; δα)} the quantities that multiply the individual parameter variations yields
the following expressions for the partial sensitivities of the response Rr(ϕ;α) with respect
to the various parameters:

{
∂Rr(ϕ;α)

∂µ(α)

}
α0

= −


1∫

0

dω
b2∫

b1

ψr(z,ω)ϕ(z,ω)dz


α0

, (118)

{
∂Rr(ϕ;α)

∂q

}
α0

=

 1
µs(α)

1∫
0

ψr(b1,ω) ω dω


α0

, (119)

{
∂Rr(ϕ;α)

∂µs(α)

}
α0

= −

 q
µ2

s (α)

1∫
0

ψr(b1,ω) ω dω


α0

, (120)

The sensitivities provided in Equations (118)–(123) stem solely from the indirect-effect
term given by Equation (117) and have expressions that are formally identical to the
corresponding expressions of the respective sensitivities of the point-detector response
R(ϕ;α) and leakage response RL(ϕ;α), except that the corresponding 1st-level adjoint
functions differ from one another.
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On the other hand, the sensitivities ∂Rr(ϕ;α)/∂µd(α) and ∂Rr(ϕ;α)/∂b2 stems solely
from the direct-effect term defined in Equation (113), namely:

{
∂Rr(ϕ;α)

∂µd(α)

}
α0

=


1∫

0

dω
b2∫

b1

ϕ(z,ω)dz


α0

, (121)

{
∂Rr(ϕ;α)

∂b2

}
α0

=

µd

1∫
0

dωϕ(b2,ω)


α0

, (122)

Both the direct-effect and indirect effect terms contribute to the sensitivity ∂Rr(ϕ;α)/∂b1,
which has the following expression:

{
∂Rr(ϕ;α)

∂b1

}
α0

=

µ(α)
1∫

0

ψr(b1,ω) ϕ(b1,ω) dω


α0

−

µd

1∫
0

dωϕ(b1,ω)


α0

. (123)

Solving Equations (115) and (116) yields the following expression for the 1st-level
adjoint function ψr(z,ω):

ψr(z,ω) =

{
µd(α)

µ(α)

{
1− exp

[
− (b2 − z)µ(α)

ω

]}}
α0

. (124)

Replacing the expressions obtained in Equations (124) and (8) into Equations (118)–
(123) and performing the respective integrations yields the following closed-form expres-
sions for the 1st-order partial sensitivities of the response Rr(ϕ;α) with respect to the
model parameters:

∂Rr(ϕ;α)
∂µ(α)

=
q

µs(α)

µd(α)

µ(α)

{
(b2 − b1)E2[(b2 − b1)µ(α)] +

1
µ(α)

E3[(b2 − b1)µ(α)]−
1

2µ(α)

}
(125)

∂Rr(ϕ;α)
∂q

=
µd(α)

µs(α)µ(α)

{
1
2
− E3[(b2 − b1)µ(α)]

}
, (126)

∂Rr(ϕ;α)
∂µs(α)

= − qµd(α)

µ2
s (α)µ(α)

{
1
2
− E3[(b2 − b1)µ(α)]

}
, (127)

∂Rr(ϕ;α)
∂µd(α)

=
q

µs(α)µ(α)

{
1
2
− E3[(b2 − b1)µ(α)]

}
, (128)

∂Rr(ϕ;α)
∂b2

=
qµd
µs(α)

E2[(b2 − b1)µ(α)]. (129)

∂Rr(ϕ;α)
∂b1

= − qµd(α)

µs(α)
E2[(b2 − b1)µ(α)]. (130)

The explicit indication that the expressions in Equations (125)–(130) are to be evaluated
at the nominal parameter and state function values has been omitted, in order to simplify
the respective notation.

As expected, the expressions of the sensitivities of Rr(ϕ;α) with respect to the model
parameters can be obtained directly by integrating the corresponding sensitivities of the
point-detector response R(ϕ;α) provided in Equations (72)–(79) over zd andωd, which are
considered for this purpose to be independent phase-space variables (as done when using
Green’s functions).

3.4. Contributon-Response

The model response considered in this section is the “contributon-response flux” at a
location z0 within the slab b1 ≤ z0 ≤ b2, which was defined (28) and depends on a “vector
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of fundamental model parameters” α, which, in this case, has the following components to
be considered for determining the sensitivities of ρ(z0):

α , (α1, . . . ,αTP)
† , [Ns,1, . . . , Ns,Ms ;σs,1, . . . ,σs,Ms ; N1, . . . , NM;σ1, . . . ,σM; q; q∗; z0; b1, b2]

†. (131)

The contributon-response ρ(z0) depends on the following primary model parameters: q,
q∗, z0, b1, b2, µs(α), µ(α). The interaction coefficients µs(α) and µ(α) are “derived primary
parameters” that depend, as before, on the respective number densities and microscopic
cross sections, which remain “fundamental parameters”.

The 1st-order total sensitivity of ρ(ϕ,ψ;α) is obtained by determining the first-order
G-differential δρ(ϕ,ψ;α; δϕ; δψ; δα)α0 of ρ(ϕ,ψ;α) at the nominal parameter values. By
definition, the G-differential of Equation (32) is obtained as follows:

δρ(ϕ,ψ;α; δϕ; δψ; δα)α0 ,

{
d

dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(ϕ+ εδϕ)(ψ+ εδψ)δ(z− z0 − εδz0)dz

]
α0

}
ε=0

= {δρ(ϕ,ψ;α; δα)α0}dir + {δρ(ϕ,ψ;α; δϕ; δψ)α0}ind,

(132)

where

{δρ(ϕ,ψ;α; δα)α0}dir , −(δz0)


1∫

0

dω
b2∫

b1

ϕ(z,ω)ψ(z,ω)δ′(z− z0)dz


α0

, (133)

and

{δρ(ϕ,ψ;α; δϕ; δψ)α0}ind ,

{
1∫

0
dω

b2∫
b1

δϕ(z,ω)ψ(z,ω)δ(z− z0)dz

}
α0

+

{
1∫

0
dω

b2∫
b1

ϕ(z,ω)δψ(z,ω)δ(z− z0)dz

}
α0

.
(134)

The function δϕ(z,ω), which appears in the first term on the right side of Equation
(134), is the solution of Equations (41) and (42). Moreover, the function δψ(z,ω), which
appears in the second term on the right side of Equation (134), is the solution of the
equations obtained by G-differentiating Equations (29) and (30). Applying the definition of
the G-differential to Equations (29) and (30) yields the following system of equations:{

−ω d
dz

[δψ(z,ω)] + µ(α)[δψ(z,ω)]

}
α0

= δq∗ − (δµ){ψ(z,ω)}α0 ; b0
1 < z < b0

2, 0 ≤ ω ≤ 1. (135)

{δψ(b2,ω)}α0 = −(δb2)

{
dψ(z,ω)

dz

}
z=b0

2

= (δb2)
q∗

ω
, 0 ≤ ω ≤ 1. (136)

The 1st-Level Variational Sensitivity System (1st-LVSS) to be solved for obtaining the
functions δϕ(z,ω) and δψ(z,ω) comprises the boundary conditions provided in Equa-
tions (43) and (136), together with Equations (41) and (135), which are written in the
following matrix-form:{

V(1)δu(1)(z,ω)
}
α0

=
{

q(1)
V

(
u(1);α; δα

)}
α0

x ∈ Ωx, (137)

where

V(1) ,
(
ω d

dz + µ(α) 0
0 −ω d

dz + µ(α)

)
; u(1)(z,ω) ,

(
ϕ(z,ω)
ψ(z,ω)

)
; δu(1)(z,ω) ,

(
δϕ(z,ω)
δψ(z,ω)

)
; (138)

q(1)
V

(
u(1);α; δα

)
=

(
−(δµ)ϕ(z,ω)

δq∗ − (δµ)ψ(z,ω)

)
(139)



Energies 2021, 14, 8315 21 of 49

The need for solving the 1st-LVSS can be circumvented by replacing the appearance of
the function δu(1)(z,ω) in the indirect effect term

{
δρ
(
ϕ,ψ;α; δu(1)

)
α0

}
ind

with a which

is independent of parameter variations. This 1st-level adjoint function is the solution of
a 1st-Level Adjoint Sensitivity System (1st-LASS) which is constructing by introducing a
Hilbert space, denoted as H1, which comprises square-integrable functions vector-valued

elements of the form η(1)(z,ω) ,
[
η
(1)
1 (z,ω),η(1)2 (z,ω)

]†
, and which is endowed with

an inner product between two elements, η(1)(z,ω) ∈ H1, ξ(1)(z,ω) ∈ H1, denoted as〈
η(1)(x),ξ(1)(x)

〉
1

and defined as follows:

〈
η(1)(z,ω),ξ(1)(z,ω)

〉
1
,

2

∑
i=1

〈
η
(1)
i (z,ω), ξ(1)i (z,ω)

〉
0
=

2

∑
i=1


1∫

0

dω
b2∫

b1

η
(1)
i (z,ω)ξ

(1)
i (z,ω)dz


α0

. (140)

In the Hilbert H1, form the inner product of Equation (137) with a yet undefined

vector-valued function a(1)(z,ω) ,
[

a(1)1 (z,ω), a(1)2 (z,ω)
]†
∈ H1 to obtain the following

relation:{〈
a(1)(z,ω), V(1)δu(1)(z,ω)

〉
1

}
α0

=

{
1∫

0
dω

b2∫
b1

a(1)1 (z,ω)
[
ω d

dzδϕ(z,ω) + µ(α)δϕ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)
[
−ω d

dzδψ(z,ω) + µ(α)δψ(z,ω)
]
dz

}
α0

=

{
1∫

0
dω

b2∫
b1

a(1)1 (z,ω)[−(δµ)ϕ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)[δq ∗ −(δµ)ψ(z,ω)]dz

}
α0

;

(141)

Integrating by parts the terms containing derivatives with respect to z in Equation (141)
and using the boundary conditions provided in Equations (43) and (136) yields the follow-
ing relation:{

1∫
0

dω
b2∫

b1

δϕ(z,ω)

[
−ω da(1)1 (z,ω)

dz + µ(α)a(1)1 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δψ(z,ω)

[
ω

da(1)2 (z,ω)
dz + µ(α)a(1)2 (z,ω)

]
dz

}
α0

=

{
1∫

0
dω

b2∫
b1

a(1)1 (z,ω)[−(δµ)ϕ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)[δq∗ − (δµ)ψ(z,ω)]dz

}
α0

−
{

1∫
0
ωdω

[
δϕ(b2,ω)a(1)1 (b2,ω)− δϕ(b1,ω)a(1)1 (b1,ω)

]}
α0

−
{

1∫
0
ωdω

[
−δψ(b2,ω)a(1)2 (b2,ω) + δψ(b1,ω)a(1)2 (b1,ω)

]}
α0

;

(142)

The first two terms on the left-side of Equation (142) are required to represent the
indirect-effect term {δρ(ϕ,ψ;α; δϕ; δψ)α0}ind defined in Equation (134) by imposing the
following relations:{

−ω
da(1)1 (z,ω)

dz
+ µ(α)a(1)1 (z,ω)

}
α0

= {ψ(z,ω)δ(z− z0)}α0 , b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (143)

{
ω

da(1)2 (z,ω)

dz
+ µ(α)a(1)2 (z,ω)

}
α0

= {ϕ(z,ω)δ(z− z0)}α0 ; b0
1 < z < b0

2, 0 ≤ ω ≤ 1. (144)
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The unknown quantities δϕ(b2,ω) and δψ(b1,ω), which appear in the last two terms
on the right-side of Equation (142), are eliminating by choosing the following boundary
conditions for the 1st-level adjoint functions a(1)1 (z,ω) and a(1)2 (z,ω):{

a(1)1 (b2,ω)
}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1; (145)

{
a(1)2 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (146)

The system of equations comprising Equations (143)–(146) constitutes the 1st-Level

Adjoint Sensitivity System (1st-LASS). The solution a(1)(z,ω) ,
[

a(1)1 (z,ω), a(1)2 (z,ω)
]†

of the 1st-LASS is called the 1st-level adjoint function. The 1st-LASS is called “first-level”
(as opposed to “first-order”) because it does not contain any differential or functional-
derivatives, but its solution, a(1)(z,ω), will be used below to compute the first-order
sensitivities of the response with respect to the model parameters. This terminology will
be also used in the sequel, when deriving the expressions for the higher-order sensitivities.

Using the relations underlying the 1st-LASS together with boundary conditions pro-
vided in Equations (43) and (136) in Equation (142) yields the following expression for
the indirect-effect term {δρ(ϕ,ψ;α; δϕ; δψ)α0}ind in terms of the 1st-level adjoint function

a(1)(z,ω) ,
[

a(1)1 (z,ω), a(1)2 (z,ω)
]†

:

{δρ(ϕ,ψ;α; δϕ; δψ)α0}ind = −(δµ)
{

1∫
0

dω
b2∫

b1

a(1)1 (z,ω)ϕ(z,ω)dz

}
α0

+

{
(δq∗)

1∫
0

dω
b2∫

b1

a(1)2 (z,ω)dz

}
α0

− (δµ)

{
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)ψ(z,ω)dz

}
α0

+
{

(δq)
µs(α)

− qδµs(α)

µ2
s (α)

}
α0

{
1∫

0
a(1)1 (b1,ω)ωdω

}
α0

+ (δb1)
{

qµ(α)
µs(α)

}
α0

{
1∫

0
a(1)1 (b1,ω)dω

}
α0

+

{
(δb2)q∗

1∫
0

a(1)2 (b2,ω)dω

}
α0

=
{
δρ
(
ϕ,ψ;α; a(1)

)
α0

}
ind

.

(147)

The last equality in Equation (147) highlights the fact that the no longer depends on
the function δu(1)(z,ω), but depends on the adjoint 1st-level adjoint function a(1)(z,ω) ,[

a(1)1 (z,ω), a(1)2 (z,ω)
]†

, which is independent of parameter variations. By identifying the
expressions multiplying the individual parameter variations in Equation (147), it follows
that the indirect-effect term {δρ(ϕ,ψ;α; δϕ; δψ)α0}ind contributes the expressions of the
following 1st-order sensitivities:

∂ρ(ϕ,ψ;α)
∂µ(α)

= −


1∫

0

dω
b2∫

b1

a(1)1 (z,ω)ϕ(z,ω)dz


α0

−


1∫

0

dω
b2∫

b1

a(1)2 (z,ω)ψ(z,ω)dz


α0

, (148)

∂ρ(ϕ,ψ;α)
∂µs(α)

= −

 q
µ2

s (α)

1∫
0

a(1)1 (b1,ω)ωdω


α0

, (149)

∂ρ(ϕ,ψ;α)
∂q

=

 1
µs(α)

1∫
0

a(1)1 (b1,ω)ωdω


α0

, (150)

∂ρ(ϕ,ψ;α)
∂q∗

=


1∫

0

dω
b2∫

b1

a(1)2 (z,ω)dz


α0

, (151)
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∂ρ(ϕ,ψ;α)
∂b1

=

{
qµ(α)
µs(α)

}
α0


1∫

0

a(1)1 (b1,ω)dω


α0

, (152)

∂ρ(ϕ,ψ;α)
∂b2

= q∗
1∫

0

a(1)2 (b2,ω)dω. (153)

It follows from Equation (133) that the direct-effect term contributes the expressions
of the following 1st-order sensitivity:

∂ρ(ϕ,ψ;α)
∂z0

= −


1∫

0

dω
b2∫

b1

ϕ(z,ω)ψ(z,ω)δ′(z− z0)dz


α0

. (154)

The 1st-LASS needs to be solved only once since it is independent of parameter variations
(as opposed to the 1st-LVSS, which would need to be solved anew for each parameter
variation). Subsequently, the sensitivities of the contributon-response flux ρ(ϕ,ψ;α) to the
primary model parameters can be computed efficiently and exactly by simply performing

the integrations over the adjoint function a(1)(z,ω) ,
[

a(1)1 (z,ω), a(1)2 (z,ω)
]†

, as indicated
by the expressions provided in Equations (148)–(153). The sensitivities of ρ(ϕ,ψ;α) to the
respective nuclide number densities and microscopic cross sections can be obtained directly
from the sensitivities ∂ρ(ϕ,ψ;α)/∂µ(α) and ∂ρ(ϕ,ψ;α)/∂µs(α), respectively, and have the
following expressions:{

∂ρ(ϕ,ψ;α)
∂Ni

}
α0

=

{
∂ρ(ϕ,ψ;α)

∂µ(α)

∂µ(α)

∂Ni

}
α0

=

{
σi

∂ρ(ϕ,ψ;α)
∂µ(α)

}
α0

; i = 1, . . . , M; (155)

{
∂ρ(ϕ,ψ;α)

∂σi

}
α0

=

{
∂ρ(ϕ,ψ;α)

∂µ(α)

∂µ(α)

∂σi

}
α0

=

{
Ni

∂ρ(ϕ,ψ;α)
∂µ(α)

}
α0

; i = 1, . . . , M; (156){
∂ρ(ϕ,ψ;α)

∂Ns,i

}
α0

=

{
∂ρ(ϕ,ψ;α)

∂µs(α)

∂µs(α)

∂Ns,i

}
α0

=

{
σs,i

∂ρ(ϕ,ψ;α)
∂µs(α)

}
α0

; i = 1, . . . , Ms; (157){
∂ρ(ϕ,ψ;α)

∂σs,i

}
α0

=

{
∂ρ(ϕ,ψ;α)

∂µs(α)

∂µs(α)

∂σs,i

}
α0

=

{
Ns,i

∂ρ(ϕ,ψ;α)
∂µs(α)

}
α0

; i = 1, . . . , Ms (158)

The closed-form expressions of the solutions a(1)1 (z,ω) and a(1)2 (z,ω) of the 1st-LASS
are obtained as follows:{

a(1)1 (z,ω)
}
α0

=

{
ψ(z0,ω)

ω
[1− H(z− z0)] exp

[
µ(z− z0)

ω

]}
α0

, (159)

{
a(1)2 (z,ω)

}
α0

=

{
ϕ(z0,ω)

ω
H(z− z0) exp

[
−µ(z− z0)

ω

]}
α0

=

{
H(z− z0)q
ωµs

exp
[
(b1 − z)µ

ω

]}
α0

. (160)

The sensitivities expressed by Equations (148)–(154) can now be obtained by inserting
the expressions of ϕ(z,ω), ψ(z,ω), a(1)1 (z,ω) and a(1)2 (z,ω) into these equations. Using
the expressions of provided in Equations (8), (31), (159) and (160), respectively, into Equa-
tions (148)–(154) and performing the respective integrations over the independent variables
leads to the following expressions for the 1st-order sensitivities of the “contributon-response
flux” to the model’s parameters:{

∂ρ(ϕ,ψ;α)
∂µ(α)

}
α0

=
{

qq∗

µs(α)µ2(α)

}
α0
{E2[(b2 − b1)µ(α)]− E2[(z0 − b1)µ(α)]}α0

+
{

qq∗

µs(α)µ(α)

}
α0
{(b1 − z0)E1[(z0 − b1)µ(α)] + (b2 − b1)E1[(b2 − b1)µ(α)]}α0 ,

(161)
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{
∂ρ(ϕ,ψ;α)

∂µs(α)

}
α0

= −
{

qq∗

µ2
s (α)µ(α)

}
α0
{E2[(z0 − b1)µ(α)]− E2[(b2 − b1)µ(α)]}α0 , (162){

∂ρ(ϕ,ψ;α)
∂q

}
α0

=

{
q∗

µs(α)µ(α)

}
α0
{E2[(z0 − b1)µ(α)]− E2[(b2 − b1)µ(α)]}α0 , (163){

∂ρ(ϕ,ψ;α)
∂q∗

}
α0

=

{
q

µs(α)µ(α)

}
α0
{E2[(z0 − b1)µ(α)]− E2[(b2 − b1)µ(α)]}α0 , (164){

∂ρ(ϕ,ψ;α)
∂b1

}
α0

=

{
qq∗

µs(α)

}
α0
{E1[(z0 − b1)µ(α)]− E1[(b2 − b1)µ(α)]}α0 , (165){

∂ρ(ϕ,ψ;α)
∂b2

}
α0

=

{
qq∗

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

, (166){
∂ρ(ϕ,ψ;α)

∂z0

}
α0

= −
{

qq∗

µs(α)
E1[(z0 − b1)µ(α)]

}
α0

. (167)

It is noteworthy that, even though the contributon-response flux ρ(z0) vanishes at the
external boundary z0 = b2, i.e., ρ(z0 = b2) = 0, not all of the first-order sensitivities of ρ(z0)
with respect to the model parameters and boundaries vanish. The following results are
obtained by setting z0 = b2 in Equations (161)–(167):{

∂ρ(ϕ,ψ;α)
∂µ(α)

}
z0=b2

=
{

∂ρ(ϕ,ψ;α)
∂µs(α)

}
z0=b2

=
{

∂ρ(ϕ,ψ;α)
∂q

}
z0=b2

=
{

∂ρ(ϕ,ψ;α)
∂q∗

}
z0=b2

=
{

∂ρ(ϕ,ψ;α)
∂b1

}
z0=b2

= 0,
(168)

{
∂ρ(ϕ,ψ;α)

∂b2

}
z0=b2

=

{
qq∗

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

= −
{

∂ρ(ϕ,ψ;α)
∂z0

}
z0=b2

, (169)

All of the first-order sensitivities of ρ(ϕ,ψ;α) have finite values for finite non-zero
parameter values, except for the sensitivity ∂ρ(ϕ,ψ;α)/∂z0, which becomes unbounded
at the inner interface, as z0 → b1. The sensitivity ∂ρ(ϕ,ψ;α)/∂b2 is nonzero for all finite
non-zero parameter values.

4. Application of the 2nd-CASAM-L to Compute Second-Order Response Sensitivities
to Imprecisely Known Parameters

The 2nd-order response sensitivities to the model parameters will be obtained by
applying the general principles presented in [1]. In essence, each of the first-order response
sensitivities will be considered a new “model response” and the principles underlying the
1st-CASAM-L will be applied to determine the “1st-order sensitivities of the 1st-order sensi-
tivities”, which by definition are the sought after 2nd-order sensitivities. The expressions
obtained in Equations (148)–(154) indicate the following characteristics:

(i) The sensitivity ∂ρ(ϕ,ψ;α)/∂z0 depends on the product ϕ(z,ω) ψ(z,ω) of the original
forward and adjoint state functions, just as the contributon-response flux ρ(ϕ,ψ;α)
does. Hence, the determination of the second-order sensitivities derived from
∂ρ(ϕ,ψ;α)/∂z0 will involve the exact same steps as those that were involved in deter-
mining the first-order sensitivities of ρ(ϕ,ψ;α).

(ii) The sensitivity ∂ρ(ϕ,ψ;α)/∂µ(α) depends on all state functions, i.e., on both com-

ponents a(1)1 (z,ω) or a(1)2 (z,ω) of the 1st-level adjoint function and also on the orig-
inal forward and adjoint functions ϕ(z,ω) and ψ(z,ω). Hence, the determination
of the 2nd-order sensitivities stemming from ∂ρ(ϕ,ψ;α)/∂µ(α) will require the com-
plete sequence of steps underlying the 2nd-CASAM-L, requiring the determination
of a four-component vector-valued 2nd-level adjoint function, as will be shown in
Section 4.1.

(iii) The sensitivities ∂ρ(ϕ,ψ;α)/∂µs(α), ∂ρ(ϕ,ψ;α)/∂q, ∂ρ(ϕ,ψ;α)/∂q*, ∂ρ(ϕ,ψ;α)/∂b1 and
∂ρ(ϕ,ψ;α)/∂b2 involve only one of the components of the 1st-level adjoint function
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i.e., these sensitivities involve either a(1)1 (z,ω) or a(1)2 (z,ω). Hence, the determination
of the 2nd-order sensitivities stemming from these 1st-order sensitivities will involve
a much simplified application of the 2nd-CASAM-L (amounting to a particular case
of the derivations to be presented in Section 4.1). The actual application of the 2nd-
CASAM-L for these simpler situations will be illustrated in Section 4.2 by considering
the sensitivity ∂ρ(ϕ,ψ;α)/∂b2 as the “model response”, since this sensitivity remains
nonzero for all finite non-zero parameter values.

4.1. Determination of the Second-Order Sensitivities of the Form ∂2ρ(ϕ,ψ; α)/∂αi∂µ(α),
i = 1, . . . , TP

The first-order G-differential of the 1st-order sensitivity ∂ρ(ϕ,ψ;α)/∂µ(α) will com-
prise all of the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂µ(α), i = 1, . . . ,TP, and
will be obtained by considering that the expression provided in Equation (148) plays the
role of a “model response”. For this purpose, it is convenient to introduce the following
notation:

ρ(1)
[
u(2)(z,ω);α

]
, ∂ρ(ϕ,ψ;α)

∂µ(α)
= −

1∫
0

dω
b2∫

b1

a(1)1 (z,ω)ϕ(z,ω)dz−
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)ψ(z,ω)dz,

u(2)(z,ω) ,

(
u(1)(z,ω)

a(1)(z,ω)

)
,
[
ϕ(z,ω),ψ(z,ω), a(1)1 (z,ω), a(1)2 (z,ω)

]†
.

(170)

Applying the definition of the first-order total G-differential to Equation (170) yields
the following relation:

δρ(1)
[
u(2);α; δu(2); δα

]
α0

, −
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(1)1 + εδa(1)1

)
(ϕ+ εδϕ)dz

]
α0

}
ε=0

−
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(1)2 + εδa(1)2

)
(ψ+ εδψ)dz

]
α0

}
ε=0

=
{
δρ(1)

[
u(2);α; δα

]
α0

}
dir

+
{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

,

(171)

where{
δρ(1)

[
u(2);α; δα

]
α0

}
dir

, −(δb2)

{
1∫

0
dω
[

a(1)1 (b2,ω)ϕ(b2,ω) + a(1)2 (b2,ω)ψ(b2,ω)
]}

α0

+(δb1)

{
1∫

0
dω
[

a(1)1 (b1,ω)ϕ(b1,ω) + a(1)2 (b1,ω)ψ(b1,ω)
]}

α0

,
(172)

and

{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

, −


1∫

0

dω
b2∫

b1

[
a(1)1 δϕ+ a(1)2 δψ+ δa(1)1 ϕ+ δa(1)2 ψ

]
dz


α0

. (173)

The direct-effect term
{
δρ(1)

[
u(2);α; δα

]
α0

}
dir

can be computed immediately, since

all of the quantities appearing in its definition on the right-side of Equation (172) are known.
However, the computation of the indirect-effect term

{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

requires

the prior determination of the vector of variations

δu(2)(z,ω) ,
[
δϕ(z,ω), δψ(z,ω), δa(1)1 (z,ω), δa(1)2 (z,ω)

]†
. (174)

The vector of variations δu(1)(z,ω) , [δϕ(z,ω), δψ(z,ω)]† is the solution of the 1st-
LVSS defined in Equation (137) together with the boundary conditions provided in Equations

(43) and (136). Furthermore, the vector of variations δa(1)(z,ω) ,
[
δa(1)1 (z,ω), δa(1)2 (z,ω)

]†
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is the solution of the system of equations obtained by G-differentiating the 1st-LASS, which
comprises Equations (143)–(146). Taking the G-differentials of Equations (143)–(146) at
the nominal parameter values yields the following system of equations and boundary
conditions:{
−ω d

dzδa(1)1 (z,ω) + µδa(1)1 (z,ω)− δ(z− z0)δψ(z,ω)
}
α0

=
{
−(δµ)a(1)1 (z,ω)

−(δz0)ψ(z,ω)δ′(z− z0)
}
α0 , b0

1 < z < b0
2, 0 ≤ ω ≤ 1,

(175)

{
ω d

dzδa(1)2 (z,ω) + µδa(1)2 (z,ω)− δ(z− z0)δϕ(z,ω)
}
α0

=
{
−(δµ)a(1)2 (z,ω)

−(δz0)ϕ(z,ω)δ′(z− z0)
}
α0 , b0

1 < z < b0
2, 0 ≤ ω ≤ 1,

(176)

{
δa(1)1 (b2,ω)

}
α0

= −(δb2)

{
da(1)1 (z,ω)

dz

}
z=b0

2

= 0, z = b0
2; 0 ≤ ω ≤ 1, (177)

{
δa(1)2 (b1,ω)

}
α0

= −(δb1)

{
da(1)2 (z,ω)

dz

}
z=b0

1

= 0, z = b0
1; 0 ≤ ω ≤ 1. (178)

Concatenating the 1st-LVSS together with Equations (175) and (176) yields the follow-
ing system of equations written in matrix form:{

V(2)δu(2)(z,ω)
}
α0

=
{

q(2)
V (z,ω)

}
α0

, (179)

where:

V(2) ,


ω d

dz + µ 0 0 0
0 −ω d

dz + µ 0 0
0 −δ(z− z0) −ω d

dz + µ 0
−δ(z− z0) 0 0 ω d

dz + µ

; δu(2)(z,ω) =


δϕ(z,ω)
δψ(z,ω)

δa(1)1 (z,ω)

δa(1)2 (z,ω)

; (180)

q(2)
V (z,ω) ,


−(δµ)ϕ(z,ω)

δq∗ − (δµ)ψ(z,ω)

−(δµ)a(1)1 (z,ω)− (δz0)ψ(z,ω)δ′(z− z0)

−(δµ)a(1)2 (z,ω)− (δz0)ϕ(z,ω)δ′(z− z0)

. (181)

The system comprising Equation (179) together with the corresponding boundary
conditions given in Equations (43), (136), (177) and (178) is called the “2nd-Level Variational
Sensitivity System” (2nd-LVSS), and its solution, δu(2)(z,ω), is called the 2nd-level variational
function.

The application of the 2nd-CASAM-L avoids the need for solving the 2nd-LVSS (repeat-
edly, for every parameter variation) by expressing the indirect-effect term{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

defined in Equation (173) in an alternative manner, in terms

of the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), which is constructed
so as to eliminate the appearance of the 2nd-level variational vector δu(2)(z,ω) in the
alternative expression of the indirect-effect term

{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

. The con-

struction of the requisite 2nd-LASS commences by introducing a Hilbert space, denoted
as H2, comprising square-integrable vector-valued elements of the form η(2)(z,ω) ,[
η
(2)
1 (z,ω),η(2)2 (z,ω),η(2)3 (z,ω),η(2)4 (z,ω)

]†
∈ H2. The inner product between two ele-

ments, η(2)(z,ω) ∈ H2 and ξ(2)(z,ω) ∈ H2 will be denoted as
〈
η(2)(z,ω),ξ(2)(z,ω)

〉
2

and is defined as follows:
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〈
η(2)(z,ω),ξ(2)(z,ω)

〉
2
,

4

∑
k=1


1∫

0

dω
b2∫

b1

η
(2)
k (z,ω), ξ(2)k (z,ω)dz


α0

. (182)

In the Hilbert H2, form the inner product of Equation (179) with a yet undefined func-

tion a(2)(z,ω) ,
[

a(2)1 (z,ω), a(2)2 (z,ω), a(2)3 (z,ω), a(2)4 (z,ω)
]†
∈ H2 to obtain the following

relation: {〈
a(2)(z,ω), V(2)δu(2)(z,ω)

〉
2

}
α0

=
{〈

a(2)(z,ω), q(2)
V (z,ω)

〉
2

}
α0

. (183)

The left and right sides of Equation (183) have the following detailed forms, respec-
tively:{〈

a(2)(z,ω), V(2)δu(2)(z,ω)
〉

2

}
α0

=

{
1∫

0
dω

b2∫
b1

a(2)1 (z,ω)
[
ω d

dzδϕ(z,ω) + µ(α)δϕ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)2 (z,ω)
[
−ω d

dzδψ(z,ω) + µ(α)δψ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)3 (z,ω)
[
−ω d

dzδa(1)1 (z,ω) + µδa(1)1 (z,ω)− δ(z− z0)δψ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)4 (z,ω)dz
[
ω d

dzδa(1)2 (z,ω) + µδa(1)2 (z,ω)− δ(z− z0)δϕ(z,ω)
]}

α0

,

(184)

and {〈
a(2)(z,ω), q(2)

V (z,ω)
〉

2

}
α0

=

{
1∫

0
dω

b2∫
b1

a(2)1 (z,ω)[−(δµ)ϕ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)2 (z,ω)[δq∗ − (δµ)ψ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)3 (z,ω)
[
−(δµ)a(1)1 (z,ω)− (δz0)ψ(z,ω)δ′(z− z0)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)4 (z,ω)
[
−(δµ)a(1)2 (z,ω)− (δz0)ϕ(z,ω)δ′(z− z0)

]
dz

}
α0

.

(185)

Integrating by parts the terms containing derivatives with respect to z in Equation
(184) and re-arranging terms yields the following relation:{〈

a(2)(z,ω), V(2)δu(2)(z,ω)
〉

2

}
α0

=
{

P(2)
[
δu(2); u(1); a(2);α; δα

]}
α0

+

{
1∫

0
dω

b2∫
b1

δϕ(z,ω)

[
−ω da(2)1 (z,ω)

dz + µ(α)a(2)1 (z,ω)− δ(z− z0)a(2)4 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δψ(z,ω)

[
ω

da(2)2 (z,ω)
dz + µ(α)a(2)2 (z,ω)− δ(z− z0)a(2)3 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δa(1)1 (z,ω)

[
ω

da(2)3 (z,ω)
dz + µa(2)3 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δa(1)2 (z,ω)dz
[
−ω da(2)4 (z,ω)

dz + µa(2)4 (z,ω)− δ(z− z0)δϕ(z,ω)

]}
α0

.

(186)

where the bilinear concomitant
{

P(2)
[
δu(2); u(1); a(2);α; δα

]}
α0

has the following expres-
sion:
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{
P(2)

[
δu(2); u(1); a(2);α; δα

]}
α0

=
1∫

0
ωdω

[
δϕ(b2,ω)a(2)1 (b2,ω)− δϕ(b1,ω)a(2)1 (b1,ω)

]
−

1∫
0
ωdω

[
δψ(b2,ω)a(2)2 (b2,ω)− δψ(b1,ω)a(2)2 (b1,ω)

]
−

1∫
0
ωdω

[
δa(1)1 (b2,ω)a(2)3 (b2,ω)− δa(1)1 (b1,ω)a(2)3 (b1,ω)

]
+

1∫
0
ωdω

[
δa(1)2 (b2,ω)a(2)4 (b2,ω)− δa(1)2 (b1,ω)a(2)4 (b1,ω)

]
(187)

The right-side of Equation (186) is required to represent the indirect-effect term{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

defined in Equation (173) by imposing the following relations:

{
−ω

da(2)1 (z,ω)

dz
+ µ(α)a(2)1 (z,ω)

}
α0

=
{
δ(z− z0)a(2)4 (z,ω)− a(1)1 (z,ω)

}
α0

, b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (188)

{
ω

da(2)2 (z,ω)

dz
+ µ(α)a(2)2 (z,ω)

}
α0

=
{
δ(z− z0)a(2)3 (z,ω)− a(1)2 (z,ω)

}
α0

; b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (189)

{
ω

da(2)3 (z,ω)

dz
+ µ(α)a(2)3 (z,ω)

}
α0

= −{ϕ(z,ω)}α0 , b0
1 < z < b0

2, 0 ≤ ω ≤ 1, (190)

{
−ω

da(2)4 (z,ω)

dz
+ µ(α)a(2)4 (z,ω)

}
α0

= {ψ(z,ω)}α0 ; b0
1 < z < b0

2, 0 ≤ ω ≤ 1. (191)

The unknown quantities δϕ(b2,ω), δψ(b1,ω), δa(1)1 (b1,ω) and δa(1)2 (b2,ω), which
appear in bilinear concomitant expressed by Equation (187), are eliminating from further
consideration by choosing the following boundary conditions for the 2nd-level adjoint

function a(2)(z,ω) ,
[

a(2)1 (z,ω), a(2)2 (z,ω), a(2)3 (z,ω), a(2)4 (z,ω)
]†

:{
a(2)1 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1; (192)

{
a(2)2 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (193){

a(2)3 (b1,ω)
}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (194){

a(2)4 (b2,ω)
}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (195)

The system comprising Equations (188)–(195) constitute the 2nd-Level Adjoint Sensitivity
System (2nd-LASS) for the 2nd-level adjoint function a(2)(z,ω) , [a(2)1 (z,ω), a(2)2 (z,ω),

a(2)3 (z,ω), a(2)4 (z,ω)]†. Very importantly, the equations underlying this 2nd-LASS need
not be solved simultaneously. Instead, they are solved successively, decoupled from one
another, by first solving separately Equation (190) and Equation (191) to obtain the functions
a(2)3 (z,ω) and a(2)4 (z,ω), respectively. The solution a(2)3 (z,ω) is used in the source term of

Equation (189), which is subsequently solved to obtain the function a(2)2 (z,ω). Separately,

the solution a(2)4 (z,ω) of Equation (191) is used in the source term of Equation (188), which

is then solved to obtain the function a(2)1 (z,ω).
Using in Equation (186) the equations underlying the 2nd-LASS together with the

boundary conditions provided in Equations (43), (136), (177) and (178), and recalling that
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the right-side of Equation (186) represents the indirect-effect term
{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

eliminates the appearance of δu(2), yielding the following expression for{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

in terms of the 2nd-level adjoint function a(2)(z,ω):

{
δρ(1)

[
u(2);α; δu(2)

]
α0

}
ind

=
{〈

a(2)(z,ω), q(2)
(

u(2);α; δα
)〉

2

}
α0
−
{

P(2)
[
δu(2); u(1); a(2);α; δα

]}
α0

=

{
1∫

0
dω

b2∫
b1

a(2)1 (z,ω)[−(δµ)ϕ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)2 (z,ω)[δq∗ − (δµ)ψ(z,ω)]dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)3 (z,ω)
[
−(δµ)a(1)1 (z,ω)− (δz0)ψ(z,ω)δ′(z− z0)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(2)4 (z,ω)
[
−(δµ)a(1)2 (z,ω)− (δz0)ϕ(z,ω)δ′(z− z0)

]
dz

}
α0

+

{
1∫

0

[
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ (δb1)qµ(α)
ωµs(α)

]
a(2)1 (b1,ω)ωdω

}
α0

+

{
(δb2)

q∗
ω

1∫
0

a(2)2 (b2,ω)ωdω

}
α0

.

(196)

Adding the expression of the indirect-effect term obtained in Equation (196) with
the expression of the direct-effect term provided in Equation (172) and subsequently
identifying the expressions that multiply the various parameter variations provides the
expressions of the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂µ(α), i = 1, . . . ,TP.
These expressions are as follows:

{
∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

}
α0

= −
{

1∫
0

dω
b2∫

b1

a(2)1 (z,ω)ϕ(z,ω)dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)2 (z,ω)ψ(z,ω)dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)3 (z,ω)a(1)1 (z,ω)dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)4 (z,ω)a(1)2 (z,ω)dz

}
α0

,
(197)

{
∂2ρ(ϕ,ψ;α)
∂µs(α)∂µ(α)

}
α0

= −

 q
µ2

s (α)

1∫
0

a(2)1 (b1,ω)ωdω


α0

, (198)

{
∂2ρ(ϕ,ψ;α)

∂q∂µ(α)

}
α0

=

 1
µs(α)

1∫
0

a(2)1 (b1,ω)ωdω


α0

, (199)

{
∂2ρ(ϕ,ψ;α)

∂q∗∂µ(α)

}
α0

=


1∫

0

dω
b2∫

b1

a(2)2 (z,ω)dz


α0

, (200)

{
∂2ρ(ϕ,ψ;α)

∂b1∂µ(α)

}
α0

=

{
qµ(α)
ωµs(α)

1∫
0

a(2)1 (b1,ω)ωdω

}
α0

+

{
1∫

0
dω
[

a(1)1 (b1,ω)ϕ(b1,ω) + a(1)2 (b1,ω)ψ(b1,ω)
]}

α0

,
(201)

{
∂2ρ(ϕ,ψ;α)

∂b2∂µ(α)

}
α0

=

{
q∗
ω

1∫
0

a(2)2 (b2,ω)ωdω

}
α0

−
{

1∫
0

dω
[

a(1)1 (b2,ω)ϕ(b2,ω) + a(1)2 (b2,ω)ψ(b2,ω)
]}

α0

,
(202)

{
∂2ρ(ϕ,ψ;α)

∂z0∂µ(α)

}
α0

=


1∫

0

dω
[

d
dz

(
a(2)3 ψ+ a(2)4 ϕ

)]
z=z0


α0

. (203)
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The various 2nd-order sensitivities of with respect to nuclide number densities and
microscopic cross sections, respectively, can be obtained by using in Equations (197)–(203)
the relations provided in Equations (155)–(158). For example, using Equations (155)–(158)
and (197) yields the following relations:{

∂2ρ(ϕ,ψ;α)
∂Ni∂Ni

}
α0

=

{
∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

[
∂µ(α)

∂Ni

]2
}

α0

=

{
(σi)

2 ∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

}
α0

; i = 1, . . . , M; (204)

{
∂2ρ(ϕ,ψ;α)

∂Ni∂σi

}
α0

=

{
∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

∂µ(α)

∂Ni

∂µ(α)

∂σi

}
α0

=

{
σi Ni

∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

}
α0

; i = 1, . . . , M; (205)

{
∂2ρ(ϕ,ψ;α)

∂σi∂σi

}
α0

=

{
∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

[
∂µ(α)

∂σi

]2
}

α0

=

{
(Ni)

2 ∂ρ(ϕ,ψ;α)
∂µ(α)

}
α0

; i = 1, . . . , M; (206)

It is important to note that all of the relative 2nd-order sensitivities of ρ(ϕ,ψ;α) with
respect to Ni and σi have the same values, i.e.,{

(Ni)
2

ρ(ϕ,ψ;α)
∂2ρ(ϕ,ψ;α)

∂Ni∂Ni

}
α0

=
{

Niσi
ρ(ϕ,ψ;α)

∂2ρ(ϕ,ψ;α)
∂Ni∂σi

}
α0

=

{
(σi)

2

ρ(ϕ,ψ;α)
∂2ρ(ϕ,ψ;α)

∂σi∂σi

}
α0

=

{
(Niσi)

2

ρ(ϕ,ψ;α)
∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

}
α0

; i = 1, . . . , M.
(207)

Distinct relative sensitivities which have the same values are notoriously difficult to
compute using statistical methods, even when they are just of first-order. Situation such as
presented in Equation (207) by the respective 2nd-order sensitivities pose extreme, even
insurmountable, difficulties when attempting to estimate them using statistical methods.

4.2. Determination of the Second-Order Sensitivities of the Form ∂2ρ(ϕ,ψ;α )/∂αi∂b2,
i = 1, . . . , TP

The explicit determination of the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂b2,
which involve the imprecisely known domain boundary at z = b2, will be presented in this
section. These 2nd-order sensitivities will be determined by considering that the expression
provided in Equation (153) for the 1st-order sensitivity ∂ρ(ϕ,ψ;α)/∂b2 plays the role of
a “model response”. The expressions of the 2nd-order sensitivities ∂2ρ(ϕ,ψ;α)/∂αi∂b2,
i = 1, . . . , TP, will thus be determined by taking the first-order G-differential of the 1st-order
sensitivity ∂ρ(ϕ,ψ;α)/∂b2. Applying the definition of the first-order total G-differential to
Equation (153) yields the following relation:

{
δ
[

∂ρ(ϕ,ψ;α)
∂b2

]}
α0

,

{
d

dε

[
(q∗ + εδq∗)

1∫
0

dω
b2+εδb2∫

b1+εδb1

(
a(1)2 + εδa(1)2

)
δ(z− b2 − εδb2)dz

]
α0

}
ε=0

=
{
δ
(

∂ρ
∂b2

)
α0

}
dir

+
{
δ
(

∂ρ
∂b2

)
α0

}
ind

,
(208)

where

{
δ

(
∂ρ

∂b2

)
α0

}
dir

, (δq∗)


1∫

0

a(1)2 (b2,ω)dω


α0

+ (δb2)

q∗
1∫

0

[
da(1)2 (z,ω)

dz

]
z=b2

dω

, (209)

and {
δ

(
∂ρ

∂b2

)
α0

}
ind

,

q∗
1∫

0

dω
b2∫

b1

δa(1)2 (z,ω)δ(z− b2)dz


α0

. (210)

The direct-effect term defined in Equation (209) can be computed immediately, but
the computation of the indirect-effect term defined in Equation (210) requires the prior
determination of the function δa(1)2 (z,ω). It has already been shown that δa(1)2 (z,ω) is the
solution of Equation (176) subject to the boundary condition provided in Equation (178).
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But Equation (176) involves the function δϕ(z,ω), which is the solution of Equation (41)
subject to the boundary condition provided in Equation (43). Concatenating Equations (176)
and (41) yields the following 2nd-LVSS:

{(
ω d

dz + µ 0
−δ(z− z0) ω d

dz + µ

)}
α0

(
δϕ(z,ω)

δa(1)2 (z,ω)

)
=

{(
−(δµ)ϕ(z,ω)

−(δµ)a(1)2 (z,ω)− (δz0)ϕ(z,ω)δ′(z− z0)

)}
α0

. (211)

The 2nd-LVSS represented by Equation (211), together with the corresponding bound-
ary conditions provided in Equations (178) and (43), depends on the parameter variations
and would need to be solved as many times as there are parameter variations. The need for
solving the 2nd-LVSS can be circumvented by applying the principles of the 2nd-CASAM-
L to construct a 2nd-LASS. In view of the structure of Equation (211), the Hilbert space
appropriate for constructing the corresponding adjoint system will be endowed with the
inner product defined in Equation (140). The 2nd-LASS corresponding to Equation (211) is
constructed as follows:

(i) Form the inner product of a 2-component vector function

c(2)(z,ω) ,
[
c(2)1 (z,ω), c(2)2 (z,ω)

]†
with Equation (211) to obtain the following rela-

tion:{
1∫

0
dω

b2∫
b1

c(2)1 (z,ω)
[
ω d

dz δϕ(z,ω) + µδϕ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

c(2)2 (z,ω)
[
−δ(z− z0)δϕ(z,ω) +ω d

dz δa(1)2 (z,ω) + µδa(1)2 (z,ω)
]
dz

}
α0

= −(δµ)
{

1∫
0

dω
b2∫

b1

ϕ(z,ω)c(2)1 (z,ω)dz

}
α0

− (δµ)

{
1∫

0
dω

b2∫
b1

c(2)2 (z,ω)a(1)2 (z,ω)dz

}
α0

−(δz0)

{
1∫

0
dω

b2∫
b1

c(2)2 (z,ω)
[

dϕ(z,ω)
dz

]
z=z0

δ(z− z0)dz

}
α0

.

(212)

(ii) Integrate by parts the left-side of Equation (212) to obtain the following relation:{
1∫

0
dω

b2∫
b1

c(2)1 (z,ω)
[
ω d

dz δϕ(z,ω) + µδϕ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

c(2)2 (z,ω)
[
−δ(z− z0)δϕ(z,ω) +ω d

dz δa(1)2 (z,ω) + µδa(1)2 (z,ω)
]
dz

}
α0

=

{
1∫

0
dω

b2∫
b1

δϕ(z,ω)

[
−ω dc(2)1 (z,ω)

dz + µc(2)1 (z,ω)− δ(z− z0)c
(2)
2 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δa(1)2 (z,ω)

[
−ω dc(2)2 (z,ω)

dz + µc(2)2 (z,ω)

]
dz

}
α0

+

{
1∫

0
ωdω

[
δϕ(b2,ω)c(2)1 (b2,ω)− δϕ(b1,ω)c(2)1 (b1,ω)

]}
α0

+

{
1∫

0
ωdω

[
δa(1)2 (b2,ω)c(2)2 (b2,ω)− δa(1)2 (b1,ω)c(2)2 (b1,ω)

]}
α0

.

(213)

(iii) Require the first two terms on the left-side of Equation (213) to represent the indirect-
effect term defined in Equation (210) which is accomplished by imposing the following
relations: {

−ω
dc(2)1 (z,ω)

dz
+ µc(2)1 (z,ω)− δ(z− z0)c

(2)
2 (z,ω)

}
α0

= 0, (214)

{
−ω

dc(2)2 (z,ω)

dz
+ µc(2)2 (z,ω)

}
α0

= {q∗δ(z− b2)}α0 . (215)
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(iv) Determine the boundary conditions for the functions c(2)1 (z,ω) and c(2)2 (z,ω) by

eliminating the unknown quantities δϕ(b2,ω) and δa(1)2 (b2,ω) from Equation (213).
This is accomplished by imposing the following boundary conditions:{

c(2)1 (b2,ω)
}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1, (216)

{
c(2)2 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (217)

The relations provided in Equations (214)–(217) constitute the 2nd-LASS for the 2nd-

level adjoint function c(2)(z,ω) ,
[
c(2)1 (z,ω), c(2)2 (z,ω)

]†
. Notably, both components

c(2)1 (z,ω) and c(2)2 (z,ω) satisfy adjoint-like equations.

(v) Use in Equation (210) the relations comprising the 2nd-LASS defined by Equations
(214)–(217) together with the relations provided in Equations (212) and (213), and the
boundary conditions provided in Equations (178) and (43) for the functions δϕ(z,ω)

and δa(1)2 (z,ω) to obtain the following expression for the indirect-effect term:

{
δ
(

∂ρ
∂b2

)
α0

}
ind

= −(δµ)
{

1∫
0

dω
b2∫

b1

ϕ(z,ω)c(2)1 (z,ω)dz

}
α0

− (δµ)

{
1∫

0
dω

b2∫
b1

a(1)2 (z,ω)c(2)2 (z,ω)dz

}
α0

−(δz0)

{
1∫

0
dω

b2∫
b1

ϕ(z,ω)c(2)2 (z,ω)δ′(z− z0)dz

}
α0

+ (δb1)

{
qµ(α)
µs(α)

1∫
0

c(2)1 (b1,ω)dω

}
α0

+

{[
(δq)
µs(α)

− qδµs(α)

µ2
s (α)

] 1∫
0

c(2)1 (b1,ω)ωdω

}
α0

.

(218)

Inserting the expression obtained in Equation (218) together with the expression of
the direct-effect term obtained in Equation (209) into Equation (208) and identifying in the
resulting expression the quantities that multiply the various parameter variations yields
the following expressions for the corresponding 2nd-order sensitivities:

{
∂2ρ

∂µ(α)∂b2

}
α0

= −


1∫

0

dω
b2∫

b1

[
ϕ(z,ω)c(2)1 (z,ω) + a(1)2 (z,ω)c(2)2 (z,ω)

]
dz


α0

, (219)

{
∂2ρ

∂µs(α)∂b2

}
α0

=

− q
µ2

s (α)

1∫
0

c(2)1 (b1,ω)ωdω


α0

, (220)

{
∂2ρ

∂q∂b2

}
α0

=

 1
µs(α)

1∫
0

c(2)1 (b1,ω)ωdω


α0

, (221)

{
∂2ρ

∂q∗∂b2

}
α0

=


1∫

0

a(1)2 (b2,ω)dω


α0

, (222)

{
∂2ρ

∂b1∂b2

}
α0

=

 qµ(α)
µs(α)

1∫
0

c(2)1 (b1,ω)dω


α0

, (223)

{
∂2ρ

∂z0∂b2

}
α0

= −


1∫

0

dω
b2∫

b1

c(2)2 (z,ω)ϕ(z,ω)δ′(z− z0)dz


α0

, (224)



Energies 2021, 14, 8315 33 of 49

{
∂2ρ

∂b2∂b2

}
α0

=

q∗
1∫

0

[
da(1)2 (z,ω)

dz

]
z=b2

dω

, (225)

Solving the 2nd-LASS yields the following expressions for the components of the

2nd-level adjoint function c(2)(z,ω) ,
[
c(2)1 (z,ω), c(2)2 (z,ω)

]†
:

{
c(2)1 (z,ω)

}
α0

=

{
q∗

ω2 [1− H(z− z0)] exp
[
µ(z− b2)

ω

]}
α0

, (226)

{
c(2)2 (z,ω)

}
α0

=

{
q∗

ω
[1− H(z− b2)] exp

[
µ(z− b2)

ω

]}
α0

. (227)

Replacing the expressions obtained in Equations (226) and (227) together with the
expressions provided for ϕ(z,ω) and a(1)2 (z,ω) in Equations (8) and (160) respectively,
into Equation (219) yields the following expression:{

∂2ρ

∂µ(α)∂b2

}
α0

=

{
qq∗(b1 − b2)

µs(α)
E0[(b2 − b1)µ(α)]

}
α0

= −
{

qq∗ exp[(b1 − b2)µ(α)]

µ(α)µs(α)

}
α0

. (228)

The expression obtained in Equation (228) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (161), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂µ(α)∂b2.

Replacing the expression obtained in Equation (227) into Equation (220) and perform-
ing the respective integration yields the following expression:{

∂2ρ

∂µs(α)∂b2

}
α0

=

{
− qq∗

µ2
s (α)

E1[(b2 − b1)µ(α)]

}
α0

. (229)

The expression obtained in Equation (229) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (162), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂µs(α)∂b2.

Replacing the expression obtained in Equation (227) into Equation (221) and perform-
ing the respective integration yields the following expression:{

∂2ρ

∂q∂b2

}
α0

=

{
q∗

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

. (230)

The expression obtained in Equation (230) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (163), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂q∂b2.

Replacing the expression obtained in Equation (160) into Equation (222) and perform-
ing the respective integration yields the following expression:{

∂2ρ

∂q∗∂b2

}
α0

=

{
q

µs(α)
E1[(b2 − b1)µ(α)]

}
α0

. (231)

The expression obtained in Equation (231) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (164), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
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of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂q∗∂b2.

Replacing the expression obtained in Equation (227) into Equation (223) and perform-
ing the respective integration yields the following expression:{

∂2ρ

∂b1∂b2

}
α0

=

{
q∗qµ(α)
µs(α)

E0[(b2 − b1)µ(α)]

}
α0

=

{
q∗q
µs(α)

exp[(b1 − b2)µ(α)]

(b2 − b1)

}
α0

. (232)

The expression obtained in Equation (232) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (165), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂b1∂b2.

Using the expressions obtained in Equations (8) and (226) in Equation (224) and
performing the respective integrations yields the following expression:

{
∂2ρ

∂z0∂b2

}
α0

= −
{

1∫
0

dω
b2∫

b1

c(2)2 (z,ω)ϕ(z,ω)δ′(z− z0)dz

}
α0

= q
µs

1∫
0

q∗
ω exp

[ µ
ω (b1 − b2)

]
dω

b2∫
b1

δ(z− b2)δ(z− z0)dz = 0.
. (233)

The expression obtained in Equation (233) is identical to the expression that would
be obtained by taking the derivative ∂/∂b2 of Equation (167), which provides a mutual
verification of the correctness of the derivations (in particular: the derivation/computation
of the adjoint functions involved) underlying the determination of the mixed 2nd-order
sensitivity ∂2ρ/∂z0∂b2.

Using the expression obtained in Equation (160) in Equation (225) and performing the
respective integration yields the following expression:{

∂2ρ

∂b2∂b2

}
α0

= −
{

qq∗µ(α)
µs(α)

E0[(b2 − b1)µ(α)]

}
=

{
q∗q
µs(α)

exp[(b1 − b2)µ(α)]

(b2 − b1)

}
α0

. (234)

Since ∂2ρ/∂b2∂b2 is an unmixed 2nd-order sensitivity, its expression cannot be verified
independently in terms of an equivalent expression using different adjoint functions, as
is the case for the mixed 2nd-order sensitivities, the expressions of which can always
be independently verified in terms of alternative expressions involving different adjoint
and/or forward functions.

4.3. Summary of Main Features Underlying the Computation of the Second-Order Sensitivities
∂2ρ(ϕ,ψ;α)/∂αi∂αj, i, j = 1, . . . , TP

The 2nd-order sensitivities corresponding to the remaining 1st-order sensitivities pro-
vided in Equations (149)–(154) are obtained by following the same conceptual steps as
those that led to the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂µ(α), which are
presented in Equations (197)–(203) and/or the steps that led to the sensitivities of the form
∂2ρ(ϕ,ψ;α)/∂αi∂b2, which were presented in Section 4.2. The salient characteristics under-
lying the determination of the remaining 2nd-order sensitivities of the contributon-response
flux ρ(ϕ,ψ;α) are summarized below:

(i) As shown in Equation (151), the 1st-order sensitivity ∂ρ(ϕ,ψ;α)/∂q∗ depends on the

1st-level adjoint function a(1)2 (z,ω), just like the sensitivity ∂ρ(ϕ,ψ;α)/∂b2. Con-
sequently, the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂q∗ can be de-
termined by following the same sequence of steps as shown in Section 4.2 for
determining the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂b2. Conse-
quently, the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂q∗ will be expressed
in terms of a two-component 2nd-level adjoint function denoted, e.g., as d(2)(z,ω) ,
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[
d(2)1 (z,ω), d(2)2 (z,ω)

]†
, which will be the solution of a 2nd-LASS having the same

form as in Equations (214) and (215), but with different source terms on the right-sides
of these equations.

(ii) As shown in Equations (149), (150) and (152), the 1st-order sensitivities ∂ρ(ϕ,ψ;α)/
∂µs(α), ∂ρ(ϕ,ψ;α)/∂q and ∂ρ(ϕ,ψ;α)/∂b1 depend on the 1st-level adjoint function
a(1)1 (z,ω). In turn, the 1st-level adjoint function a(1)1 (z,ω) depends on the original
adjoint function ψ(z,ω), as indicated in Equation (143). Consequently, each of the
2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂µs(α), ∂2ρ(ϕ,ψ;α)/∂αi∂q and
∂2ρ(ϕ,ψ;α)/∂αi∂b1 will also be determined by following a sequence of steps similar
the sequence followed in Section 4.2. Ultimately, the 2nd-order sensitivities of the
form ∂2ρ(ϕ,ψ;α)/∂αi∂µs(α) will be expressed in terms of a two-component 2nd-level

adjoint function, denoted, e.g., as e(2)(z,ω) ,
[
e(2)1 (z,ω), e(2)2 (z,ω)

]†
, one compo-

nent of which [e.g., e(2)1 (z,ω)] will correspond to the variational function δψ(z,ω),

while the other component [e.g., e(2)2 (z,ω)] will correspond to the variational func-

tion δa(1)1 (z,ω). Similarly, the 2nd-order sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂q
will ultimately be expressed in terms of a two-component 2nd-level adjoint func-

tion designated as, e.g., f(2)(z,ω) ,
[

f (2)1 (z,ω), f (2)2 (z,ω)
]†

, while the 2nd-order

sensitivities of the form ∂2ρ(ϕ,ψ;α)/∂αi∂b1 will ultimately be expressed in terms
of a two-component 2nd-level adjoint function designated as, e.g., g(2)(z,ω) ,[

g(2)1 (z,ω), g(2)2 (z,ω)
]†

. The 2nd-level adjoint functions e(2)(z,ω), f(2)(z,ω) and

g(2)(z,ω) will be solutions of 2nd-Level Adjoint Sensitivity Systems similar to the
2nd-LASS satisfied by the 2nd-level adjoint function c(2)(z,ω).

(iii) As shown in Equation (154), the 1st-order sensitivity ∂ρ(ϕ,ψ;α)/∂z0 depends on the
original functions ϕ(z,ω) and ψ(z,ω). This dependence is similar to the dependence
of ρ(ϕ,ψ;α). Consequently, the procedure for determining the 2nd-order sensitivities
of the form ∂2ρ(ϕ,ψ;α)/∂αi∂z0 is similar to the procedure followed for determining
the 1st-order sensitivities of ρ(ϕ,ψ;α). Therefore, the 2nd-order sensitivities of the
form ∂2ρ(ϕ,ψ;α)/∂αi∂z0 will ultimately be expressed in terms of a two-component

2nd-level adjoint function, denoted, e.g., as h(2)(z,ω) ,
[

h(2)1 (z,ω), h(2)2 (z,ω)
]†

. One

of these components, e.g., h(2)1 (z,ω), will correspond to the function δϕ(z,ω), while

the second component, e.g., h(2)2 (z,ω), will correspond to the function ψ(z,ω). The

2nd-level adjoint function h(2)(z,ω) ,
[

h(2)1 (z,ω), h(2)2 (z,ω)
]†

will be the solution

of a 2nd-LASS having a form similar to the 1st-LASS, but with sources that would
correspond to the expression of ∂ρ(ϕ,ψ;α)/∂z0 (and would therefore differ from the
source terms of the 1st-LASS).

(iv) The symmetry property ∂2ρ(ϕ,ψ;α)/∂αi∂αj; j 6= i of the mixed 2nd-order sensitiv-
ities enables independent verification of the computational accuracy of the solvers
used to compute the various 1st-level and 2nd-level adjoint functions, since the adjoint
functions involved in the expression of ∂2ρ(ϕ,ψ;α)/∂αi∂αj differ from the adjoint
functions involved in the expression of ∂2ρ(ϕ,ψ;α)/∂αj∂αi.

It has been shown in this section that the exact computation of all of the partial second-
order sensitivities requires 7 large-scale (adjoint) computations to determine the 7 s-level ad-

joint functions a(2)(z,ω) ,
[

a(2)1 (z,ω), a(2)2 (z,ω), a(2)3 (z,ω), a(2)4 (z,ω)
]†

,

c(2)(z,ω) ,
[
c(2)1 (z,ω), c(2)2 (z,ω)

]†
, d(2)(z,ω) ,

[
d(2)1 (z,ω), d(2)2 (z,ω)

]†
,

e(2)(z,ω) ,
[
e(2)1 (z,ω), e(2)2 (z,ω)

]†
, f(2)(z,ω) ,

[
f (2)1 (z,ω), f (2)2 (z,ω)

]†
,

g(2)(z,ω) ,
[

g(2)1 (z,ω), g(2)2 (z,ω)
]†

and h(2)(z,ω) ,
[

h(2)1 (z,ω), h(2)2 (z,ω)
]†

, by solving
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the corresponding 2nd-Level Adjoint Sensitivity Systems. As has been mentioned under
item (iv), above, the 2nd-order mixed sensitivities will be computed twice, in two different ways
(i.e., using distinct 2nd-level adjoint functions), thereby providing an independent intrinsic
(numerical) verification that the 1st- and 2nd-order response sensitivities are computed
accurately. The information provided by the 1st-order sensitivities usually indicates which
2nd-order sensitivities are important and which could be neglected. Therefore, it is useful to
prioritize the computation of the 2nd-order sensitivities by using the rankings of the relative
magnitudes of the 1st-order sensitivities as a “priority indicator”: the larger the magnitude
of the relative 1st-order sensitivity, the higher the priority for computing the corresponding
2nd-order sensitivities. Also, since vanishing 1st-order sensitivities may indicate critical
points of the response in the phase-space of model parameters, it is also of interest to
compute the 2nd-order sensitivities that correspond to vanishing 1st-order sensitivities. In
practice, only those 2nd-order partial sensitivities which are deemed important would need
to be computed.

5. Application of the 3rd-CASAM-L to Compute Third-Order Response Sensitivities to
Imprecisely Known Parameters

The 3rd-order response sensitivities to the model parameters will be obtained by ap-
plying the general principles presented in [1]. In essence, each of the second-order response
sensitivities will be considered a new “model response” and the principles underlying the
1st-CASAM-L will be applied to determine the “1st-order sensitivities of the 2nd-order sen-
sitivities”, which by definition are the sought-after 3rd-order sensitivities. The application
of these principles will be illustrated in this section by considering as “model response” the
2nd-order unmixed sensitivity ∂2ρ(ϕ,ψ;α)/∂µ(α)∂µ(α) of the “contributon-response flux”
with respect to the interaction coefficient µ(α). This sensitivity is chosen to demonstrate the
principles underlying the nth-CASAM-L for computing high-order sensitivities because
its expression, as provided in Equation (197), involves all of the original (forward and
adjoint) and 1st-level, and 2nd-level adjoint state functions, and consequently embodies
all of the conceptual aspects underlying the computation of 3rd-order sensitivities. The
determination of the other 3rd-order sensitivities involves only partially the mathematical
complexities that are needed to determine the 3rd-order sensitivities which will arise from
∂2ρ(ϕ,ψ;α)/∂µ(α)∂µ(α).

5.1. Determination of the Third-Order Sensitivities of the Form ∂3ρ(ϕ,ψ;α)/∂αi∂µ(α)∂µ(α),
i = 1, . . . , TP

To determine the 3rd-order sensitivities which will arise from ∂2ρ(ϕ,ψ;α)/∂µ(α)∂µ(α),
it is convenient to introduce the following notation:

ρ(2)
[
u(3)(z,ω);α

]
,
{

∂2ρ(ϕ,ψ;α)
∂µ(α)∂µ(α)

}
α0

= −
{

1∫
0

dω
b2∫

b1

a(2)1 (z,ω)ϕ(z,ω)dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)2 (z,ω)ψ(z,ω)dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)3 a(1)1 dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(2)4 a(1)2 dz

}
α0

,
(235)

where:

u(3)(z,ω) ,

(
u(2)(z,ω)

a(2)(z,ω)

)
,
[
ϕ,ψ; a(1)1 , a(1)2 ; a(2)1 , a(2)2 , a(2)3 , a(4)4

]†
. (236)

The first-order G-differential of ∂2ρ(ϕ,ψ;α)/∂µ(α)∂µ(α) will comprise all of the
3rd-order sensitivities of the form ∂3ρ(ϕ,ψ;α)/∂αi∂µ(α)∂µ(α), i = 1, . . . , TP, and will be
obtained by considering that the expression provided in Equation (235) plays the role of a
“model response”.

Applying the definition of the first-order total G-differential to Equation (235) yields
the following relation:
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δρ(2)
[
u(3)(z,ω);α; δu(2); δα

]
α0

, −
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(2)1 + εδa(2)1

)
(ϕ+ εδϕ)dz

]
α0

}
ε=0

−
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(2)2 + εδa(2)2

)
(ψ+ εδψ)dz

]
α0

}
ε=0

−
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(2)3 + εδa(2)3

)(
a(1)1 + εδa(1)1

)
dz

]
α0

}
ε=0

−
{

d
dε

[
1∫

0
dω

b2+εδb2∫
b1+εδb1

(
a(2)4 + εδa(2)4

)(
a(1)2 + εδa(1)2

)
dz

]
α0

}
ε=0

=
{
δρ(2)

[
u(3)(z,ω);α; δα

]
α0

}
dir

+
{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

,

(237)

where

{
δρ(2)

[
u(3)(z,ω);α; δα

]
α0

}
dir

, −(δb2)

{
1∫

0
dω
[

a(2)1 (b2,ω)ϕ(b2,ω) + a(2)2 (b2,ω)ψ(b2,ω)
]}

α0

−(δb2)

{
1∫

0
dω
[

a(2)3 (b2,ω)a(1)1 (b2,ω) + a(2)4 (b2,ω)a(1)2 (b2,ω)
]}

α0

+(δb1)

{
1∫

0
dω
[

a(2)1 (b1,ω)ϕ(b1,ω) + a(2)2 (b1,ω)ψ(b1,ω)
]}

α0

+(δb1)

{
1∫

0
dω
[

a(2)3 (b1,ω)a(1)1 (b1,ω) + a(2)4 (b1,ω)a(1)2 (b1,ω)
]}

α0

,

(238)

and

{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

, −
{

1∫
0

dω
b2∫

b1

[
a(2)1 δϕ+ a(2)2 δψ+ a(2)3 δa(1)1 + a(2)4 δa(1)2

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

[
ϕδa(2)1 +ψδa(2)2 + a(1)1 δa(2)3 + a(1)2 δa(2)4

]
dz

}
α0

.
(239)

The direct-effect term
{
δρ(2)

[
u(3)(z,ω);α; δα

]
α0

}
dir

can be computed immediately,

since all of the quantities appearing in its definition on the right-side of Equation (238) are known.
However, the computation of the indirect-effect term

{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

re-

quires the prior determination of the vector of variations

δu(3)(z,ω) ,

(
δu(2)(z,ω)

δa(2)(z,ω)

)
,
[
δϕ, δψ; δa(1)1 , δa(1)2 ; δa(2)1 , δa(2)2 , δa(2)3 , δa(2)4

]†
. (240)

The vector of variations δu(2)(z,ω) is the solution of the 2nd-LVSS defined in Equation
(179) together with the boundary conditions provided in Equations (43), (136), (177) and

(178). Furthermore, the vector of variations δa(2)(z,ω) ,
[
δa(2)1 , δa(2)2 , δa(2)3 , δa(2)4

]†
is the

solution of the system of equations obtained by G-differentiating the 2nd-LASS, which
comprises Equations (188)–(195). Taking the G-differentials of Equations (188)–(195) at
the nominal parameter values yields the following system of equations and boundary
conditions:{

−ω d
dzδa(2)1 (z,ω) + µδa(2)1 (z,ω)− δ(z− z0)δa(2)4 (z,ω) + δa(1)1 (z,ω)

}
α0

=
{
−(δµ)a(2)1 (z,ω)− (δz0)δ

′(z− z0)a(2)4 (z,ω)
}
α0

,
(241)
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{
ω d

dzδa(2)2 (z,ω) + µδa(2)2 (z,ω)− δ(z− z0)δa(2)3 (z,ω) + δa(1)2 (z,ω)
}
α0

=
{
−(δµ)a(2)2 (z,ω)− (δz0)δ

′(z− z0)a(2)3 (z,ω)
}
α0

,
(242)

{
ω

d
dz
δa(2)3 (z,ω) + µδa(2)3 (z,ω)− δϕ(z,ω)

}
α0

= −(δµ)
{

a(2)3 (z,ω)
}
α0

, (243){
−ω d

dz
δa(2)4 (z,ω) + µδa(2)4 (z,ω)− δψ(z,ω)

}
α0

= −(δµ)
{

a(2)4 (z,ω)
}
α0

, (244){
δa(2)1 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1; (245){

δa(2)2 (b1,ω)
}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1; (246){

δa(2)3 (b1,ω)
}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1; (247){

δa(2)4 (b2,ω)
}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (248)

Concatenating Equations (241)–(244) together with the 2nd-LVSS yields the following
system of equations written in matrix form:{

V(3)δu(3)(z,ω)
}
α0

=
{

q(3)
V (z,ω)

}
α0

, (249)

where:

V(3) ,

(
V(2) [0]4×4

V(3)
21 V(3)

22

)
; q(3)

V (z,ω) ,

(
q(2)

V (z,ω)

p(2)(z,ω)

)
; (250)

V(3)
21 ,


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

; V(3)
22 ,


−ω d

dz + µ 0 0 −δ(z− z0)

0 ω d
dz + µ −δ(z− z0) 0

0 0 ω d
dz + µ 0

0 0 0 −ω d
dz + µ

; (251)

p(2)(z,ω) ,


−(δµ)a(2)1 (z,ω)− (δz0)δ

′(z− z0)a(2)4 (z,ω)

−(δµ)a(2)2 (z,ω)− (δz0)δ
′(z− z0)a(2)3 (z,ω)

−(δµ)a(2)3 (z,ω)

−(δµ)a(2)4 (z,ω)

. (252)

The system represented by Equation (249) together with the corresponding bound-
ary conditions given in Equations (43), (136), (177), (178) and (245)–(248) is called the
“3rd-Level Variational Sensitivity System” (3rd-LVSS) and its solution, δu(3)(z,ω), is called
the 3rd-level variational function. Evidently, the solution δu(3)(z,ω) depends on each pa-
rameter variation; hence, its computation is prohibitively expensive. By applying the
general principles underlying the nth-CASAM-L (for n = 3), the need for computing
δu(3)(z,ω), which would require repeatedly solving the 3rd-LVSS, can be circumvented by
eliminating the appearance of δu(3)(z,ω) from the expression of the indirect-effect term{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

defined in Equation (239). The elimination of δu(3)(z,ω)

from the expression of the indirect-effect term is accomplished by recasting the expression
of
{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

in terms of the solution of a 3rd-Level Adjoint Sensitivity

System (3rd-LASS) which is constructed by implementing the same sequence of logical
steps as used to construct the 1st-LASS and the 2nd-LASS. The 3rd-LASS is constructed in a
Hilbert space, denoted as H3, which comprises square-integrable vector-valued elements of

the form η(3)(z,ω) ,
[
η
(3)
1 (z,ω), . . . ,η(3)8 (z,ω)

]†
∈ H3. The inner product between two

elements, η(3)(z,ω) ∈ H3 and ξ(3)(z,ω) ∈ H3 will be denoted as
〈
η(3)(z,ω),ξ(3)(z,ω)

〉
3

and is defined as follows:
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〈
η(3)(z,ω),ξ(3)(z,ω)

〉
3
,

8

∑
k=1


1∫

0

dω
b2∫

b1

η
(3)
k (z,ω), ξ(3)k (z,ω)dz


α0

. (253)

In the Hilbert H3, form the inner product of Equation (249) with a yet undefined

function a(3)(z,ω) ,
[

a(3)1 (z,ω), . . . , a(3)8 (z,ω)
]†
∈ H3 to obtain the following relation:{〈

a(3)(z,ω), V(3)δu(3)(z,ω)
〉

3

}
α0

=
{〈

a(3)(z,ω), q(3)
V (z,ω)

〉
3

}
α0

. (254)

The left and right sides of Equation (254) have the following detailed forms, respec-
tively:

{〈
a(3)(z,ω), V(3)δu(3)(z,ω)

〉
3

}
α0

=

{
1∫

0
dω

b2∫
b1

a(3)1 (z,ω)
[
ω d

dzδϕ(z,ω) + µδϕ(z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

[
a(3)2

(
−ω d

dzδψ+ µδψ
)
+ a(3)3

(
−ω d

dzδa(1)1 + µδa(1)1 − δ(z− z0)δψ
)]

dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(3)4 dz
[
ω d

dzδa(1)2 + µδa(1)2 − δ(z− z0)δϕ
]}

α0

+

{
1∫

0
dω

b2∫
b1

a(3)5

[
−ω d

dzδa(2)1 + µδa(2)1 − δ(z− z0)δa(2)4 + δa(1)1

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

a(3)6

[
ω d

dzδa(2)2 + µδa(2)2 − δ(z− z0)δa(2)3 + δa(1)2

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

[
a(3)7

(
ω d

dzδa(2)3 + µδa(2)3 − δϕ
)
+ a(3)8

(
−ω d

dzδa(2)4 + µδa(2)4 − δψ
)]

dz

}
α0

,

(255)

and{〈
a(3)(z,ω), q(3)

V (z,ω)
〉

3

}
α0

=

{
1∫

0
dω

b2∫
b1

[
−(δµ)a(3)1 ϕ+ (δq∗)a(3)2 − (δµ)a(3)2 ψ

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)3

[
(δµ)a(1)1 + (δz0)ψδ

′(z− z0)
]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)4

[
(δµ)a(1)2 + (δz0)ϕδ

′(z− z0)
]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)5

[
(δµ)a(2)1 + (δz0)δ

′(z− z0)a(2)4

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)6

[
(δµ)a(2)2 + (δz0)δ

′(z− z0)a(2)3

]
dz

}
α0

− (δµ)

{
1∫

0
dω

b2∫
b1

[
a(3)7 a(2)3 + a(3)8 a(2)4

]
dz

}
α0

(256)

Integrating by parts the terms containing derivatives with respect to z in Equation (255)
and re-arranging terms yields the following relation:{〈

a(3)(z,ω), V(3)δu(3)(z,ω)
〉

3

}
α0

=
{〈
δu(3)(z,ω), A(3)a(3)(z,ω)

〉
3

}
α0

+
{

P(2)
[
δu(3); u(3);α; δα

]}
α0

, (257)

where the operator A(3) is the formal adjoint of the operator V(3) and is defined as follows:

A(3) ,
[
V(3)

]∗
=


[
V(2)

]∗ [
V(3)

21

(
j1; u(2)

)]∗
[0]4×4

[
V(3)

22

]∗
, (258)

and where the bilinear concomitant
{

P(2)
[
δu(3); u(3);α; δα

]}
α0

has the following expres-
sion:
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{
P(3)

[
δu(3); u(3);α; δα

]}
α0

=
1∫

0
ωdω

[
δϕ(b2,ω)a(3)1 (b2,ω)− δϕ(b1,ω)a(3)1 (b1,ω)

]
−

1∫
0
ωdω

[
δψ(b2,ω)a(3)2 (b2,ω)− δψ(b1,ω)a(3)2 (b1,ω)

]
−

1∫
0
ωdω

[
δa(1)1 (b2,ω)a(3)3 (b2,ω)

−δa(1)1 (b1,ω)a(3)3 (b1,ω)
]
+

1∫
0
ωdω

[
δa(1)2 (b2,ω)a(3)4 (b2,ω)− δa(1)2 (b1,ω)a(3)4 (b1,ω)

]
−

1∫
0
ωdω

[
δa(2)1 (b2,ω)a(3)5 (b2,ω) −δa(2)1 (b1,ω)a(3)5 (b1,ω)

]
+

1∫
0
ωdω

[
δa(2)2 (b2,ω)a(3)6 (b2,ω)

−δa(2)2 (b1,ω)a(3)6 (b1,ω)
]
+

1∫
0
ωdω

[
δa(2)3 (b2,ω)a(3)7 (b2,ω)− δa(2)3 (b1,ω)a(3)7 (b1,ω)

]
−

1∫
0
ωdω

[
δa(2)4 (b2,ω)a(3)8 (b2,ω)− δa(2)4 (b1,ω)a(3)8 (b1,ω)

]
.

(259)

The quantity
{〈
δu(3)(z,ω), A(3)a(3)(z,ω)

〉
3

}
α0

on the right-side of Equation (257) is

required to represent the indirect-effect term
{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

defined in

Equation (239) by imposing the following relation:{
A(3)a(3)(z,ω)

}
α0

= −
[

a(2)1 , a(2)2 , a(2)3 , a(2)4 ,ϕ,ψ, a(1)1 , a(1)2

]†
. (260)

The unknown quantities δϕ(b2,ω), δψ(b1,ω), δa(1)1 (b1,ω), δa(1)2 (b2,ω), δa(2)1 (b1,ω),

δa(2)2 (b2,ω), δa(2)3 (b2,ω), and δa(2)4 (b1,ω), which appear in the bilinear concomitant ex-
pressed by Equation (259), are eliminating from further consideration by choosing the fol-
lowing boundary conditions for the 3rd-level adjoint function

a(3)(z,ω) ,
[

a(3)1 (z,ω), . . . , a(3)8 (z,ω)
]†

:{
a(3)1 (b2,ω)

}
α0

=
{

a(3)2 (b1,ω)
}
α0

=
{

a(3)3 (b1,ω)
}
α0

=
{

a(3)4 (b2,ω)
}
α0

=
{

a(3)5 (b1,ω)
}
α0

=
{

a(3)6 (b2,ω)
}
α0

=
{

a(3)7 (b2,ω)
}
α0

=
{

a(3)8 (b1,ω)
}
α0

= 0, 0 ≤ ω ≤ 1.
(261)

The system comprising Equations (260) and (261) constitutes the 3rd-Level Adjoint Sensitivity

System (3rd-LASS) for the 3rd-level adjoint function a(3)(z,ω) ,
[

a(3)1 (z,ω), . . . , a(3)8 (z,ω)
]†

.

Very importantly, the equations underlying the 3rd-LASS need not be solved simultaneously
since they can be readily decoupled when written in component form, and can therefore be
solved successively, as follows:

1. Solve the following equation to determine the 3rd-level adjoint function a(3)5 (b1,ω):{
ω

da(3)5 (z,ω)

dz
+ µa(3)5 (z,ω)

}
α0

= −{ϕ(z,ω)}α0 , (262)

{
a(3)5 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (263)

2. Solve the following equation to determine the 3rd-level adjoint function a(3)6 (z,ω):{
−ω

da(3)6 (z,ω)

dz
+ µa(3)6 (z,ω)

}
α0

= −{ψ(z,ω)}α0 , (264)

{
a(3)6 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (265)
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3. Use the function a(3)6 (z,ω) and determine the 3rd-level adjoint function a(3)7 (z,ω) by
solving the following equation:{
−ω

da(3)7 (z,ω)

dz
+ µa(3)7 (z,ω)

}
α0

=
{
−a(1)1 (z,ω) + δ(z− z0)a(3)6 (z,ω)

}
α0

, (266)

{
a(3)7 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (267)

4. Use the function a(3)5 (z,ω) and determine the 3rd-level adjoint function a(3)8 (z,ω) by
solving the following equation:{

ω
da(3)8 (z,ω)

dz
+ µa(3)8 (z,ω)

}
α0

=
{
−a(1)2 (z,ω) + δ(z− z0)a(3)5 (z,ω)

}
α0

, (268)

{
a(3)8 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (269)

5. Use the function a(3)5 (z,ω) and determine the 3rd-level adjoint function a(3)3 (z,ω) by
solving the following equation:{

ω
da(3)3 (z,ω)

dz
+ µa(3)3 (z,ω)

}
α0

= −
{

a(2)3 (z,ω) + a(3)5 (z,ω)
}
α0

, (270)

{
a(3)3 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (271)

6. Use the function a(3)6 (z,ω) and determine the 3rd-level adjoint function by solving
the following equation:{

−ω
da(3)4 (z,ω)

dz
+ µa(3)4 (z,ω)

}
α0

= −
{

a(2)4 (z,ω) + a(3)6 (z,ω)
}
α0

, (272)

{
a(3)4 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (273)

7. Use the functions a(3)4 (z,ω) and a(3)7 (z,ω) to determine the 3rd-level adjoint function

a(3)1 (z,ω) by solving the following equation:

{
−ω

da(3)1 (z,ω)

dz
+ µa(3)1 (z,ω)

}
α0

=
{
−a(2)1 (z,ω) + δ(z− z0)a(3)4 (z,ω) + a(3)7 (z,ω)

}
α0

, (274)

{
a(3)1 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1. (275)

8. Use the functions a(3)3 (z,ω) and a(3)8 (z,ω) to determine the 3rd-level adjoint function

a(3)2 (z,ω) by solving the following equation:

{
ω

da(3)2 (z,ω)

dz
+ µa(3)2 (z,ω)

}
α0

=
{
−a(2)2 (z,ω) + δ(z− z0)a(3)3 (z,ω) + a(3)8 (z,ω)

}
α0

, (276)

{
a(3)2 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1. (277)
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Inserting the boundary conditions provided in Equations (43), (136), (177), (178),
(245)–(248) and (261) into Equation (259) reduces the bilinear concomitant to the following
expression:

{
P(3)

[
δu(3); u(3);α; δα

]}
α0

= −(δb2)

{
q∗

1∫
0

dω a(3)2 (b2,ω)

}
α0

−
{

(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ (δb1)
qµ(α)
ωµs(α)

}
α0

1∫
0
ωdω

{
a(3)1 (b1,ω)

}
α0

.

(278)

Replacing the results obtained in Equations (278), (260) and (254) into Equation (257)
yields the following expression for the indirect-effect term defined in Equation (239).

{
δρ(2)

[
u(3)(z,ω);α; δu(2)

]
α0

}
ind

=
{

(δq)
µs(α)

− qδµs(α)

µ2
s (α)

+ (δb1)
qµ(α)
ωµs(α)

}
α0

1∫
0
ωdω

{
a(3)1 (b1,ω)

}
α0

+(δb2)

{
q∗

1∫
0

dωa(3)2 (b2,ω)

}
α0

+

{
1∫

0
dω

b2∫
b1

[
−(δµ)a(3)1 ϕ+ (δq∗)a(3)2 − (δµ)a(3)2 ψ

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)3

[
(δµ)a(1)1 + (δz0)ψδ

′(z− z0)
]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)4

[
(δµ)a(1)2 + (δz0)ϕδ

′(z− z0)
]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)5

[
(δµ)a(2)1 + (δz0)δ

′(z− z0)a(2)4

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

a(3)6

[
(δµ)a(2)2 + (δz0)δ

′(z− z0)a(2)3

]
dz

}
α0

− (δµ)

{
1∫

0
dω

b2∫
b1

[
a(3)7 a(2)3 + a(3)8 a(2)4

]
dz

}
α0

(279)

Replacing the expressions obtained in Equations (279) and (238) into Equation (237) and
subsequently identifying the expressions that multiply the parameter variations yields the
following expressions for the 3rd-order sensitivities of the form ∂3ρ(ϕ,ψ;α)/∂αi∂µ(α)∂µ(α),
i = 1, . . . , TP:

{
∂3ρ(ϕ,ψ;α)

∂µ(α)∂µ(α)∂µ(α)

}
α0

= −
{

1∫
0

dω
b2∫

b1

[
a(3)1 ϕ+ a(3)2 ψ+ a(3)3 a(1)1 + a(3)4 a(1)2

]
dz

}
α0

−
{

1∫
0

dω
b2∫

b1

[
a(3)5 a(2)1 + a(3)6 a(2)2 + a(3)7 a(2)3 + a(3)8 a(2)4

]
dz

}
α0

;
(280)

{
∂3ρ(ϕ,ψ;α)

∂µs(α)∂µ(α)∂µ(α)

}
α0

= −

 q
µ2

s (α)

1∫
0

ωdω a(3)1 (b1,ω)


α0

; (281)

{
∂3ρ(ϕ,ψ;α)

∂q∂µ(α)∂µ(α)

}
α0

=

 1
µs(α)

1∫
0

ωdω a(3)1 (b1,ω)


α0

; (282)

{
∂3ρ(ϕ,ψ;α)

∂q∗∂µ(α)∂µ(α)

}
α0

=


1∫

0

dω
b2∫

b1

a(3)2 (z,ω)dz


α0

; (283)

{
∂3ρ(ϕ,ψ;α)

∂b1∂µ(α)∂µ(α)

}
α0

=

{
1∫

0
dω
[

a(2)1 (b1,ω)ϕ(b1,ω) + a(2)2 (b1,ω)ψ(b1,ω)
]}

α0

+

{
1∫

0
dω
[

a(2)3 (b1,ω)a(1)1 (b1,ω) + a(2)4 (b1,ω)a(1)2 (b1,ω)
]}

α0

+

{
qµ(α)
ωµs(α)

1∫
0
ωdω a(3)1 (b1,ω)

}
α0

;
(284)
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{
∂3ρ(ϕ,ψ;α)

∂b2∂µ(α)∂µ(α)

}
α0

= −
{

1∫
0

dω
[

a(2)1 (b2,ω)ϕ(b2,ω) + a(2)2 (b2,ω)ψ(b2,ω)
]}

α0

−
{

1∫
0

dω
[

a(2)3 (b2,ω)a(1)1 (b2,ω) + a(2)4 (b2,ω)a(1)2 (b2,ω)
]}

α0

+

{
q∗

1∫
0

dω a(3)2 (b2,ω)

}
α0

(285)

{
∂3ρ(ϕ,ψ;α)

∂z0∂µ(α)∂µ(α)

}
α0

=

{
1∫

0
dω d

dz

[
a(3)3 (z,ω)ψ(z,ω) + a(3)4 (z,ω)ϕ(z,ω)

+a(3)5 (z,ω)a(2)4 (z,ω) + a(3)6 (z,ω)a(2)3 (z,ω)
]

z=z0

}
α0

.
(286)

The computation of the unmixed 3rd-order sensitivity obtained in Equation (280)
is the most demanding since it involves all 8 components of the 3rd-level adjoint func-

tion a(3)(z,ω) ,
[

a(3)1 (z,ω), . . . , a(3)8 (z,ω)
]†

. The computations of the mixed 3rd-order
sensitivities determined in Equations (281)–(286) are less demanding.

The various 3rd-order sensitivities with respect to the nuclide number densities and mi-
croscopic cross sections, respectively, can be obtained by using in Equations (280)–(286) the
relations provided in Equations (155)–(158) together with the relations provided in Equa-
tions (204)–(206). The relative 3rd-order sensitivities corresponding to these parameters
have equal values.

5.2. Determination of the Third-Order Sensitivities of the Form ∂3ρ(ϕ,ψ;α)/∂αi∂q∂b2,
i = 1, . . . , TP

This section will present the explicit determination of 3rd-order sensitivities which
involve both the inner (interface) and the outer boundary parameters, b1 and b2, in order
to illustrate the general applicability of the nth-CASAM-L (for the particular case n = 3) to
determine high-order (in this case: 3rd-order) sensitivities that involve boundary and inter-
face parameters. These 3rd-order sensitivities are obtained by considering the sensitivity
∂2ρ/∂b1∂b2 as the “model response” and by taking its first G-differential. The expression
of ∂2ρ/∂b1∂b2 is given in Equation (223). By definition, the G-differential of ∂2ρ/∂b1∂b2 is
obtained as follows:

{
δ
[

∂2ρ
∂b1∂b2

]}
α0

,

{
d

dε

[
(q+εδq)(µ+εδµ)

µs+εδµs

1∫
0

dω
b2+εδb2∫

b1+εδb1

(
c(2)1 + εδc(2)1

)
δ(z− b1 − εδb1)dz

]
α0

}
ε=0

=
{
δ
(

∂2ρ
∂b1∂b2

)
α0

}
dir

+
{
δ
(

∂2ρ
∂b1∂b2

)
α0

}
ind

,
(287)

where

{
δ
(

∂2ρ
∂b1∂b2

)
α0

}
dir

, −(δµs)

{
qµ
µ2

s (α)

1∫
0

c(2)1 (b1,ω)dω

}
α0

+ (δq)

{
µ(α)
µs(α)

1∫
0

c(2)1 (b1,ω)dω

}
α0

+(δµ)

{
q

µs(α)

1∫
0

c(2)1 (b1,ω)dω

}
α0

+ (δb1)

{
qµ(α)
µs(α)

1∫
0

[
dc(2)1 (z,ω)

dz

]
z=b1

dω

}
,

(288)

and {
δ

(
∂2ρ

∂b1∂b2

)
α0

}
ind

,

 qµ(α)
µs(α)

1∫
0

dω
b2∫

b1

δc(2)1 (z,ω)δ(z− b1)dz


α0

(289)

The direct-effect term defined in Equation (288) can be computed immediately, but
the computation of the indirect-effect term defined in Equation (289) requires the prior
determination of the function δc(2)1 (z,ω). The function δc(2)1 (z,ω) is the solution of the
system obtained by taking the first-order G-differential of Equations (214)–(217). Applying
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the definition of the G-differential to Equations (214)–(217) yields the following system of
equations: {

−ω d
dzδc(2)1 (z,ω) + µδc(2)1 (z,ω)− δ(z− z0)δc(2)2 (z,ω)

}
α0

= −(δµ)
{

c(2)1 (z,ω)
}
α0
− (δz0)

{
δ′(z− z0)c

(2)
2 (z,ω)

}
α0

,
, (290)

{
−ω d

dzδc(2)2 (z,ω) + µδc(2)2 (z,ω)
}
α0

= −(δµ)
{

c(2)2 (z,ω)
}
α0

+(δq∗){δ(z− b2)}α0 − (δb2)
{

q∗δ′(z− b2)
}
α0 ,

. (291)

{
δc(2)1 (b2,ω)

}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1, (292){

δc(2)2 (b2,ω)
}
α0

= 0, z = b0
2; 0 ≤ ω ≤ 1 (293)

The 3rd-LVSS represented by Equations (290)–(293) depends on the parameter vari-
ations and would need to be solved as many times as there are parameter variations.
The need for solving this 3rd-LVSS can be circumvented by applying the principles of the
3rd-CASAM-L to construct a corresponding 3rd-LASS. In view of the structure of Equa-
tions (290)–(293), the Hilbert space appropriate for constructing the corresponding adjoint
system is the Hilbert space H1, which comprises two-component vector-valued elements
and which is endowed with the inner product defined in Equation (140). The 3rd-LASS
corresponding to Equations (290)–(293) is constructed as follows:

(i) Form the inner product of a 2-component vector function

c(3)(z,ω) ,
[
c(3)1 (z,ω), c(3)2 (z,ω)

]†
with Equations (290) and (291) to obtain the

following relation:{
1∫

0
dω

b2∫
b1

c(3)1 (z,ω)
[
−ω d

dzδc(2)1 (z,ω) + µδc(2)1 (z,ω)− δ(z− z0)δc(2)2 (z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

c(3)2 (z,ω)
[
−ω d

dzδc(2)2 (z,ω) + µδc(2)2 (z,ω)
]
dz

}
α0

= −(δµ)
{

1∫
0

dω
b2∫

b1

c(3)1 (z,ω)c(2)1 (z,ω)dz

}
α0

− (δz0)

{
1∫

0
dω

b2∫
b1

c(3)1 (z,ω)δ′(z− z0)c
(2)
2 (z,ω)dz

}
α0

−(δµ)
{

1∫
0

dω
b2∫

b1

c(3)2 (z,ω)c(2)2 (z,ω)dz

}
α0

+ (δq∗)

{
1∫

0
dω

b2∫
b1

c(3)2 (z,ω)δ(z− b2)dz

}
α0

−(δb2)

{
q∗

1∫
0

dω
b2∫

b1

c(3)2 (z,ω)δ′(z− b2)dz

}
α0

.

(294)

(ii) Integrate by parts the left-side of Equation (294) to obtain the following relation:

{
1∫

0
dω

b2∫
b1

c(3)1 (z,ω)
[
−ω d

dzδc(2)1 (z,ω) + µδc(2)1 (z,ω)− δ(z− z0)δc(2)2 (z,ω)
]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

c(3)2 (z,ω)
[
−ω d

dzδc(2)2 (z,ω) + µδc(2)2 (z,ω)
]
dz

}
α0

=

{
1∫

0
dω

b2∫
b1

δc(2)1 (z,ω)

[
ω

dc(3)1 (z,ω)
dz + µc(3)1 (z,ω)

]
dz

}
α0

+

{
1∫

0
dω

b2∫
b1

δc(2)2 (z,ω)

[
ω

dc(3)2 (z,ω)
dz + µc(3)2 (z,ω)− δ(z− z0)c

(3)
1 (z,ω)

]
dz

}
α0

−
{

1∫
0
ωdω

[
δc(2)2 (b2,ω)c(3)1 (b2,ω)− δc(2)2 (b1,ω)c(3)1 (b1,ω)

]}
α0

−
{

1∫
0
ωdω

[
δc(2)1 (b2,ω)c(3)2 (b2,ω)− δc(2)1 (b1,ω)c(3)2 (b1,ω)

]}
α0

.

(295)
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(iii) Require the first two terms on the left-side of Equation (295) to represent the indirect-
effect term defined in Equation (289) which is accomplished by imposing the following
relations: {

ω
dc(3)1 (z,ω)

dz
+ µc(3)1 (z,ω)

}
α0

=

{
qµ(α)
µs(α)

δ(z− b1)

}
α0

, (296)

{
ω

dc(3)2 (z,ω)

dz
+ µc(3)2 (z,ω)

}
α0

=
{
δ(z− z0)c

(3)
1 (z,ω)

}
α0

. (297)

(iv) Determine the boundary conditions for the functions c3
1(z,ω) and c(3)2 (z,ω) by elimi-

nating the unknown quantities δc(2)1 (b1,ω) and δc(2)2 (b1,ω) from Equation (295). This
is accomplished by imposing the following boundary conditions:{

c(3)1 (b1,ω)
}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1, (298)

{
c(3)1 (b1,ω)

}
α0

= 0, z = b0
1; 0 ≤ ω ≤ 1 (299)

The relations provided in Equations (296)–(299) constitute the 3rd-LASS for the 3rd-

level adjoint function c(3)(z,ω) ,
[
c(3)1 (z,ω), c(3)2 (z,ω)

]†
. Notably, both components

c(2)1 (z,ω) and c(2)2 (z,ω) satisfy forward-like equations.

(v) Use in Equation (295) the relation provided in Equation (294) together with the equa-
tions underlying the 3rd-LASS defined by Equations (296)–(299) and the equations
underlying the 3rd-LVSS provided in Equations (290)–(293) to obtain the following
expression for the indirect-effect term defined by Equation (289):{

δ
(

∂2ρ
∂b1∂b2

)
α0

}
ind

= −(δb2)

{
q∗

1∫
0

dω
b2∫

b1

c(3)2 (z,ω)δ′(z− b2)dz

}
α0

−(δµ)
{

1∫
0

dω
b2∫

b1

c(3)1 (z,ω)c(2)1 (z,ω)dz

}
α0

− (δz0)

{
1∫

0
dω

b2∫
b1

c(3)1 (z,ω)δ′(z− z0)c
(2)
2 (z,ω)dz

}
α0

−(δµ)
{

1∫
0

dω
b2∫

b1

c(3)2 (z,ω)c(2)2 (z,ω)dz

}
α0

+ (δq∗)

{
1∫

0
dω

b2∫
b1

c(3)2 (z,ω)δ(z− b2)dz

}
α0

. (300)

Inserting the expression obtained in Equation (304) together with the expression of
the direct-effect term obtained in Equation (292) into Equation (291) and identifying in the
resulting expression the quantities that multiply the various parameter variations yields
the following expressions for the corresponding 3rd-order sensitivities:

(
∂3ρ

∂µ∂b1∂b2

)
α0

=

{
q

µs(α)

1∫
0

c(2)1 (b1,ω)dω

}
α0

−
{

1∫
0

dω
b2∫

b1

[
c(3)1 (z,ω)c(2)1 (z,ω) + c(3)2 (z,ω)c(2)2 (z,ω)

]
dz

}
α0

,
(301)

(
∂3ρ

∂µs∂b1∂b2

)
α0

= −

 qµ
µ2

s (α)

1∫
0

c(2)1 (b1,ω)dω


α0

, (302)

(
∂3ρ

∂q∂b1∂b2

)
α0

=

 µ(α)

µs(α)

1∫
0

c(2)1 (b1,ω)dω


α0

, (303)
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(
∂3ρ

∂q∗∂b2∂b1

)
α0

=


1∫

0

dω
b2∫

b1

c(3)2 (z,ω)δ(z− b2)dz


α0

(304)

(
∂3ρ

∂b1∂b1∂b2

)
α0

=

 qµ(α)
µs(α)

1∫
0

[
dc(2)1 (z,ω)

dz

]
z=b1

dω

, (305)

(
∂3ρ

∂b2∂b1∂b2

)
α0

= −

q∗
1∫

0

dω
b2∫

b1

c(3)2 (z,ω)δ′(z− b2)dz


α0

, (306)

(
∂3ρ

∂z0∂b1∂b2

)
α0

= −


1∫

0

dω
b2∫

b1

c(3)1 (z,ω)c(2)2 (z,ω) δ′(z− z0)dz


α0

(307)

The explicit expressions of the 3rd-order sensitivities provided in Equations (301)–(307)
are obtained after solving the 3rd-LASS to obtain the expressions of the components of

the 3rd-level adjoint function c(3)(z,ω) ,
[
c(3)1 (z,ω), c(3)2 (z,ω)

]†
. Thus, solving Equations

(296)–(299) yields the following expressions:{
c(3)1 (z,ω)

}
α0

=

{
qµ(α)
µs(α)

1
ω

H(z− b1) exp
[
−µ(z− b1)

ω

]}
α0

, (308)

{
c(3)2 (z,ω)

}
α0

=

{
qµ(α)
µs(α)

1
ω2 H(z− z0) exp

[
−µ(z− b1)

ω

]}
α0

. (309)

Inserting the expressions obtained in Equations (308) and (309), along with the expres-
sions of the other needed functions, into the right-sides of Equations (301)–(307) yields the
following closed-form expressions:(

∂3ρ

∂µ∂b1∂b2

)
α0

= −
{

q∗q
µs(α)

exp[(b1 − b2)µ(α)]

}
α0

, (310)

(
∂3ρ

∂µs∂b1∂b2

)
α0

= −
{

q∗qµ(α)
µ2

s (α)
E0[(b2 − b2)µ(α)]

}
α0

, (311)

(
∂3ρ

∂q∂b1∂b2

)
α0

=

{
q∗µ(α)
µs(α)

E0[(b2 − b2)µ(α)]

}
α0

, (312)

(
∂3ρ

∂q∗∂b1∂b2

)
α0

=

{
qµ(α)
µs(α)

E0[µ(b2 − b1)]

}
α0

, (313)

(
∂3ρ

∂b1∂b1∂b2

)
α0

=

{
qq∗

µs

e(b1−b2)µ(α)

b2 − b1

[
µ(α) +

1
b2 − b2

]}
α0

, (314)

(
∂3ρ

∂b2∂b1∂b2

)
α0

= −
{

qq∗

µs

e(b1−b2)µ(α)

b2 − b1

[
µ(α) +

1
b2 − b2

]}
α0

, (315)

(
∂3ρ

∂z0∂b1∂b2

)
α0

= 0. (316)

The closed-form expressions obtained in Equations (310)–(316) can be verified by
appropriate differentiations of the 2nd-order sensitivities obtained in Equations (228)–(234).
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6. Discussion and Conclusions

The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems (abbreviated as “nth-CASAM-L”), which is pre-
sented in the accompanying work [1], enables the most efficient computation of exactly
obtained expressions of arbitrarily-high-order (nth-order) sensitivities of a generic system
response with respect to all of the parameters (including boundary and initial conditions
−hence the qualifier “comprehensive”) underlying the respective forward/adjoint systems.
The application of the nth-CASAM-L has been illustrated in this work by considering a
paradigm model which describes the transmission of particles produced by a distributed
source through a shield which surrounds the source. The sensitivities of the most impor-
tant types of responses for particle transport (namely: point-detector responses, particle
leakage responses, reaction rate responses and “contributon-response fluxes”) have been
analyzed, highlighting differences and similarities among them. This paradigm model can
be used as a benchmark for comparing the nth-CASAM-L to conventional statistical and/or
finite-difference methods, since the model is sufficiently simple to admit closed-form ex-
act expressions for the response sensitivities of any order yet contains many parameters
(7 to 10 primary parameters and tens of additional fundamental parameters describing
imprecisely known cross sections and number densities of the nuclides corresponding
to the interaction coefficients of the particles within the materials in which the particles
propagate). It has been also shown that the relative first-order sensitivities of the responses
to the nuclide number densities have the same values as the corresponding first-order
sensitivities of the responses to the microscopic cross sections. The precise and efficient
computation of many relative sensitivities that have identical values does not pose any
difficulties to the nth-CASAM-L methodology but is known to pose extreme (even insur-
mountable) challenges to conventional statistical methods which rely on sensitivities being
readily “sortable” by having relative values that clearly differ from each other.

Application of the 1st-CASAM-L yields exact expressions of the 1st-order sensitiv-
ities in terms of a two-component first-level adjoint function of the form a(1)(z,ω) ,[

a(1)1 (z,ω), a(1)2 (z,ω)
]†

, which is the solution of a First-Level Adjoint Sensitivity System

(1st-LASS) that is independent of parameter variations. Hence, the 1st-LASS needs to be
solved only once, regardless of the number of model parameters. Subsequently, the 1st-order
response sensitivities are computed efficiently and exactly in terms of the first-level ad-
joint function by simply performing inexpensive quadratures rather than solving operator
(differential) equations, which represent “large-scale computations”.

The 2nd-order sensitivities are expressed in terms of a 2nd-level adjoint function,
which is the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS) and which is
also independent of parameter variations. The 2nd-LASS comprises at most 4 differen-
tial equations, having as solution a 2nd-level adjoint function of the form a(2)(z,ω) ,[

a(2)1 (z,ω), a(2)2 (z,ω), a(2)3 (z,ω), a(2)4 (z,ω)
]†

. For the computation of most 2nd-order sensi-

tivities, however, the 2nd-LASS comprises only 2 differential equations. In all cases, though,
the equations underlying this 2nd-LASS need not be solved simultaneously. Instead, they
are solved successively, decoupled from one another. The 2nd-order mixed sensitivities can
be computed twice, in two different ways (i.e., using distinct 2nd-level adjoint functions),
thereby providing an independent intrinsic (numerical) verification that the 1st- and 2nd-
order response sensitivities are computed accurately. The information provided by the
1st-order sensitivities usually indicates which 2nd-order sensitivities are important and
which could be neglected. Therefore, it is useful to prioritize the computation of the
2nd-order sensitivities by using the rankings of the relative magnitudes of the 1st-order
sensitivities as a “priority indicator”: the larger the magnitude of the relative 1st-order
sensitivity, the higher the priority for computing the corresponding 2nd-order sensitivities.
Also, since vanishing 1st-order sensitivities may indicate critical points of the response
in the phase-space of model parameters, it is also of interest to compute the 2nd-order
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sensitivities that correspond to vanishing 1st-order sensitivities. In practice, only those
2nd-order partial sensitivities which are deemed important would need to be computed.

The 3rd-order sensitivities are determined in terms of 3rd-level adjoint functions,
which are solutions of 3rd-Level Adjoint Sensitivity Systems (3rd-LASS), which can comprise
at most 8 operator-equations, in which case the corresponding 3rd-level adjoint function

has the form a(3)(z,ω) ,
[

a(3)1 (z,ω), . . . , a(3)8 (z,ω)
]†

. As in the case of the 2nd-LASS,

the equations underlying the 3rd-LASS need not be solved simultaneously since they
can be readily decoupled when written in component form and can therefore be solved
successively. The computation of the 3rd-order sensitivities can be prioritized by using the
magnitudes/importance of the 1st-order and 2nd-order sensitivities as guiding indicators.
The sensitivities of order higher than third were not explicitly determined for the illustrative
paradigm model presented in work, but the principles for obtaining them have been
amply illustrated.

The illustrative model analyzed in this work has confirmed the fundamental ad-
vantage of applying the nth-CASAM-L (as opposed to statistical and/or finite-difference
methods) for sensitivity analysis of large-scale models with many parameters, which can
be summarized as follows: for a model having TP-parameters (where “TP” denotes “total
number of parameters”) for every response and/or sensitivity of interest, the nth-CASAM-L
computes the “TP next-higher-order” sensitivities needing just one adjoint computation
performed in a linearly increasing higher-dimensional Hilbert space. Very importantly, the
nth-CASAM-L computes the higher-level adjoint functions using the same forward and
adjoint solvers (i.e., computer codes) as used for solving the original forward and adjoint
systems, thus requiring relatively minor additional software development for computing
the various-order sensitivities.

The nth-CASAM-L is the only practically implementable methodology for obtain-
ing the exact expressions (i.e., free of methodologically-introduced approximations) of
arbitrarily-high order sensitivities (functional derivatives) of model responses to model
parameters, for coupled forward/adjoint linear systems. By enabling the practical computa-
tion of any arbitrarily-order response sensitivities to model parameters, the nth-CASAM-L
makes it possible to compare the relative values of the sensitivities of various order, in
order to assess which sensitivities are important and which may actually be neglected,
thus enabling future investigations of the convergence of the (multivariate) Taylor series
expansion of the response in terms of parameter variations, as well as investigating the
actual validity of expressions that are derived from Taylor-expansion of the response (e.g.,
response variances/covariance, skewness, kurtosis, etc.) as a function of the model’s
parameters. The larger the number of model parameters, the more efficient the C-ASAM-L
becomes for computing arbitrarily high-order response sensitivities. The nth-CASAM-L
also enables the direct derivation, on paper, of the expression of a specific high-order sensi-
tivity of interest, which can subsequently be computed directly; such a direct computation
is not possible with any statistical method.

The nth-CASAM-L provides a fundamentally important step in the quest to overcome
the “curse of dimensionality” in sensitivity analysis, uncertainty quantification and pre-
dictive modeling. Ongoing work aims at developing the “nth-Order Comprehensive Adjoint
Sensitivity Analysis Methodology for Nonlinear Systems” (abbreviation: nth-CASAM-L-N)
for the practical, efficient, and exact computation of arbitrarily-high order sensitivities of
responses to model parameters for nonlinear systems. The nth-CASAM-L, together with the
nth-CASAM-L-N, are expected to revolutionize all of the fields of activities which require
response sensitivities, including the fields of uncertainty quantification, model validation,
optimization, data assimilation, model calibration, sensor fusion, reduced-order modeling,
inverse problems, and predictive modeling.
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