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Abstract: Natural gas is one of the main energy sources in Poland and accounts for about 15% of
the primary energy consumed in the country. Poland covers only 1/5 of its demand from domestic
deposits. The rest is imported from Russia, Germany, Norway, the Czech Republic, Ukraine, and
Central Asia. An important issue concerning the market of energy resources is the question of the
direct impact of the prices of energy resources on the income of exporting and importing countries. It
should also be remembered that unexpected and large fluctuations are detrimental to both exporters
and importers of primary fuels. The article analyzes natural gas deposits in Poland, raw material
trade and proposes a model for forecasting the volume of its consumption, which takes into account
historical consumption, prices of energy resources and assumptions of Poland’s energy policy until
2040. A hybrid model was built by combining ARIMA with LSTM artificial neural networks. The
validity of the constructed model was assessed using ME, MAE, RMSE and MSE. The average
percentage error is 2%, which means that the model largely represents the real gas consumption
course. The obtained forecasts indicate an increase in consumption by 2040.

Keywords: natural gas consumption; natural gas trade; energy markets; ARIMA; LSTM

1. Introduction

The climate and energy policy of the European Union (EU), including the pursuit
of EU climate neutrality by 2050, has a major impact on shaping the national energy
strategy [1–4]. The regulatory package was adopted in 2009, setting three headline targets
for tackling climate change by 2020 (3 × 20% package), in which member states participate
according to their possibilities. Poland has adopted the following goals [5,6]:

- Increasing energy efficiency, by saving primary energy consumption by 13.6 Mtoe in
2010–2020 compared to the forecast of fuel and energy demand in 2007;

- Increasing the share of energy from renewable sources in the gross final energy
consumption to 15% by 2020;

- Contribution to the EU-wide reduction of greenhouse gas emissions by 20% (compared
to 1990) by 2020 (in 2005 the levels were: −21% in the EU ETS sectors and −10% in
the non-ETS).

In 2014, the European Council kept the trend of counteracting climate change and
ratified four targets for 2030 for the entire EU, which, after the changes in 2018 and 2020,
are as follows [6]:

- Reduction of greenhouse gas (GHG) emissions by at least 55% compared to 1990
emissions;

- At least 32% share of renewable sources in the gross final energy consumption;
- Increase in energy efficiency by 32.5%;
- Completing the internal EU energy market.
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In 2019, the European Commission issued information on the European Green Deal,
i.e., the direction of action towards achieving climate neutrality by the EU by 2050. Poland
supported this goal, but introduced changes related to the electro-energy transformation
and its socio-economic aspects. The result was the approval of the Polish Energy Policy
until 2040 in 2021. PEP2040 is one of the nine integrated sector strategies resulting from the
Responsible Development Strategy. Additionally, it is also consistent with the National
Energy and Climate Plan for 2021–2030 [6].

In PEP2040, the state and operating conditions of the energy sector were analyzed. The
document identifies three pillars on the basis of which eight specific objectives were based,
along with an indication of the means for their implementation. One of the long-term
directions outlined in the document is the zero-emission energy system, which Poland’s
energy transformation is striving for. Reducing the emission level of the electricity sector
will be possible through the implementation of low-emission sources, such as nuclear
energy, offshore wind energy, or by increasing the role of distributed and civic energy,
while ensuring energy security through the ad hoc use of energy technologies based on
e.g., gaseous fuels [6].

The aim of the article is to forecast the consumption of natural gas on the Polish market
as an energy raw material ensuring stability of energy supplies during the transformation
of the electro-energy system. The transformation process causes that the analyzed time
series of raw material consumption are non-stationary and change over time, which results
in the rejection of historical statistical data. The article indicates a group of models that can
be used to forecast small-number statistical data sets. The theoretical gap that is visible
in the analysis of the assumed research problem is the lack of reliable studies indicating
mathematical models that can be used to forecast a small number of sets of statistical
data. The key element in selecting the theoretical model is the amount of data. There is an
ongoing discussion in the literature on the determination of the size of the input data set
for modeling [7–10]. It is indisputable that the predictive model depends on the number of
inputs. What is new, however, is the trend that suggests the use of artificial neural networks
(ANN) as techniques dedicated to the analysis of small data sets. The article analyzes the
mathematical models used to forecast natural gas consumption and proposes ARIMA class
models and LSTM artificial neural networks.

The structure of the document is as follows: Section 2 describes gaseous energy
minerals in Poland, while Section 3 is devoted to the analysis of gas trade. Section 4 is
a literature review of the models used to forecast natural gas consumption. Section 5
describes the model of natural gas consumption on the Polish market. Section 6 provides
the results and discussion, and Section 7 presents a summary of the work.

2. Gas Energy Minerals in Poland

The main region of occurrence of natural gas deposits in Poland is the Polish Lowlands,
the Carpathian foothills. Low gas resources are found in the deposits of the Carpathian
area and in the national economic zone of the Baltic Sea, as shown in Figure 1.
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Figure 1. Occurrence of natural gas deposits, as of 31 December 2020 [11].

In the Polish Lowlands, natural gas deposits occur in the Fore-Sudetic and Greater
Poland regions in the Permian formations, and in Western Pomerania in the Carboniferous
and Permian formations. The gas occurs in the bulk and block-type deposits with water or
gas-pressure conditions of exploitation [12]. There are only a few deposits in this area that
contain high-methane gas, while the remaining deposits are dominated by nitrogen-rich
gas (methane content between 30% and 80%). Deposits in which natural gas contains over
90% nitrogen are also found in the Polish Lowlands (the Cychry and Sulęcin deposits in
the Zechstein Dolomite).

In the foothills of the Carpathians, natural gas deposits occur in Jurassic, Creta-
ceous and Miocene deposits. It is usually high-methane, low-nitrogen gas. The deposits
are structural and lithological, multi-layered, less often massive, producing under gas-
pressure conditions.

In the Carpathians, natural gas occurs in Cretaceous and Palaeogene formations, both
in standalone deposits and accompanying oil or condensate deposits [12]. The gas is high
in methane. The methane content is above 85%.

In the Polish economic zone of the Baltic Sea, natural gas occurs independently in the
B4, B6, B21 fields and together with crude oil in the B3 and B8 fields.

Table 1 summarizes the amount of recoverable natural gas resources from gas fields,
as well as oil and condensate fields, considering the degree of their recognition and the
state of development.
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Table 1. Natural gas deposits, as of 31 December 2020.

Resources Number Balance
Resources

Off-Balance
Resources

Industrial
Resources

Baltic 3 4464.50 - 4249.23
Carpathian 7 149.54 - -
Lowlands 32 1409.61 0.99 633.06
Foothills 13 620.03 42.55 123.69

Source: [12].

The documented deposits of the Polish Lowlands currently contain 73.4% of recover-
able natural gas resources. A total of 21.9% of these resources are located in the foothills of
the Carpathians. The resources of the Baltic and Carpathian Sea zones play a minor role
(3.6% and 1.1% of national resources, respectively). In 2020, the state of recoverable natural
gas resources amounted to 143.92 billion m3 (in total, on-balance and off-balance sheet
resources) and the resources decreased by 0.33 billion m3 compared to the previous year.
In 2020, the Gnojnica field was included in the balance sheet (documented recoverable
balance resources: 148.59 million m3). The largest increases in resources were recorded in
the Brońsko field (new wells were put into operation, mining intensification treatments)
and in the Trzebusz (geological and investment documentation approval), Paproć, Załęcze
fields (mainly better exploration of the deposit by exploitation and activities intensifying
production). Resource losses were mainly caused by mining. The recoverable resources of
the developed natural gas deposits amount to 95.81 billion m3, which constitutes 66.6% of
the total amount of recoverable resources. The industrial resources of natural gas in 2020
amounted to 73.51 billion m3. From domestic raw materials, Poland covers only 20% of
the demand.

3. Natural Gas Trading

The natural gas market differs from the markets of other commodities due to oper-
ational and logistic conditions. In the case of trading in natural gas, its transport plays
a very important issue. The market trade of gas takes place with the use of gas pipeline
systems. In addition, sometimes geographic location also determines the issue of suppliers
and recipients [13]. Gas is a raw material, the transport of which requires large investment
outlays in the long term (e.g., construction of gas pipelines), and the infrastructure built for
gas transport is used only for this purpose (there are no such restrictions in the transport
of other goods, including steam coal or oil). It also means that suppliers and customers
are bound by long-term contracts due to the enormous costs of building infrastructure.
Diversification of supplies and prices to some extent is possible thanks to the construction
of LNG regasification terminals for receiving liquefied natural gas. However, here too
there are many problems related to, for example, the parameters and properties of the
gas. As natural gas is supplied via gas pipelines or special tankers (so-called methane
carriers), three main gas trade markets can be distinguished, which (due to the possibility
of supply) are partially hermetic. The first market is North America and the second is
Europe. Sometimes both markets are referred to as the Atlantic market (similar to coal
trading). The third market, on the other hand, is the Southeast Asia region, also known as
the Pacific market.

Due to the specificity of the gas market resulting from the possibility of its transport,
there is no single global gas market. This means that for each of the three local markets
(American, European, and Asian) a different price level is set, with the European and Asian
markets being dominated by prices set in long-term contracts. Long-term contracts prevail
on the European market due to the fact that most of the gas is supplied via gas pipelines
from Russia, Norway, the Netherlands and Algeria. As the main supplier of gas to the
European market is Gazprom (Saint Petersburg, Russia), approximately 3/4 of the supplies
are made through fixed contracts, concluded separately in the case of Gazprom with each
of the countries. Gas prices in such contracts are tied to the prices of crude oil and its
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products but follow oil price movements with a lag of 1–3 quarters [14]. Often, the price of
Russian natural gas delivered to the German border is used as a reference price for price
comparisons on the European gas market.

To meet the demand for natural gas in Poland, it is necessary to import the raw
material—mainly from Russia, Germany, Norway, the Czech Republic, Ukraine and the
countries of Central Asia. Natural gas imports have a growing tendency. Over the period
1990–2018, imports increased on average by 7%, as shown in Figure 2.

Figure 2. Natural gas import in the years 1990–2020, own study based [15].

The Polish natural gas market is becoming a competitive one [16]. Since 2013, sales
through the stock exchange have been in force, initially it was 30% of the market volume,
and from 2015, 55%. The stock exchange tools developed in stages and the aforementioned
exchange obligation are the basis for the creation of a liquid, wholesale natural gas market
in Poland, and in the future, it will allow the recipient to change the supplier [6].

4. Literature Review of Forecasting Natural Gas Consumption

In the literature on the subject, it can be stated that the forecasting of natural gas
consumption was studied in several different planes, the consumption on the global
and domestic market, in the commercial and residential sectors as well as at the level of
individual consumers, as well as the gas distribution system was analyzed. Various data,
such as economic parameters, weather data, historical gas consumption, or information on
historical energy consumption or household survey data, were used for the research.

The Hubbert curve model was used as the first forecasting tool for natural gas con-
sumption. In his works, Hubbert [17,18] analyzed the production of fossil fuels and after
analyzing the time series of the production curves, he noticed that these curves are similar,
and the time series have similar properties. Statistical models related to natural gas con-
sumption were developed in the 1960s and have been widely used as forecasting tools ever
since. In [19], Balestra and Nerlove used statistical tools to analyze time series in forecasting
natural gas demand. The demand for electricity and natural gas in the northeastern United
States was predicted by regression analysis in Beierlein et al. [20]. Piggott [21] applied the
Box–Jenkins modeling. Herbert et al. [22] also used regression analysis, while the linear
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regression equation and residual study were used in Herbert [23]. ARIMA models are
described in Liu and Lin [24] and Oylum and Akgün [25]. Liu and Lin [24] used the linear
LTF method and the CCF (cross-correlation function) method. Brabec et al. [26] used the
non-linear model ARIMAX and ARX. Lee and Singh [27] built a model using the multiple
regression technique, exactly the generalized Tobit model. In 1988, Werbos in [28] used
back-propagating artificial neural networks to forecast the cold gas market and found
that trained back-propagating ANNs outperform traditional statistical methods such as
regression. Then, del Real A.J., Dorado F., Durán J. in [29] proposed the use of deep learning
techniques to forecast energy demand. They presented a mixed architecture consisting
of a convolutional neural network (CNN) coupled to an artificial neural network (ANN).
Khotanzad et al. [30] Brown et al. [31] and Brown and Iftekhar [32] developed and used
models based on artificial neural networks with feedforward to predict gas consumption
and compared them with a linear regression model. Suykens et al. [33] and built a model
of gas consumption in Belgium using non-linear artificial neural networks.

There are no studies in the literature related to forecasting natural gas consumption
with the use of LSTM (Long Short-Term Memory) networks, the architecture of which is
also recursive, but unlike standard recursive networks, the LSTM network has a feedback
loop, thanks to which it can process not only single points data, but also entire sequences.
Hence, these networks are used to classify, process and forecast based on time series data,
especially where there are delays of unknown duration between important events. LSTMs
were developed also to solve the vanishing gradient problem encountered in training
traditional recursive networks (RNNs). It should be noted that in RNN networks, learning
consists in copying the same networks, each of which transmits a message to the successor,
while in networks with feedback, the output layer of the network has an impact on the
input layer. LSTMs are a special type of RNN capable of learning long-term relationships.
They were introduced by Hochreiter and Schmidhuber in 1997 [34], and then refined
and popularized in subsequent works [35–38]. They work extremely well with long-term
dependency problems.

5. Materials and Methods

Data from the IEA [15] and BP [39] for the period from 1968 to 2020 were used to
forecast the demand for natural gas. The study took into account both linear models, i.e.,
models in which the forecast can be presented as a linear combination of previous series
and residuals of the model as well as nonlinear models. The first group was represented
by ARIMA models. These models are the canon of statistical time series models [40]. The
second group of non-linear models was represented by artificial neural networks. In the
literature on the subject, one can find many arguments that the time series of economic
variables (macroeconomic and financial) behave in a non-linear manner. For example, in
the article [41] the authors mention such empirical time series properties as: their different
behavior in periods of growth and recession or in periods of low and high volatility. Akbal
and Demirberk Ünlü proposed the use of hybrid deep learning methods [42]. According
to the results of the analysis, it is shown that the most important predictor used which
consists of feed-forward neural networks, convolution neural network and long short-term
neural networks.

ARIMA models owe their popularity to Box and Jenkins, who in 1970 published
the book Time Series Analysis: Forecasting and Control, in which they systematized the
current state of knowledge related to time series modeling. They also proposed a three-step
procedure, thanks to which it was possible to identify, estimate and verify ARIMA models.
ARIMA models are treated as linear models, and linearity refers to the construction of the
model in which the modeled yt value is a linear combination of past implementations and
past and current random disturbances εt.

The form of the ARIMA model (p, d, q) for the time series can be presented as fol-
lows [43]:

φ(B)(1− Bd)yt = c + θ(B)εt (1)
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where εt is a white noise process with mean 0 and variance σ2, B is the backward shift
operator, and ϕ(z), θ(z) are polynomials of degrees p and q, respectively. To ensure the
reversibility and casualty of the process, it is required that both polynomials do not have
roots outside the unit circle. The problem of identifying the ARIMA model consists in
indicating the value of autoregressive delays p, the order of integration d and the number
of delays of the moving average q. If the degree of integration of the process d is known,
the choice of the order p and q consists in comparing the values of a given information
criterion for models built for various combinations of p and q. If the degree of integration is
unknown, then the informative criteria cannot be used as for different d values their values
are not comparable [44].

In the case of artificial neural networks built for the purposes of time series forecasting,
the role of explanatory (input) variables is played by delayed series values. Such a structure
of the network causes that it becomes a non-linear equivalent of the autoregressive model.
Considering the prognostic function of the model being built, the proposed network should
be relatively simple (models that are too detailed, over-adjusted to the data have poor
generalization properties). Therefore, the LSTM (Long Short-Term Memory) network was
used in the study. The LSTM neural network architecture is recursive and is used in deep
learning methods. Unlike standard recursive networks, the LSTM network has feedback,
so it can process not only individual data points, but entire sequences as well. Hence, these
networks are used to classify, process and forecast based on time series data, especially
where there are delays of unknown duration between important events. The LSTM network
computes the mapping from the input sequence x = (x1, . . . , xt) to the output sequence
y = (y1, . . . , yt) by computing the network unit activation using the following iteration
equations from t = 1 to T [34]:

ft = σg(W f xt + U f ht−1 + b f ) (2)

it = σg(Wixt + Uiht−1 + bi) (3)

ot = σg(Woxt + Uoht−1 + bo) (4)

ct = σh(Wcxt + Ucht−1 + bc). (5)

ct = ft × ct−1 + it × ct (6)

ht = ot × σh(ct) (7)

where conditions W, U are weight matrices, conditions b denote the polarization vectors (bi
is the input gate polarization vector), σ is the activation function, I, f, o and c are respectively
input gates, forgotten gates, output gates and activation vectors of cells, of which all are
the same size as the activation vector of the output cell, i.e., the result of the vectors, and g
and h are functions of the input and output activation of the cell.

Proper selection of parameters causes that the constructed network corresponds to
specific forms of ARIMA models, for which there are no restrictions on parameters.

The accuracy of forecasts was assessed using forecast assessment measures:

- Mean error of ex post forecasts (mean error, ME), [43]:

ME =
1
T

T

∑
t=1

(yt − ŷt) (8)

The mean forecast error informs about the average deviation of the forecast values
from the actual realizations of the forecast variable (i.e., the load). If the ME value is
positive, then the forecasts are on average too low (underestimated), while when the ME
indicator value is negative, then the forecasts are on average too high (overestimated).

- Mean absolute error of ex post forecasts (mean absolute error, MAE), [43]:
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MAE =
1
T

T

∑
t=1
|yt − ŷt| (9)

- Root mean square error, RMSE, [43]:

RMSE =

√√√√ 1
T

T

∑
t=1

(yt − ŷt)
2 (10)

The root of the mean square error informs about how far, on average, the actual
realizations of the forecast variable deviate from the calculated forecasts. A significant
difference between the mean absolute error MAE and the root mean square error RMSE
means the occurrence of errors with very different (large and small) values during the
verification period of forecasts.

- Mean square error, MSE, [43]

MPE =
1
T

T

∑
t=1

100
(yt − ŷt)

yt
(11)

The mean percentage error informs what percentage of the actual implementations of
the forecast variable are forecast errors during the period of their verification.

6. Results and Discussion

The ARIMA models and the LSTM artificial neural networks were used to forecast the
volume of natural gas consumption, which were used to forecast the residuals obtained
from the ARIMA model (1,1,0). Additionally, in addition to historical consumption, the
mathematical model also includes a forecast of prices of primary fuels, i.e., crude oil,
natural gas and thermal coal, in imports to the European Union. The work uses the
forecasts developed by the European Commission in the report EU energy, transport and
GHG emissions trends to 2050 reference scenario 2013 [45]. This document is based on
European energy, and transport trends to 2030 from 2009 [46].

In Figure 3, the forecasts indicate an increase in the prices of all raw materials. After
2012, world prices of fossil fuels changed significantly. This is mainly due to the reserves
of shale gas and other unconventional hydrocarbons. Prices are expected to follow new,
rather different trajectories, especially for gas. The models implemented large adjustments
to the availability of conventional gas and oil resources (according to the USGS, IEA),
and included global estimates of unconventional gas resources (tight sands, shale gas and
seam methane) based on IEA estimates. The change means that the natural gas resource
base increases more than 2.5 times, which has a significant impact on prices. In terms of
economic factors, higher GDP growth is also projected, particularly in China, India, and
the Middle East and North African regions.

The basis for the identification of the autoregressive model is the empirical autocorre-
lation function and the empirical partial autocorrelation function. Figures 4 and 5 show the
values of these functions for the delays p = 1, 2, . . . 15.

Based on the graph presented in Figure 4, it can be concluded that the empirical
autocorrelation function decays exponentially, while the graph presented in Figure 5 shows
that only the partial autocorrelation for d = 1 is significantly different from zero.

The ARIMA model introduced by Box and Jenkins contains both autoregressive and
moving average parameters and introduces the differentiation operator into the model,
which is to ensure the stationarity of the process (mean constant in time, variance, and
autocorrelation). To determine the necessary level of differentiation, the data plot and the
autocorrelogram should be analyzed. In the case of natural gas consumption, there are
significant changes in the level (strong increase and decrease), which requires first-order
differentiation (lag = 1). Stationarity analysis was performed using Augmented Dickey
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Fuller test (ADF). The ADF is a standardized unit root test for determining the effect of
trends on data, and its results are analyzed by the probability of the test [35].

Figure 3. Price developments of imports into the European Union; own study based on [47].

Figure 4. Autocorrelation function; own study based on [11].
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Figure 5. Partial autocorrelation function; own study based on [11].

The following hypotheses were assumed:

Hypothesis (H0). There is no unit root for p < = 5%.

Hypothesis (H1). There is unit root for p > 5%.

The p-values equal 34%, which means that the process is non-stationary, and this is
the result of the transformation of the energy market in Poland. In the years 1965–1985,
gas consumption increased. Then there is a sudden drop, by about 19% until 1992. Since
1993, there has been a gradual increase in demand by about 7% per year. As a result of an
in-depth analysis of stationarity, the historical data from the period 1965–1992 was re-jected,
as they are not related to the current and future gas consumption. This, in turn, allowed
for the process to be stationary (p-values 4.6%) but the reduction of the input data set, the
forecasting process will be performed on a small set of input data.

There is a trend in the literature on predicting small sets of data suggesting the use
of artificial neural networks (ANN) as reliable techniques, in which their performance is
independent of the total number of input data (7–10).

Based on these studies it has been proposed to build a hybrid ARIMA model (1,1,0)
and LSTM artificial neural networks, which were used to forecast the obtained residuals
from the ARIMA model (the residual autocorrelation was checked using the Breusch–
Godfrey test). The following predictors were used in the model: historical consumption of
natural gas, prices of primary fuels, i.e., crude oil, natural gas and thermal coal, in imports
to the European Union.
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The obtained residues were introduced into the LSTM artificial neural network in the
TensorFlow environment. The model was trained on 21 data using cross entropy, Adam’s
optimization and 18 epochs. Twenty percent of the data was used for model validation.
The model is designed from the input (LSTM), the hidden (dropout) to the output (dense
layer). The residuals from the model were introduced to the input layer. The output layer
is the prediction. Figure 6 presents the distribution of network learning errors.

Figure 6. Network learning error distribution, own study.

After training on the test data set, you can see that the model achieves 98% accuracy for
the validation data. The comparison of theoretical and real values and the error distribution
are shown in Figure 7.

Figure 7. Theoretical model of natural gas consumption together with analysis of errors; own study.
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The set of statistical data used for forecasting was reduced to the period 1993–2020
due to the change in the natural gas consumption process in Poland. As a result of the
analysis of volatility measures, it can be observed that there has been a decrease in the
consumption of natural gas by about 19%. After 1993, there was a gradual increase in
demand by about 7%. A hybrid ARIMA model (1,1,0) and LSTM artificial neural networks
were built for consumption forecasting. The following predictors were used in the model:
historical consumption of natural gas, prices of primary fuels, i.e., crude oil, natural gas and
thermal coal, in imports to the European Union. The validity of the constructed model was
assessed using the tools described in the “Materials and Methods” section. The average
forecast error is −0.00032 Mtoe, which means that the forecasts are on average too high
(overestimated). The mean absolute error of ex post forecasts is 0.219922 Mtoe, while the
root of the mean square error is 0.321005 Mtoe. The difference between the errors is at the
level of 30%, which proves a significant variation in values. The average percentage error
is 2%, which means that the model largely models the real gas consumption course.

7. Conclusions

The analyzes carried out in this paper concerned issues related to the natural gas
market in Poland. It has been shown that during the transformation of the energy–electric
system, Poland intends to ensure the stability of energy supplies using natural gas. Un-
fortunately, Poland covers only 1/5 of the demand for the raw material from its domestic
deposits. The rest must be imported from Russia, Germany, Norway, the Czech Republic,
Ukraine and Central Asia. Despite the fact that none of the analyzes in the article referred
directly to the problems related to energy security in the European Union, some of the re-
sults obtained can be considered precisely in the context of security. The results of analyzes
that can be related to this issue concern long-term relations between the prices of energy
resources on the European market. The results of the analysis clearly showed that, in the
analyzed period, there was a long-term equilibrium between the prices of coal, oil and
gas on the European market, and thus the market for the main prices of primary fuels in
Europe was integrated. The leading price, which shaped the remaining energy commodity
prices in the long run, was the price of crude oil, and the prices of Russian natural gas
and thermal coal in ARA ports were imitative. This means that in the long term, the
diversification of energy sources (the three basic energy raw materials) aimed at ensuring
energy security in the European Union may be endangered. The results also suggest that
one of the possibilities of hedging against changes in energy commodity prices may be an
increase in the share of renewable energy sources in energy consumption in the European
Union. The second area of analysis was to build an effective model for forecasting natural
gas consumption. This issue is extremely important because, as previously shown, natural
gas is to ensure the stability of energy supplies for Poland during the energy transformation
period. As part of the study, a model was built based on a combination of deep learning
methods with statistical methods. The ARIMA model (1,1,0) and LSTM artificial neural
networks were proposed. The accuracy of the modeling results was verified by error
analysis and model validation ratios. This model is characterized by a high adjustment to
real data. Using artificial LSTM neural networks to analyze the residuals obtained from
the ARIMA model (1,1,0) in the years 1993–2020, a good adjustment to the time series of
natural gas consumption is obtained and good forecasts up to 2040. Description of the
phenomenon and forecast using artificial neural networks are much better than those based
on the analysis of the same trend, seasonal and cyclical fluctuations. However, further
research is needed to investigate the fit of a model that considers the effect of significant
variables in the socio-economic environment on gas consumption.
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14. Grudziński, Z.; Szurlej, A. Węgiel, ropa, gaz ziemny–analiza cen w latach 2006–2011. Przegląd Górniczy 2011, 7, 306–313.
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