
energies

Article

Graph Modeling for Efficient Retrieval of Power Network
Model Change History

Ivana Dalčeković 1,* , Aleksandar Erdeljan 2, Nikola Dalčeković 1 and Jelena Marjanović 1

����������
�������

Citation: Dalčeković, I.; Erdeljan, A.;

Dalčeković, N.; Marjanović, J. Graph

Modeling for Efficient Retrieval of

Power Network Model Change

History. Energies 2021, 14, 8351.

https://doi.org/10.3390/en14248351

Academic Editors: Pierluigi Siano,

Hassan Haes Alhelou and

Amer Al-Hinai

Received: 30 October 2021

Accepted: 8 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Technical Sciences, Department of Power, Electronic and Telecommunication Engineering,
University of Novi Sad, Trg D. Obradovića 6, Novi Sad 21000, Serbia; nikola.dalcekovic@uns.ac.rs (N.D.);
jelena.stankovski@uns.ac.rs (J.M.)

2 Faculty of Technical Sciences, Department of Computing and Control Engineering, University of Novi Sad,
Trg D. Obradovića 6, Novi Sad 21000, Serbia; ftn_erdeljan@uns.ac.rs

* Correspondence: ivana.kovacevic@uns.ac.rs

Abstract: Power grids are constantly evolving, and data changes are increasing. Operational tech-
nology (OT) is controlled by IT technologies in smart grids, where changes in the physical world
impose changes in the software data model, as well as the continuous generation of data points,
resulting in time series datasets. The increased need for processing large amounts of data combined
with requirements to maintain and increase overall performances has created a significant challenge
for traditional database solutions and relational database models. The main idea of this paper was to
find and propose a graph model that will allow the retrieval of historical connectivity in a reduced
time complexity. Furthermore, the research question was addressed by evaluating three different
approaches where the results provide a foundation for the proposed design guidelines related to
optimizing graph-based databases for a modern smart grid system. The results of the experiments
demonstrated reduced time complexities from 3 to 5 times depending on the typical industry usage
patterns and the selected graph model. This suggests that the design decision may severely affect the
outcome for given smart grid use cases when using historical features in OT technologies. Therefore,
the main contribution of the research is the proposed guidelines on how to design an optimal graph
model that satisfies the described smart grid requirements.

Keywords: graph database; history; smart grids

1. Introduction

Power network grids (the grids herein) were designed in the previous century, but
the requirements and context of modern cities have forced the grid to evolve, rendering
current grids obsolete. Connectivity in the grids can vary as a consequence of: (1) changes
in the state of its elements such as switching the equipment on and off, or (2) physical
changes to the grid’s topology such as extending the feeders to new parts of the city or
replacing existing equipment. We focused on the first scenario, while the second scenario
introduces a much lower rate of changes in the equivalent period. If the grid is in an area
often exposed to hazards or climate disaster—connectivity will be more affected. In usual
scenarios, there are about a hundred changes during a day, and during storms (e.g., storm
mode), there are about several thousand. Distribution System Operators (DSO) make
various analyses as they must have insight into the connectivity of the whole network,
both in real-time and to keep a history for training purposes and post-accident analyses.
As operational technology (OT) is controlled by IT technologies in smart grids, changes in
the physical world impose changes in the software data model. Processing large amounts
of data, while maintaining performances for a real-time decision-making software system,
creates a problem for traditional database solutions and relational database models.

One of the main advantages of graph databases in smart grids over relational databases
and NoSQL stores is performance, as they are optimized for the graph data models. Graph

Energies 2021, 14, 8351. https://doi.org/10.3390/en14248351 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4930-1931
https://orcid.org/0000-0001-6875-2127
https://doi.org/10.3390/en14248351
https://doi.org/10.3390/en14248351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14248351
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14248351?type=check_update&version=1

Energies 2021, 14, 8351 2 of 19

databases are typically thousands of times more powerful than traditional databases in
terms of indexing, computing power, storage, and querying. In relational databases,
performances on data relations decrease as the dataset grows. Smart grid data increase on
a daily basis, so graph databases could be a better solution, as the performance remains
relatively constant. In addition, smart grid models are very complex and change frequently.
This can be a problem as relational databases require a comprehensive data model up front.
Moreover, graph databases are inherently flexible, because graphs can be extended with
new vertices and new edge types almost effortlessly [1].

DSO data can be generated by various equipment and stored in different formats:

• Raw waveforms (voltage and currents) sampled at relatively high sampling frequencies
• Pre-processed waveforms (e.g., RMS) typically sampled at low sampling frequencies.
• Status variables (e.g., if a relay is opened or closed) typically sampled at low sampling

frequencies.

Here, we consider historical data of status variables, which are part of the Supervisory
Control and Data Acquisition (SCADA) systems [2]. The historical database is an important
component in typical SCADA architecture, and it is used to store all data collected by the
system. The historical database stores a significant quantity of data, as it stores thousands
of alarms, statuses of digital variables, and nominal values of analog variables [3]. In this
paper, the focus was on digital values as the sample rate is substantial when compared to the
rate of static data changes. A digital value can represent the status of circuit breakers, trip
relays, fuses, switches, and other grid equipment. Therefore, we are dealing with partially
evolved dynamic graphs [4] as we are considering just attribute evolution—dynamic graph
changes represented by the actions: add attribute value, remove attribute value, or update
attribute value. In this scenario, remove attribute is not allowed, as the status can be either
OPEN or CLOSED and it cannot be omitted.

The main idea is to provide a full recreation of the network topology representing the
grid at an arbitrary time in history. Usually, time series databases are designed to provide a
fast read and write by element, making it difficult to query a whole set or subset of graph
elements in a particular period. Therefore, the research question of this paper is what is
the most efficient graph database model to provide an efficient write per graph element
while providing an efficient graph or subgraph scan for different time points? This is a
slightly different problem in comparison to the other problems focused on in historical
databases presented in related works. The main issue in replaying the historical sequence
of network topology changes or retrieving a graph connectivity in an arbitrary historical
point is that we cannot query data samples by datetime unless we search for historical
value in each element of the graph model. The time complexity of such an algorithm would
be quadratic (O(n2)), rendering such an approach inapplicable for large data models and
real-time characteristics of smart grids. The large data models are a consequence of the
dynamics of data—some statuses can stay unchanged in history for a long time, while
other statuses might change. The result is to have slowly changing values correlated with
different values in the same timeline (Figure 1). The properties of smart grid data changes
described introduce difficulties in designing an efficient historical data model. For instance,
if we look at just four vertices, and its few changes for one day (Figure 1)—all vertices have
an initial value of status, and every next vertex is a change during time. Assume that we
want to see how those vertices were connected in any moment in time—in Figure 1, this
moment is tx.

If we simply go through vertices and search for that exact date (tx), our query will
return an empty value. The correct returned value should be BRE1:OPENED—DIS1:
CLOSED—BRE2:OPENED—DIS2:OPENED. Having an efficient solution for querying
described dynamic graphs in time would provide a usable feature for DSOs as it would
enable the analysis of events that happened in the past.

Energies 2021, 14, 8351 3 of 19
Energies 2021, 14, x FOR PEER REVIEW 3 of 18

Figure 1. History of dynamic data in smart grids.

If we simply go through vertices and search for that exact date (tx), our query will

return an empty value. The correct returned value should be BRE1:OPENED—DIS1:

CLOSED—BRE2:OPENED—DIS2:OPENED. Having an efficient solution for querying

described dynamic graphs in time would provide a usable feature for DSOs as it would

enable the analysis of events that happened in the past.

In this paper, we focused on finding and proposing a graph model that will allow the

retrieval of historical connectivity in a reduced time complexity. As with modeling any

solution, there is no one approach that is the optimal in all circumstances, even though we

are focused on smart grid use cases. Therefore, we investigated three different approaches

based on the graph theory and existing research in the area of graph databases. The three

approaches were applied to modeling the same instance of a real power distribution grid

network model resulting in three referent test sets. Test sets were built for a commercially

available graph database management system (Neo4j) that was used for running the ex-

periments. The experiments revealed the performances of different queries that corre-

spond to the described smart grid use cases. Along the proposed graph models optimized

for reduced time complexity when retrieving the historical graph connectivity, the main

contribution of this paper is the resulting guideline that elaborates when to use which

graph model type based on the smart grid use cases and patterns of database usage. In

section 2, we describe related works. Section 3 describes the methodology and specific

approaches that have been chosen and how they have been implemented. Section 4 pre-

sents the experiments and provides the results, while section 5 is dedicated to the evalua-

tion of the results and discussion. Finally, section 6 summarizes the main points and out-

lines further research steps.

2. Related Works

Many tools and libraries have been developed for social network analysis, but they

are all mainly focused on examining static network snapshots. Not much work has been

Figure 1. History of dynamic data in smart grids.

In this paper, we focused on finding and proposing a graph model that will allow the
retrieval of historical connectivity in a reduced time complexity. As with modeling any
solution, there is no one approach that is the optimal in all circumstances, even though we
are focused on smart grid use cases. Therefore, we investigated three different approaches
based on the graph theory and existing research in the area of graph databases. The three
approaches were applied to modeling the same instance of a real power distribution grid
network model resulting in three referent test sets. Test sets were built for a commercially
available graph database management system (Neo4j) that was used for running the exper-
iments. The experiments revealed the performances of different queries that correspond
to the described smart grid use cases. Along the proposed graph models optimized for
reduced time complexity when retrieving the historical graph connectivity, the main con-
tribution of this paper is the resulting guideline that elaborates when to use which graph
model type based on the smart grid use cases and patterns of database usage. In Section 2,
we describe related works. Section 3 describes the methodology and specific approaches
that have been chosen and how they have been implemented. Section 4 presents the
experiments and provides the results, while Section 5 is dedicated to the evaluation of the
results and discussion. Finally, Section 6 summarizes the main points and outlines further
research steps.

2. Related Works

Many tools and libraries have been developed for social network analysis, but they
are all mainly focused on examining static network snapshots. Not much work has been
performed on the analysis of temporal or evolving graphs and neither one of the graph
data management systems handles optimizing snapshot retrieval queries over historical
graphs, or on supporting temporal analysis of large networks [5].

The focus of the research concerning evolving graphs has been on efficiently storing
and retrieving graph snapshots. This is the predominantly used approach for graph
analysis due to its accessibility. A snapshot method captures a sequence of static graphs

Energies 2021, 14, 8351 4 of 19

from a temporal graph; thus, existing graph algorithms can be directly applied to each
static graph [6]. The authors’ main idea in Ref. [7] was to store the historical trace of the
network on a disk, and to load the required graphs on-demand in memory. They used
a collection of graph historical snapshots, one corresponding to each time instance. For
large temporal graphs, there are studies on graph partition [8]. They store individual
snapshots of a single graph on different computers. Semertzidis and Pitoura [9] discussed
an alternative approach for storing time-varying networks using a hierarchical time index
to support snapshots with different granularity and presented historical graph queries.
Cattuto et al. [10] presented the historical graph stored as a sequence of graph snapshots,
where vertices and edges are associated with time intervals. In Ref. [11], graph mining
algorithms were provided that assume a static underlying graph.

The time-versioning process has been proven by various authors. The problem that
they introduce is an increase in complexity of the graph structure, as well as the complexity
of the queries, which leads to a reduction in performance, scalability, and maintainability.
Castelltort and Laurent [12] created a meta-graph, which chains history in a linked list. The
history of edges is considered with two approaches—single and multi-edge. This adds
more complexity, due to the increased number of checks in each query, which leads to poor
performance for deep history. There is a different approach for creating a meta-graph [13],
which is based on modeling differences between versions as graphs. The biggest problem,
from a performance standpoint, is graphs that have a lot of incoming/outgoing edges.

Maduako et al. [14] made a time-tree for the timeline, and each vertex was connected to
a leaf in that tree according to the time when it is created. As we are dealing with a complete
graph recreation problem, where the solution gives insight to the grid manager into the
historical network state from moment x to moment y, and we want to have information
about how elements in the grid were connected in each moment, these approaches would
not provide the required results.

Nowadays, graph databases have been used for a wide variety of power system
analyses, such as power flow calculation, topology analysis, state estimation [15], and
real-time EMS framework [16]. In Ref. [17], traditional relational databases (PostgreSQL)
were compared with graph databases (Neo4j) in the analysis of power grid data. With
experiments, they demonstrated a better performance of topology modeling and analysis
using graph databases. However, they did not cover historical data. Liu et al. [16] proposed
an EMS real-time analysis framework for an evolving graph-based power system.

Even though extensive research in the area of modeling the history within graph
databases exists, to the best of the authors knowledge, no work has provided an experimen-
tally confirmed comparison of different approaches retrieving the historical connectedness
of the power network graph models. With the aim to provide the best approach to reduce
the time complexity of retrieving the connectivity in arbitrary historical points, this paper
proposes clear guidelines on what graph model type to use based on the smart grid use
cases and patterns of database usage.

3. Methodology

For a vertex, the number of head ends adjacent to a vertex is called the indegree of the
vertex and the number of tail ends adjacent to a vertex is its outdegree.

Definition 1 (Graph). A graph G is given by a pair (V, E) where V stands for a set of vertices and
E stands for a set of edges with E⊆ (V × V).

Definition 2. For G = (V, A) and v∈ V, the indegree of v is denoted as deg-(v) and its outdegree is
denoted as deg + (v).

Definition 3. Inset, I(v) = {x | (x, v)∈ E}, is the set of all vertices that represent head ends adjacent
to a vertex.

Energies 2021, 14, 8351 5 of 19

Definition 4. Outset, O(v) = {x | (v, x)∈ E}, is the set of all vertices that represent tail ends
adjacent to a vertex.

Data structures that can preserve a graph’s history are called temporal, evolving, or
time-varying graphs [18]. There are several ways of modeling formally discrete temporal
graphs. One is to consider an underlying static graph and assign a set of natural numbers,
called a label, to every edge. Another one is to view a temporal graph as a sequence of static
graphs, as used by the authors in Ref. [6]. Finally, it is useful to expand the whole temporal
graph in time and obtain an equivalent static graph without losing any information. A
common approach to solving this problem is to first express the given temporal graph
as a static graph and then try to apply or adjust one of the existing tools that works on
static graphs.

The research methodology (Figure 2) consisted of five steps:

Energies 2021, 14, x FOR PEER REVIEW 6 of 18

of the hypothesis and provide the innovation of this paper as they can be used by

anyone interested in our research question.

Figure 2. Flow chart of the study.

The following sections elaborate the three most representative approaches.

3.1. The First Approach

The first approach implies creating a new vertex for every change in the network

model and adding reference to the previous change. A linked list is generated and ex-

panded by each new value. The formula below represents how a new vertex is added:

(∀𝑣𝑛𝑒𝑤)(∀𝑣|𝑣𝑛𝑒𝑤 . 𝑖𝑑 == 𝑣. 𝑖𝑑)(∄(𝑣, 𝑒))(𝑒 == 𝑛𝑒𝑥𝑡) (1)

where v represents a vertex and e represents an edge.

For each new vertex, we obtain all vertices with the same id, and to determine which

one is the most recent one, we find one without an edge with id next.

Figure 3 shows one vertex and all its values throughout history. Each new value re-

lates to the previous one with an edge called next. Figure 4 shows a block diagram algo-

rithm (BDA) for adding a new status value.

Figure 3. The first approach—adding a new value.

Figure 2. Flow chart of the study.

1. Formulating the research question: the approach started from the transfer of knowl-
edge from industry to academia. The issue of time complexity in retrieving the
historical graph connectivity led to the research of the available literature, as de-
scribed in Section 2. Once the scientific gap emerged, the research question was
formulated: how to provide a full recreation of graph connectivity representing the
grid at any time in history consisting of frequent topology changes.

2. Hypothesis definition: we needed to define a hypothesis that would address the
research question, provide the basis for the advancement of the scientific field, and
define supporting claims that can be verified experimentally. The main hypothesis
in this paper is: if we define graph models where historical values are connected
to the power grid elements in the same graph, the time complexity will be reduced
for retrieving graph connectivity in any given moment in history, while the space
complexity will not contain any data duplication.

3. Experimental validation of hypothesis claims: in order to ensure a valid context for
experiments, we relied on a model of a real distribution power grid, as described
in Section 4.2. Using the same real model, we created test data for different graph

Energies 2021, 14, 8351 6 of 19

models where each graph model has been created to support a hypothesis based on
graph theory and the research of related works. In essence, we created an exporter
from the existing SQL-based model by relying on the Common Information Model
(CIM) standard. Then, we imported the same model to the graph database but
in three different ways, to reflect each of the proposed approaches described in
Sections 3.1–3.3. With ensured valid test data samples, we designed three experiments
to address all the inputs defined by use cases that we are focusing on in smart grid
problems. The inputs needed to analyze the overall solution are: a typical random
write to the graph (see Section 4.4), a typical random read of node values from the
graph (see Section 4.3), and retrieving graphs and subgraphs from any moment in
history (see Section 4.5).

4. Result analysis and presentation: after collecting the measurements from experiments,
we performed statistical analysis of the data, and we decided to present the results in
tabular form with the given standard deviation to outline how close to the mean were
our averages. Moreover, for easer discussion, we extracted graphs to visually present
the information to the reader.

5. Conclusion: as described in Section 5, we used typical use cases and usage patterns
that can be found in industry and applied them in the context of experimental results.
Each typical use case was defined as a scenario, and our discussion around scenarios
provides a guideline when each of the proposed graph models would make the most
benefit considering the main hypothesis. These guidelines confirm supporting claims
of the hypothesis and provide the innovation of this paper as they can be used by
anyone interested in our research question.

The following sections elaborate the three most representative approaches.

3.1. The First Approach

The first approach implies creating a new vertex for every change in the network model
and adding reference to the previous change. A linked list is generated and expanded by
each new value. The formula below represents how a new vertex is added:

(∀vnew)(∀v|vnew.id == v.id)(@(v, e))(e == next) (1)

where v represents a vertex and e represents an edge.
For each new vertex, we obtain all vertices with the same id, and to determine which

one is the most recent one, we find one without an edge with id next.
Figure 3 shows one vertex and all its values throughout history. Each new value relates

to the previous one with an edge called next. Figure 4 shows a block diagram algorithm
(BDA) for adding a new status value.

Energies 2021, 14, x FOR PEER REVIEW 6 of 18

of the hypothesis and provide the innovation of this paper as they can be used by

anyone interested in our research question.

Figure 2. Flow chart of the study.

The following sections elaborate the three most representative approaches.

3.1. The First Approach

The first approach implies creating a new vertex for every change in the network

model and adding reference to the previous change. A linked list is generated and ex-

panded by each new value. The formula below represents how a new vertex is added:

(∀𝑣𝑛𝑒𝑤)(∀𝑣|𝑣𝑛𝑒𝑤 . 𝑖𝑑 == 𝑣. 𝑖𝑑)(∄(𝑣, 𝑒))(𝑒 == 𝑛𝑒𝑥𝑡) (1)

where v represents a vertex and e represents an edge.

For each new vertex, we obtain all vertices with the same id, and to determine which

one is the most recent one, we find one without an edge with id next.

Figure 3 shows one vertex and all its values throughout history. Each new value re-

lates to the previous one with an edge called next. Figure 4 shows a block diagram algo-

rithm (BDA) for adding a new status value.

Figure 3. The first approach—adding a new value. Figure 3. The first approach—adding a new value.

Energies 2021, 14, 8351 7 of 19Energies 2021, 14, x FOR PEER REVIEW 7 of 18

Figure 4. BDA for adding a new value (1st approach).

3.2. The Second Approach

With the second approach, as proposed by the authors in Ref. [19], we are also creat-

ing a new vertex for every change. However, we are not linking them; instead, we are

connecting all outset and inset vertices with a new value. The formula below shows how

a new vertex is added:

(∀𝑣𝑛𝑒𝑤)(∃𝐼(𝑣), 𝑂(𝑣) => (𝑣𝑛𝑒𝑤 , 𝑖), (𝑣𝑛𝑒𝑤 , 𝑜)) (2)

where v represents a vertex, o represents outset, i represents inset, and e represents an

edge.

Figure 5 shows one element D added in time t1. For adding a new vertex D’ with a

new timestamp t2, it needs to inherit all currently valid edges. Each new vertex and edge

will be expanded with a created attribute, as well as old ones with the addition of an ex-

pired attribute.

Figure 5. The second approach—adding a new value.

Copying a vertex requires copying all live edges, which removes a limitation of hav-

ing a constant number of graph operations. Figure 6 shows a BDA for adding a new status

value. Beyond adding a new vertex, we are adding an additional property with a

Figure 4. BDA for adding a new value (1st approach).

3.2. The Second Approach

With the second approach, as proposed by the authors in Ref. [19], we are also
creating a new vertex for every change. However, we are not linking them; instead, we are
connecting all outset and inset vertices with a new value. The formula below shows how a
new vertex is added:

(∀vnew)(∃I(v), O(v) => (vnew, i), (vnew, o)) (2)

where v represents a vertex, o represents outset, i represents inset, and e represents an edge.
Figure 5 shows one element D added in time t1. For adding a new vertex D’ with

a new timestamp t2, it needs to inherit all currently valid edges. Each new vertex and
edge will be expanded with a created attribute, as well as old ones with the addition of an
expired attribute.

Energies 2021, 14, x FOR PEER REVIEW 7 of 18

Figure 4. BDA for adding a new value (1st approach).

3.2. The Second Approach

With the second approach, as proposed by the authors in Ref. [19], we are also creat-

ing a new vertex for every change. However, we are not linking them; instead, we are

connecting all outset and inset vertices with a new value. The formula below shows how

a new vertex is added:

(∀𝑣𝑛𝑒𝑤)(∃𝐼(𝑣), 𝑂(𝑣) => (𝑣𝑛𝑒𝑤 , 𝑖), (𝑣𝑛𝑒𝑤 , 𝑜)) (2)

where v represents a vertex, o represents outset, i represents inset, and e represents an

edge.

Figure 5 shows one element D added in time t1. For adding a new vertex D’ with a

new timestamp t2, it needs to inherit all currently valid edges. Each new vertex and edge

will be expanded with a created attribute, as well as old ones with the addition of an ex-

pired attribute.

Figure 5. The second approach—adding a new value.

Copying a vertex requires copying all live edges, which removes a limitation of hav-

ing a constant number of graph operations. Figure 6 shows a BDA for adding a new status

value. Beyond adding a new vertex, we are adding an additional property with a

Figure 5. The second approach—adding a new value.

Copying a vertex requires copying all live edges, which removes a limitation of having
a constant number of graph operations. Figure 6 shows a BDA for adding a new status
value. Beyond adding a new vertex, we are adding an additional property with a timestamp

Energies 2021, 14, 8351 8 of 19

of creation. Furthermore, we are adding an expired attribute with the same timestamp to
the previous vertex, as its value is valid until the new value has been created.

Energies 2021, 14, x FOR PEER REVIEW 8 of 18

timestamp of creation. Furthermore, we are adding an expired attribute with the same

timestamp to the previous vertex, as its value is valid until the new value has been created.

Figure 6. BDA for adding a new value (2nd approach).

3.3. The Third Approach

With the previous approach, there is a deficiency in the case where the vertices have

a lot of incoming and/or outgoing changes. When a new vertex is being added, all those

edges need to be copied to the new vertex (Figure 7). Therefore, this approach is an exten-

sion of the second one—each vertex implies adding two additional ones that act as a proxy

for all vertices created prior to the actual vertex.

Figure 7. The third approach—adding proxy.

Figure 6. BDA for adding a new value (2nd approach).

3.3. The Third Approach

With the previous approach, there is a deficiency in the case where the vertices have a
lot of incoming and/or outgoing changes. When a new vertex is being added, all those
edges need to be copied to the new vertex (Figure 7). Therefore, this approach is an
extension of the second one—each vertex implies adding two additional ones that act as a
proxy for all vertices created prior to the actual vertex.

Energies 2021, 14, x FOR PEER REVIEW 8 of 18

timestamp of creation. Furthermore, we are adding an expired attribute with the same

timestamp to the previous vertex, as its value is valid until the new value has been created.

Figure 6. BDA for adding a new value (2nd approach).

3.3. The Third Approach

With the previous approach, there is a deficiency in the case where the vertices have

a lot of incoming and/or outgoing changes. When a new vertex is being added, all those

edges need to be copied to the new vertex (Figure 7). Therefore, this approach is an exten-

sion of the second one—each vertex implies adding two additional ones that act as a proxy

for all vertices created prior to the actual vertex.

Figure 7. The third approach—adding proxy. Figure 7. The third approach—adding proxy.

Energies 2021, 14, 8351 9 of 19

The main idea behind this is to add one additional vertex for all edges with outgoing
vertices and one vertex for all edges with incoming changes. The additional vertices will
provide connectivity within all vertices as before, but they will reduce the number of edges
(Figure 7). Still, we are adding additional properties created and expired, but now onto
proxies besides vertices and edges. A constant number of graph operations and additional
space per modification are achieved. Figure 8 shows a block diagram algorithm (BDA) for
adding a new status value.

Energies 2021, 14, x FOR PEER REVIEW 9 of 18

The main idea behind this is to add one additional vertex for all edges with outgoing

vertices and one vertex for all edges with incoming changes. The additional vertices will

provide connectivity within all vertices as before, but they will reduce the number of

edges (Figure 7). Still, we are adding additional properties created and expired, but now

onto proxies besides vertices and edges. A constant number of graph operations and ad-

ditional space per modification are achieved. Figure 8 shows a block diagram algorithm

(BDA) for adding a new status value.

Figure 8. BDA adding a new value for the third approach.

4. Experiments

This section presents the experimental results, with the intention of evaluating and

analyzing each approach using the same test environment and test data. Three different

experiments were focused on in evaluating different operations, so the discussion section

elaborates the advantages and disadvantages of proposed approaches based on the rele-

vant data.

4.1. Test Environment

Table 1 shows physical machine properties for the testing environment.

Table 1. Test environment.

CPU i7 2.20 GHz

HDD 200 GB SSD

RAM 8 GB

The physical machine hosted a virtual machine using the Hyper-V hypervisor and

Microsoft Windows Server OS with Neo4j [20] installed and used as a graph database

management system.

4.2. Test Data

The test dataset represents a real network data model (Network Model) of a Euro-

pean-based DSO company. The data are defined in an industry standard model CIM

Figure 8. BDA adding a new value for the third approach.

4. Experiments

This section presents the experimental results, with the intention of evaluating and
analyzing each approach using the same test environment and test data. Three different
experiments were focused on in evaluating different operations, so the discussion sec-
tion elaborates the advantages and disadvantages of proposed approaches based on the
relevant data.

4.1. Test Environment

Table 1 shows physical machine properties for the testing environment.

Table 1. Test environment.

CPU i7 2.20 GHz
HDD 200 GB SSD
RAM 8 GB

The physical machine hosted a virtual machine using the Hyper-V hypervisor and
Microsoft Windows Server OS with Neo4j [20] installed and used as a graph database
management system.

4.2. Test Data

The test dataset represents a real network data model (Network Model) of a European-
based DSO company. The data are defined in an industry standard model CIM [21,22]
that defines how objects and edges between power system resources are represented. The

Energies 2021, 14, 8351 10 of 19

network model describes the static elements of the electrical distribution system. Therefore,
it describes the network connectivity along with other power system resource properties
needed for arbitrary power function. Table 2 shows the main characteristics of a distribution
network used as a test set.

Table 2. Distribution network.

Elements Number of Elements

Substations 116
Feeders 410

Analog signals 8377
Discrete signals 57,429

Customers 233,605

Each vertex represents a power resource element of the network (breaker, transformer,
fuse . . .) and each edge between them represents the connectivity between them.

For the described data model, we have used an industry-proven field data simulator
for generating dynamic data, with the characteristics shown in Table 3. This paper takes
into account just discrete value changes, and for now, analog value changes are not part of
the research. The simulator generates data in two modes—in normal mode when there are
about a hundred changes during the day, and in storm mode when there are a couple of
thousand changes. Of course, the number of changes in both modes differ from network
to network—if we are dealing with a network where the equipment is not in a good state,
during storm mode, there will be more outages and vice versa. Hence, we are assuming
that the network is in a good state.

Table 3. Simulator’s modes.

Mode Number of Changes

Normal 100/day
Storm 5000/day

In the following sections, three experiments are described—Standard queries, Update,
and State recreation. The execution time for the selected queries is measured in Standard
queries, while the time for updating new values in the database is measured in Update. In
the last one, a focus is set on execution time for retrieving elements and their connection
for a given moment in history.

4.3. Experiment 1—Standard Queries

First, we measured execution time for three different queries without any history.
Then, we measured execution time for the same queries in near (couple of days—10
changes per element) and far history (couple of years—390 changes per element). The
following queries were used:

• Get hierarchy to substation by breaker ID (query 1). Hierarchy assumes all elements
that are connected from the breaker vertex to the substation vertex (subgraph).

• Fetch all elements from a particular feeder (query 2). For a given feeder, a query
returns all breakers, fuses, disconnectors, and any other equipment.

• Fetch all devices where the device name contains a given string parameter (query 3).

Time execution for typical queries for the first approach is shown in Table 4, for the
second approach in Table 5, and for the third in Table 6. Each table shows the average time
that was needed for executing a different query for each approach, as well as the relative
standard deviation (CV) with eliminated outliers.

Energies 2021, 14, 8351 11 of 19

Table 4. Approach I: Query performance.

Without History
(ms)

cv
(%)

Near History
(ms)

cv
(%)

Far History
(ms)

cv
(%)

Query 1 2791 2 3194 3 5805 10
Query 2 500 3 650 5 1120 6
Query 3 10 1 73 2 79 3

Table 5. Approach II: Query performance.

Without History
(ms)

cv
(%)

Near History
(ms)

cv
(%)

Far History
(ms)

cv
(%)

Query 1 3200 4 10,795 9 20,650 11
Query 2 500 5 654 11 1200 12
Query 3 10 3 74 3 81 4

Table 6. Approach III: Query performance.

Without History
(ms)

cv
(%)

Near History
(ms)

cv
(%)

Far History
(ms)

cv
(%)

Query 1 3050 4 10,600 15 20,641 13
Query 2 450 2 689 5 1506 8
Query 3 9 3 98 4 107 6

Figures 9–11 represent a comparison of the three approaches. The y axis shows the
execution time for queries 1–3 in milliseconds in two different scenarios shown on the x
axis—near and far history.

Energies 2021, 14, x FOR PEER REVIEW 11 of 18

Table 4. Approach I: Query performance.

Without History

(ms)

cv

(%)

Near History

(ms)

cv

(%)

Far History

(ms)

cv

(%)

Query 1 2791 2 3194 3 5805 10

Query 2 500 3 650 5 1120 6

Query 3 10 1 73 2 79 3

Table 5. Approach II: Query performance.

Without History

(ms)

cv

(%)

Near History

(ms)

cv

(%)

Far History

(ms)

cv

(%)

Query 1 3200 4 10,795 9 20,650 11

Query 2 500 5 654 11 1200 12

Query 3 10 3 74 3 81 4

Table 6. Approach III: Query performance.

Without History

(ms)

cv

(%)

Near History

(ms)

cv

(%)

Far History

(ms)

cv

(%)

Query 1 3050 4 10,600 15 20,641 13

Query 2 450 2 689 5 1506 8

Query 3 9 3 98 4 107 6

Figures 9–11 represent a comparison of the three approaches. The y axis shows the

execution time for queries 1–3 in milliseconds in two different scenarios shown on the x

axis—near and far history.

Figure 9. Results for Query 1.

0

5,000

10,000

15,000

20,000

25,000

Near History Far History

ti
m

e[
m

s]

Query 1 Overview

First approach

Second Approach

Third Approach

Figure 9. Results for Query 1.

Energies 2021, 14, 8351 12 of 19
Energies 2021, 14, x FOR PEER REVIEW 12 of 18

Figure 10. Results for Query 2.

Figure 11. Results for Query 3.

4.4. Experiment 2—Update

The goal of the second experiment was to show a comparison of the proposed ap-

proaches for updating values. In total, 78,573 update operations were performed per ap-

proach. Table 7 shows the average time that was needed for executing update operations

for each approach.

Table 7. Update time.

Approach Time (ms) cv (%)

First 212 93

Second 1043 94

Third 190 10

As expected, the relative standard deviation was higher in this experiment compared

to the first one, as in this one, the uncertainty was naturally assumed as each update op-

eration may end up in a different part of the graph with different complexity and historical

depth. Figure 12 shows the execution time of an update operation for all three approaches.

0

200

400

600

800

1000

1200

1400

1600

Near History Far History

ti
m

e[
m

s]

Query 2 Overview

First approach

Second Approach

Third Approach

0

20

40

60

80

100

120

Near History Far History

ti
m

e[
m

s]

Query 3 Overview

First approach

Second Approach

Third Approach

Figure 10. Results for Query 2.

Energies 2021, 14, x FOR PEER REVIEW 12 of 18

Figure 10. Results for Query 2.

Figure 11. Results for Query 3.

4.4. Experiment 2—Update

The goal of the second experiment was to show a comparison of the proposed ap-

proaches for updating values. In total, 78,573 update operations were performed per ap-

proach. Table 7 shows the average time that was needed for executing update operations

for each approach.

Table 7. Update time.

Approach Time (ms) cv (%)

First 212 93

Second 1043 94

Third 190 10

As expected, the relative standard deviation was higher in this experiment compared

to the first one, as in this one, the uncertainty was naturally assumed as each update op-

eration may end up in a different part of the graph with different complexity and historical

depth. Figure 12 shows the execution time of an update operation for all three approaches.

0

200

400

600

800

1000

1200

1400

1600

Near History Far History

ti
m

e[
m

s]

Query 2 Overview

First approach

Second Approach

Third Approach

0

20

40

60

80

100

120

Near History Far History

ti
m

e[
m

s]

Query 3 Overview

First approach

Second Approach

Third Approach

Figure 11. Results for Query 3.

4.4. Experiment 2—Update

The goal of the second experiment was to show a comparison of the proposed ap-
proaches for updating values. In total, 78,573 update operations were performed per
approach. Table 7 shows the average time that was needed for executing update operations
for each approach.

Table 7. Update time.

Approach Time (ms) cv (%)

First 212 93
Second 1043 94
Third 190 10

As expected, the relative standard deviation was higher in this experiment compared
to the first one, as in this one, the uncertainty was naturally assumed as each update

Energies 2021, 14, 8351 13 of 19

operation may end up in a different part of the graph with different complexity and
historical depth. Figure 12 shows the execution time of an update operation for all three
approaches. In the first approach, we need to find the element that needs to change—and
find the one with the latest date time. However, in the other two approaches, it depends on
how much outgoing and ingoing changes that vertex contains, as the new vertex needs
to be connected to all of them. It could be the case that the vertex does not have outgoing
or ingoing vertices at all, or that it has only a few or even several hundred. Depending
on vertex connectivity, the execution time can vary from a few milliseconds to more than
a second.

Energies 2021, 14, x FOR PEER REVIEW 13 of 18

In the first approach, we need to find the element that needs to change—and find the one

with the latest date time. However, in the other two approaches, it depends on how much

outgoing and ingoing changes that vertex contains, as the new vertex needs to be con-

nected to all of them. It could be the case that the vertex does not have outgoing or ingoing

vertices at all, or that it has only a few or even several hundred. Depending on vertex

connectivity, the execution time can vary from a few milliseconds to more than a second.

Figure 12. Results for update operation.

4.5. Experiment 3—State Recreation

The third experiment focused on testing how fast a state of the network can be ob-

tained for a given moment in history. The state of the network represents how elements

of the network are connected—and what their statuses are. The experiment included all

three scenarios. Figures 13–15 show part of the network on which queries were executed.

The legend defines symbols and their meanings. Each vertex and edge have a pair of

timestamps next to them. The pair consists of creation and expiration timestamps. Edges

that correspond to t2 are marked with a red line, while corresponding vertices are marked

with a yellow one. Tables 8–10 show the execution time for the state recreation function

using 1, 2, and 10 edges, respectively. Experiment three aimed to display a relationship

between the size of the network and the execution time for the state recreate function.

Table 8. State recreation, execution time r = 1.

Approach Time (ms) cv (%)

First 648.2 4

Second 33.4 8

Third 32 8

Table 9. State recreation, execution time r = 2.

Approach Time (ms) cv (%)

First 1197.5 4

Second 36 5

Third 35 4

Table 10. State recreation, execution time r = 10.

0

200

400

600

800

1000

1200

1400

1600

ti
m

e[
m

s]

Update

Third Approach

Second Approach

First approach

Figure 12. Results for update operation.

4.5. Experiment 3—State Recreation

The third experiment focused on testing how fast a state of the network can be
obtained for a given moment in history. The state of the network represents how elements
of the network are connected—and what their statuses are. The experiment included all
three scenarios. Figures 13–15 show part of the network on which queries were executed.
The legend defines symbols and their meanings. Each vertex and edge have a pair of
timestamps next to them. The pair consists of creation and expiration timestamps. Edges
that correspond to t2 are marked with a red line, while corresponding vertices are marked
with a yellow one. Tables 8–10 show the execution time for the state recreation function
using 1, 2, and 10 edges, respectively. Experiment three aimed to display a relationship
between the size of the network and the execution time for the state recreate function.

Energies 2021, 14, 8351 14 of 19

Energies 2021, 14, x FOR PEER REVIEW 14 of 18

Approach Time (ms) cv (%)

First 5930 5

Second 80 4

Third 79 4

4.5.1. The First Approach

Figure 13 represents a part of the network, and the elements that should be retrieved

for t = t2. In this approach, each time we are executing the state recreation function, we

need to find the element that has a required time that is between the created and expired

timestamp attribute. For instance, if connectivity for t = t2 (Figure 13) is needed, the query

would start from Substation1 and Breaker1. Breaker1 has two vertices (two history

points), and for t2, the rightmost vertex is marked yellow. However, if we just obtain that

vertex, we will not have information about the Breaker1 edges. Therefore, within the

query, it is also required to retrieve the one that has an edge with the next vertex (in this

case, Fuse1). There are four history points in the case of Fuse1, while the one with an in-

terval that corresponds to t2 is needed (the leftmost one). In addition, the query needs to

include Fuse1 with an edge to Breaker2 (which is the same as the previous one in this

case).

Figure 13. Obtaining the state of a network model (approach 1).

4.5.2. The second approach

Figure 14 represents the part of the network outlining which elements should retrieve

the function for t = t2. Queries that include history are the same as the ones without, with

just one additional check—whether the timestamp is between created and expired.

First, the query finds substation1 with created time t1, where the expired time is not

set, which means there is only one history point for substation1. There are two edges be-

tween Substation1 and Breaker1—one is for the time range t1–t2 and the other is for t2–

present. We take the second one, as we need the history point t2. Next, four edges exist

between Breaker1 and Fuse1; as t2 goes into the range t2–t3, we take the first edge. Only

one edge exists between Fuse1 and Breaker2 and t2 is within that range. The same is ap-

plicable for the edge between Breaker2 and LoadBreaker1. The same pattern is used for

another branch.

Figure 13. Obtaining the state of a network model (approach 1).

Energies 2021, 14, x FOR PEER REVIEW 15 of 18

Figure 14. Obtaining the state of a network model (approach 2).

4.5.3. The Third Approach

Figure 15 represents a part of the network outlining which elements should retrieve

the function for t = t2, with grey circles presenting IN/OUT vertices. Each pair of element

and its IN and OUT vertex are altogether grouped by dotted line. Basically, the logic here

is the same as in the second approach, only with one extension—there is one additional

step in all queries because of the IN and OUT vertices. The query starts from substation1

with created time t1, and expired time without a value, which means there is only one

history point for substation1. To find the connectivity between Substation1 and Breaker1,

the OUT vertex for Substation1 is needed. From this vertex, there are two edges to the

Breaker1_IN vertex—one is for the time range t1–t2 and the other is for t2–today. The

search would continue from the second one, as we need history point t2.

Figure 14. Obtaining the state of a network model (approach 2).

Energies 2021, 14, 8351 15 of 19

Energies 2021, 14, x FOR PEER REVIEW 15 of 18

Figure 14. Obtaining the state of a network model (approach 2).

4.5.3. The Third Approach

Figure 15 represents a part of the network outlining which elements should retrieve

the function for t = t2, with grey circles presenting IN/OUT vertices. Each pair of element

and its IN and OUT vertex are altogether grouped by dotted line. Basically, the logic here

is the same as in the second approach, only with one extension—there is one additional

step in all queries because of the IN and OUT vertices. The query starts from substation1

with created time t1, and expired time without a value, which means there is only one

history point for substation1. To find the connectivity between Substation1 and Breaker1,

the OUT vertex for Substation1 is needed. From this vertex, there are two edges to the

Breaker1_IN vertex—one is for the time range t1–t2 and the other is for t2–today. The

search would continue from the second one, as we need history point t2.

Figure 15. Obtaining the state of a network model (approach 3).

Table 8. State recreation, execution time r = 1.

Approach Time (ms) cv (%)

First 648.2 4
Second 33.4 8
Third 32 8

Table 9. State recreation, execution time r = 2.

Approach Time (ms) cv (%)

First 1197.5 4
Second 36 5
Third 35 4

Table 10. State recreation, execution time r = 10.

Approach Time (ms) cv (%)

First 5930 5
Second 80 4
Third 79 4

4.5.1. The First Approach

Figure 13 represents a part of the network, and the elements that should be retrieved
for t = t2. In this approach, each time we are executing the state recreation function, we
need to find the element that has a required time that is between the created and expired
timestamp attribute. For instance, if connectivity for t = t2 (Figure 13) is needed, the query
would start from Substation1 and Breaker1. Breaker1 has two vertices (two history points),
and for t2, the rightmost vertex is marked yellow. However, if we just obtain that vertex, we
will not have information about the Breaker1 edges. Therefore, within the query, it is also
required to retrieve the one that has an edge with the next vertex (in this case, Fuse1). There

Energies 2021, 14, 8351 16 of 19

are four history points in the case of Fuse1, while the one with an interval that corresponds
to t2 is needed (the leftmost one). In addition, the query needs to include Fuse1 with an
edge to Breaker2 (which is the same as the previous one in this case).

4.5.2. The Second Approach

Figure 14 represents the part of the network outlining which elements should retrieve
the function for t = t2. Queries that include history are the same as the ones without, with
just one additional check—whether the timestamp is between created and expired.

First, the query finds substation1 with created time t1, where the expired time is not
set, which means there is only one history point for substation1. There are two edges
between Substation1 and Breaker1—one is for the time range t1–t2 and the other is for
t2–present. We take the second one, as we need the history point t2. Next, four edges
exist between Breaker1 and Fuse1; as t2 goes into the range t2–t3, we take the first edge.
Only one edge exists between Fuse1 and Breaker2 and t2 is within that range. The same is
applicable for the edge between Breaker2 and LoadBreaker1. The same pattern is used for
another branch.

4.5.3. The Third Approach

Figure 15 represents a part of the network outlining which elements should retrieve
the function for t = t2, with grey circles presenting IN/OUT vertices. Each pair of element
and its IN and OUT vertex are altogether grouped by dotted line. Basically, the logic here is
the same as in the second approach, only with one extension—there is one additional step
in all queries because of the IN and OUT vertices. The query starts from substation1 with
created time t1, and expired time without a value, which means there is only one history
point for substation1. To find the connectivity between Substation1 and Breaker1, the OUT
vertex for Substation1 is needed. From this vertex, there are two edges to the Breaker1_IN
vertex—one is for the time range t1–t2 and the other is for t2–today. The search would
continue from the second one, as we need history point t2.

5. Discussion

The aim of the experiments was to demonstrate how different approaches affect the
performances of queries, insert, and state recreate operations. As expected, each approach
has its advantages. Therefore, when designing a final solution, it is important to have
reliable data that help guide a design decision. Consequently, we compared all three
approaches by introducing hypothetical use cases based on practical experience from the
industry. The scenarios were created by using the anticipated percentage of operation
executions depending on the usage patterns required by the typical DSOs. We identified
four representative scenarios with ratios defined in Table 11. The percentage in a scenario
refers to the number of executed operations, not the time needed for the execution.

Table 11. Scenarios.

State Recreation (%) Insert (%) Query (%)

Scenario I 20 50 30
Scenario II 15 40 45
Scenario III 10 30 60
Scenario IV 5 1 94

Figure 16 represents the comparison between all approaches for four representative
use cases. The ordinate displays different scenarios defined within Table 11. Each scenario
assumes a different percentage in usage patterns for querying, insertion, or using the state
recreation function. The results of scenarios are summarized in Figure 15, where average
values of samples were used for simulating the outcomes of the scenario. In this way, we
can analyze how different approaches would affect performances of the overall solution
based on the common usage patterns.

Energies 2021, 14, 8351 17 of 19

Energies 2021, 14, x FOR PEER REVIEW 16 of 18

Figure 15. Obtaining the state of a network model (approach 3).

5. Discussion

The aim of the experiments was to demonstrate how different approaches affect the

performances of queries, insert, and state recreate operations. As expected, each approach

has its advantages. Therefore, when designing a final solution, it is important to have re-

liable data that help guide a design decision. Consequently, we compared all three ap-

proaches by introducing hypothetical use cases based on practical experience from the

industry. The scenarios were created by using the anticipated percentage of operation ex-

ecutions depending on the usage patterns required by the typical DSOs. We identified

four representative scenarios with ratios defined in Table 11. The percentage in a scenario

refers to the number of executed operations, not the time needed for the execution.

Table 11. Scenarios.

 State Recreation (%) Insert (%) Query (%)

Scenario I 20 50 30

Scenario II 15 40 45

Scenario III 10 30 60

Scenario IV 5 1 94

Figure 16 represents the comparison between all approaches for four representative use

cases. The ordinate displays different scenarios defined within Table 11. Each scenario

assumes a different percentage in usage patterns for querying, insertion, or using the state

recreation function. The results of scenarios are summarized in Figure 15, where average

values of samples were used for simulating the outcomes of the scenario. In this way, we

can analyze how different approaches would affect performances of the overall solution

based on the common usage patterns.

Figure 16. Comparison of approaches.

In the first scenario, the first approach is slower than the second one by 37%, and the

second one is slower than the third one by 59.7%. In the second scenario, the first approach

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Scenario 1 Scenario 2 Scenario 3 Scenario 4

t[
m

s]

Scenario comparison

First approach Second approach Third approach

Figure 16. Comparison of approaches.

In the first scenario, the first approach is slower than the second one by 37%, and the
second one is slower than the third one by 59.7%. In the second scenario, the first approach
is slower than the second one by 53%, and the second one is slower than the third one by
47.2%. In the third scenario, the first approach is slower than the second one by 63.6%,
and the second one is slower than the third one by 32.86%. In the fourth scenario, the first
approach is slower than the second one by 81%, while the second one is faster than the
third one by 18.51%.

As it strongly suggests, the first approach should be avoided in similar problems
as ours. In the majority of cases, the third approach is the best design decision and the
one we recommend if usage patterns are unknown. The second approach might be an
optimization only for query-intensive scenarios, implying that write operations are up
to 5% of the total number of executed operations. In addition, considering Figures 8–10,
it is worth noting that queries provide quicker responses when the second approach is
used. Therefore, considering the query-intensive nature of some usage patterns, the second
approach would be our recommendation.

6. Conclusions

DSOs need to be able to gather, analyze, and transform data coming from different
devices in a distribution network. We considered some of the most common queries that
would be of interest for DSOs’ business needs.

Power grid topology varies due to state changes in power system resources. Those
changes can be the consequence of a regular operation of the grid such as switching the
equipment on and off, or a physical change of the grid’s topology such as extending or
replacing equipment due to the change in power distribution infrastructure driven by
evolving smart cities.

The research question addressed in this paper is how to provide a full recreation
of graph connectivity representing the grid at any time in history consisting of frequent
topology changes.

Three different approaches were analyzed in order to satisfy seemingly opposite
requirements: to provide an efficient write per graph element while providing an efficient
graph or subgraph scan at different historical time points.

Energies 2021, 14, 8351 18 of 19

The results enabled us to provide clear guidelines on which approach to take when
designing a solution to address our research question. However, it is worth noting that this
paper considered only static changes that reflect physical changes on the grid. Real-time
changes initiated by the regular network operations should be additionally analyzed if such
a solution is needed. In such a solution, there would be many more changes that would
impact the overall performance and would make the solution more write-intensive, which
would eliminate the second approach as a possible optimization. Consequently, future
work will try to address dynamic changes as well, aiming to combine the first and the third
approach using advanced algorithms relying on parallel data processing. The temporal
graph database is a useful means for pattern recognition, especially in cybersecurity
problems. As smart grids are critical systems, cybersecurity is essential for such systems,
and graph models such as those presented in this paper can be a good approach for
addressing cybersecurity challenges. Therefore, applying our research findings in smart
grid cybersecurity will be a subject for future work as graph models may optimize pattern
recognition.

Author Contributions: Conceptualization, I.D., N.D. and A.E.; methodology, I.D.; software, I.D.;
validation, N.D. and A.E.; investigation, I.D.; resources, J.M., I.D. and N.D.; data curation, I.D. and
A.E.; writing—original draft preparation, I.D. and N.D.; writing—review and editing, A.E. and J.M.;
visualization, I.D. and J.M.; supervision, A.E. and J.M. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors express their sincere gratitude to the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia for supporting this work within project III-42004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sikos, L.F. Introduction to the Semantic Web. In Mastering Structured Data on the Semantic Web; Apress: Berkeley, CA, USA, 2015;

pp. 1–11.
2. Gaushell, D.J.; Block, W.R. SCADA Communication Techniques and Standards. IEEE Comput. Appl. Power 1993, 6, 45–50.

[CrossRef]
3. Morais, J.; Klautau, A.; Cardoso, C.; Pires, Y. An Overview of Data Mining Techniques Applied to Power Systems. In Data Mining

and Knowledge Discovery in Real Life Applications; I-Tech Education and Publishing: Vienna, Austria, 2009.
4. Alves, W.; Klautau, A. Data Warehouse Applied to SCADA Historical Data in Electrical Power Systems. Wseas Trans. Power Syst.

2018, 13, 217–226.
5. Zaki, A.; Attia, M.; Hegazy, D.; Amin, S. Comprehensive Survey on Dynamic Graph Models. Int. J. Adv. Comput. Sci. Appl. 2016,

7, 573–582. [CrossRef]
6. Byun, J.; Woo, S.; Kim, D. ChronoGraph: Enabling Temporal Graph Traversals for Efficient Information Diffusion Analysis over

Time. IEEE Trans. Knowl. Data Eng. 2020, 32, 424–437. [CrossRef]
7. Khurana, U.; Deshpande, A. Efficient snapshot retrieval over historical graph data. In Proceedings of the 2013 IEEE 29th

International Conference on Data Engineering (ICDE), Brisbane, Australia, 8–12 April 2013; pp. 997–1008.
8. Steinbauer, M.; Anderst-Kotsis, G. DynamoGraph. In Proceedings of the 25th International Conference Companion on World

Wide Web—WWW ’16 Companion, Montréal, QC, Canada, 11–15 April 2016; pp. 861–866.
9. Semertzidis, K.; Pitoura, E. Time Traveling in Graphs using a Graph Database. In Proceedings of the Workshops of the

EDBT/ICDT, Bordeaux, France, 15 March 2016.
10. Cattuto, C.; Panisson, A.; Quaggiotto, M.; Averbuch, A. Time-varying social networks in a graph database: A Neo4j use case. In

Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems, New York, NY, USA, 23
June 2013; pp. 1–6.

11. Cheng, R.; Hong, J.; Kyrola, A.; Miao, Y.; Weng, X.; Wu, M.; Yang, F.; Zhou, L.; Zhao, F.; Chen, E. Kineograph: Taking the pulse of
a fast-changing and connected world. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys ’12),
Bern, Switzerland, 10–13 April 2012; pp. 85–98.

12. Castelltort, A.; Laurent, A. Representing history in graph-oriented NoSQL databases: A versioning system. In Proceedings of the
8th International Conference on Digital Information Management, Islamabad, Pakistan, 10–12 September 2013; pp. 228–234.

http://doi.org/10.1109/67.222741
http://doi.org/10.14569/IJACSA.2016.070273
http://doi.org/10.1109/TKDE.2019.2891565

Energies 2021, 14, 8351 19 of 19

13. Taentzer, G.; Ermel, C.; Langer, P.; Wimmer, M. A fundamental approach to model versioning based on graph modifications:
From theory to implementation. Softw. Syst. Modeling 2014, 13, 239–272. [CrossRef]

14. Maduako, I.; Cavalheri, E.; Wachowicz, M. Exploring the use of time-varying graphs for modelling transit networks. In
Proceedings of the 64th North America Regional Science Conference, Vancouver, BC, Canada, 8–11 November 2017.

15. Yuan, C.; Zhou, Y.; Zhang, G.; Liu, G.; Dai, R.; Chen, X.; Wang, Z. Exploration of Graph Computing in Power System State
Estimation. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August
2018; pp. 1–5.

16. Liu, G.; Chen, X.; Wang, Z.; Dai, R.; Wu, J.; Yuan, C.; Tan, J. Evolving Graph Based Power System EMS Real Time Analysis
Framework. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30
May 2018.

17. Kan, B.; Zhu, W.; Liu, G.; Chen, X.; Shi, D.; Yu, W. Topology Modeling and Analysis of a Power Grid Network Using a Graph
Database. Int. J. Comput. Intell. Syst. 2017, 10, 1355–1363. [CrossRef]

18. Michail, O. An Introduction to Temporal Graphs: An Algorithmic Perspective. In Algorithms, Probability, Networks, and Games;
Springer: Cham, Switzerland, 2015; pp. 308–343.

19. Time Traveling with Graph Databases. Available online: https://www.arangodb.com/2018/07/time-traveling-with-graph-
databases/ (accessed on 24 November 2021).

20. Koszela, J.; Szczepańczyk-Wysocka, P. Concept and assumptions about the temporal graph database. In MATEC Web of Conferences,
Proceedings of the 22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018), Majorca, Spain,
14–17 July 2018; EDP Sciences: Les Ulis, France, 2018; Volume 210, p. 04017.

21. Crapo, A.; Griffith, K.; Khandelwal, A.; Lizzi, J.; Moitra, A.; Wang, X. Overcoming Challenges Using the CIM as a Semantic Model
for Energy Applications. In Grid-Interop Forum; GridWise Architecture Council: Richland, WA, USA, 2021.

22. Simmins, J.J. The impact of PAP 8 on the Common Information Model (CIM). In Proceedings of the 2011 IEEE/PES Power
Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011.

http://doi.org/10.1007/s10270-012-0248-x
http://doi.org/10.2991/ijcis.10.1.96
https://www.arangodb.com/2018/07/time-traveling-with-graph-databases/
https://www.arangodb.com/2018/07/time-traveling-with-graph-databases/

	Introduction
	Related Works
	Methodology
	The First Approach
	The Second Approach
	The Third Approach

	Experiments
	Test Environment
	Test Data
	Experiment 1—Standard Queries
	Experiment 2—Update
	Experiment 3—State Recreation
	The First Approach
	The Second Approach
	The Third Approach

	Discussion
	Conclusions
	References

