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Abstract: Owing to the increases of energy loads and penetration of renewable energy with variability,
it is essential to determine the optimum capacity of the battery energy storage system (BESS) and
demand response (DR) within the microgrid (MG). To accomplish the foregoing, this paper proposes
an optimal MG operation approach with a hybrid method considering the game theory for a multi-
agent system. The hybrid method operation includes both BESS and DR methods. The former is
presented to reduce the sum of the MG operation and BESS costs using the game theory, resulting
in the optimal capacity of BESS. Similarly, the DR method determines the optimal DR capacity
based on the trade-off between the incentive value and capacity. To improve optimization operation,
multi-agent guiding particle swarm optimization (MAG-PSO) is implemented by adjusting the
best global position and position vector. The results demonstrate that the proposed approach not
only affords the most economical decision among agents but also reduces the utilization cost by
approximately 8.5%, compared with the base method. Furthermore, it has been revealed that the
proposed MAG-PSO algorithm has superiority in terms of solution quality and computational time
with respect to other algorithms. Therefore, the optimal hybrid method operation obtains a superior
solution with the game theory strategy.

Keywords: hybrid method operation; multi-agent system; non-cooperative game theory; multi-agent
guiding particle swarm optimization; battery energy storage system; demand response

1. Introduction

Over the last decade, renewable energy (RE) such as solar and wind energy has at-
tracted more attention than traditional power generation due to the increases in power
loads and greenhouse gas emission [1,2]. However, depending on the fluctuation and
unpredictability of weather conditions, RE may create difficulty in the management and
operation of power systems. To minimize the complexities and technical challenges of bidi-
rectional power flow through the distribution line on existing power systems, a microgrid
(MG) consisting of RE, energy storage devices, and loads has been introduced [3]. The
MG operator (MGO) should be able to realize the self-use of distributed energy and even
achieve low cost and high stability.

Recently, multi-agent systems (MASs) have attracted interest as an effective means of
flexible operation within the MG [4]. The MAS model is a distributed system consisting
of numerous intelligent agents that have been introduced for efficient performance and
burden distribution. The agents of the MAS can be classified into: Load agent, generation
agent, central agent, and battery agent [5–8]. In [5], the load and battery agents coordinated
with the generation agent to address complex objectives by dividing the main problem into
sequential subproblems. The aggregation agent minimized the energy cost by receiving
information from the load agent, production agent, and storage agent by using sensors.
Among the four, the storage agent was used to control the electricity storage, such as
batteries and electric vehicles [6]. The MAS in [7] was focused on the building energy
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management system via cooperation with the RE agent, central coordinator agent, and
battery bank agent. In [8], by employing the incentive-based demand response (DR),
MG-affiliated agents were implemented in order to minimize operation cost, environmental
cost, and operation risk. Furthermore, the coordination and scheduling of the various agent
units made the final decision. Energy hubs minimized the total operation costs through
decentralized management using agent systems instead of centralized management in
IEEE 30-bus systems that include ESS and DR [9]. In addition, MAS accounted for the
complex behavior using the management and control strategies [10]. However, the agents
did not have clear roles and decision-making authority. The capability of the agents can
be noted in autonomous decision-making. Energy management in a distributed energy
resource system may be conducted by using the decision-making capacity of agents. The
MAS in [11] enables decision-making and promotes competition among agents to achieve
the global goal. The decision-making of agents widely applies game theory to MG energy
management [12]. Game theory can provide economic and mathematical tools, allowing
the action of each agent to interact with other decision-makers, and is characterized into
two categories: Cooperative and non-cooperative game theories. The cooperative game
theory requires players to make binding commitments, thus that legal regulations maintain
their promises. Conversely, non-cooperative game theory does not allow binding contracts
or solidarity but permits agents to pursue their own purposes. The game model exhibits
different objective functions of the consumers and utility [13]. The Stackelberg game has
been applied to handle non-cooperative game theory based on the payoff of each agent [14].
It is essential to predict individual strategies and find the Nash equilibrium that can satisfy
all players.

In general, a battery energy storage system (BESS) has been proven to reduce the cost,
not only by charging energy during the low electricity price period but also by discharging
the energy during the high price period [15]. Since BESS is considered a dispatchable
source, it has operational benefits for stable and economical operation. It is necessary
to install BESS with the appropriate capacity for optimal MG operation. In [16], the
BESS sizing was addressed using a non-cooperative game approach in order to minimize
electricity price and increase self-energy consumption. However, battery costs, such as
installation and operation costs, were not considered. The objective function in [17] was
calculated to minimize the sum of the cost of the power imported from the main grid
and BESS. However, the state of charge (SOC) and depth of discharge (DOD), which are
important lifetime factors, were not considered. Thus, in considering the MG operation
and BESS costs as well as lifetime, a multi-dimensional complex objective function would
be required. Meanwhile, the DR program has also been expected to improve both reliability
and economics by reducing the peak load. The MGO encourages consumers to participate
in DR when power load reduction is required because DR is a flexible and inexpensive
resource. In [18], a confidence-based incentive DR strategy was applied to attract more DR
participation during the peak period by offering different incentives at different periods. A
relationship certainly exists between DR participation and incentive value. The authors
studied the principles of pay-as-bid, which presented that aggregators bid for the incentive
value and DR capacity offered by customers to receive the incentive [19]. Combining game
theory with the original pay-as-bid, in which only the winner obtains the monopoly, the
study proceeded with decision-making and concluded that the load aggregators gained the
maximum benefit. The results demonstrated a reasonable price at which to sell the power
stored in the residential battery, but MG operation was not considered. The microgrid
clusters were employed to consider the balance of collective and individual interests under
transactive energy management [20]. However, the optimal capacities of BESS and DR were
not applied. In [21,22], the optimal BESS capacity was solved by considering the installation
and operation costs of BESS using various programming techniques, and in [19,23,24],
the incentive value of DR was determined using non-cooperative game theory or Nash
equilibrium. Although a multi-agent based energy management system was presented
to solve the main objective in division into subproblem and to schedule the DR program,
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autonomous decision-making and BESS allocation through agents were not considered [25].
However, these studies did not consider both BESS and DR allocation simultaneously.
During the process, it is essential to determine the optimal capacities of BESS and DR and
consider them for the economic MG operation.

Although the optimal operation of MG with BESS and DR was extensively studied,
optimal capacity allocation of BESS and determining DR incentive payment solved by
game theory has not been widely investigated. In this regard, this study proposes an
optimal hybrid method optimization method for a grid-connected MG by determining
the BESS and DR capacities using the non-cooperative game theory. Due to the trade-off
characteristics between optimal BESS capacity and microgrid utilization cost, as well as
between optimal DR capacity and incentive payments, game theory has been used. To
this end, game theory strategies are expected to minimize the MG utilization cost and
aid in coordinating BESS and DR, as the BESS operation can curtail DR participation.
The objective function comprises the electricity price purchased from the utility, BESS
cost, and DR cost. In addition, the problem is successfully performed using multi-agent
guiding particle swarm optimization (MAG-PSO), which adjusts the best global position
and position vector of a particle.

The main contributions of this paper are listed as follows:

• The proposed two-layer MAS model is constructed with an MGO agent, an RE agent,
a Battery agent, and a Load agent. It achieves coordinated and efficient MG oper-
ation by considering BESS and DR. It enables autonomous game theory based on
communication among agents to optimize the MG operation.

• The effectiveness of applying BESS allocation is evaluated by the sum of the MG
operation cost and BESS cost considering depreciation, whereas the superiority of DR
allocation is demonstrated by comparison with different DR strategies.

• The proposed optimal hybrid method operation can improve the utilization costs,
including operation, BESS, and DR costs. It assists the MGO in formulating reasonable
and economical decisions in the MAS model.

• MAG-PSO, which adjusts the best global position and position vector of the particle,
is formulated in the proposed MG model to prevent the curtailment of DR participa-
tion. By using the MAG-PSO, the solution is improved with the optimal capacity of
BESS and DR and exhibits better performance. The solution can be applied to larger
power systems.

The remainder of this paper is organized as follows. Section 2 describes the con-
struction of a grid-connected MG system. In Section 3, the proposed MAS model and
game theory strategy are introduced, and the formulation and solution method of the
optimization problem is presented. Section 4 discusses the simulation results, and finally,
Section 5 summarizes the conclusions.

2. Overall Scheme of the Microgrid
2.1. Grid-Connected Microgrid

The MG is an electrical power system situated at a distributed level, consisting of
decentralized energy systems, i.e., photovoltaic (PV), wind turbine (WT), and BESS. In
MG, the RE resources can reduce the gas turbine power or thermal power generations, but
intermittent power generation can destabilize the power system. Thus, the MGO should
consider the security and economics of the power supply using adjustable power while
monitoring the RE and power load.

In general, there are two MG operating modes, such as islanded and grid-connected
modes. The islanded mode dispatches electrical power independently from the utility. The
generators should have the power capacity to satisfy the energy balance. This mode requires
more capacity for renewable sources that do not cause environmental problems. However,
the variability of power sources reduces the reliability of the system. According to a high
proportion of volatile power sources, the MGO may prioritize resiliency. In contrast, the
MG operating in the grid-connected mode supplies/purchases surplus/deficient electric
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power to/from the utility, depending on the electricity price determined by a fixed or
variable market price. Unlike the islanded mode, the grid-connected mode ensures the
security of the system because it can easily supply power based on the reserve power of
the utility.

In order to provide the reliability of power to load, our work focuses on the grid-
connected mode with the assumption that the utility is a power supplier. Figure 1 shows
the structure of the proposed MG model consisting of PV, WT, BESS, and responsive loads.
The DC/AC inverter is a component of the system because intermittent RE sources cause
high-level fluctuations and disturbances in the system [26]. For the primary use of the RE,
the MGO decides whether to receive electrical power from the utility. The electricity prices
are also communicated to users regarding each time slot and BESS aids in reducing the
load by storing surplus power and using it during peak demand times.

Figure 1. Structure of grid-connected microgrid.

2.2. Modeling of PV

PV panels convert solar power into DC electricity. The output of a PV generator
depends on the size and efficiency of PV panels. The power output can then be calculated
as a function of solar irradiation [18].

Ps = ηs × A× SI(1 + β(Tt − 25)) (1)

where ηs and A are the efficiency (%) and area of the panels (m2), respectively. β denotes the
temperature coefficient of the maximum output power, and SI represents solar irradiation
(kW/m2). β denotes a negative percentage per Kelvin or degree Celsius and is considered
as −0.005/◦C in this study. Tt represents the output air temperature.

The total generated solar power can be extracted as follows:

PsT = Ps × Ns (2)

where Ns is the number of solar generators.
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2.3. Modeling of WT

The electric power of a WT is generated by the rotating turbine blades mounted on
the tower. The wind speed-generated power can be expressed as a piecewise function [18].

Pw =


0 i f v f ≤ v or v ≤ vc

ηw × Pr × v3−vc
3

vr3−vc3 i f vc ≤ v ≤ vr

ηw × Pr i f vr ≤ v ≤ v f

(3)

where Pr and vr represent the rated electrical power and rated wind speed, respectively. v
and ηw denote wind speed and efficiency. vc and vf represent the cut-in and cut-off wind
speeds, respectively.

For a number of wind generators, the total power can be given by

PwT = Pw × Nw (4)

where Nw is the number of wind generators.

2.4. Modeling of BESS

The BESS is one of the most important microgrid units for minimizing the effect of the
intermittent property of renewable sources. This study selects an electrochemical battery
because it is known to be capable of storing energy over an extended time. In time slot t,
Pb(t) is negative if it is discharged or positive if it is charged [27]. The BESS power can be
expressed as follows:

− Pb
dch,max ≤ Pb(t) ≤ Pb

ch,max (5)

where Pb(t) is the discharging or charging power on the AC side of BESS. Pb
dch,max and

Pb
ch,max denote the maximum discharging power and maximum charging power, respectively.

The state of charge (SOC) of the BESS in time slot t is represented as SOC(t).

SOC(t) = SOC(t− 1) + Pb
DC(t) · ∆t

Eb
(6)

subject to
Pb

DC(t) = Pb(t)− Pb
loss(t) (7)

where Pb
DC(t) is the power on the DC side of BESS and Eb is the capacity of BESS. ∆t and

Pb
loss(t) denote the interval of the time period and power loss in the converter, respectively.

To avoid over-discharging and over-charging, the maximum and minimum SOCs are
determined [28]. The battery energy level limits can be represented as

SOCmin ≤ SOC(t) ≤ SOCmax (8)

The behavior of BESS can be mathematically described through the following equations.

SOC(t + 1) = SOC(t) +
(

tstep

{
Pb

ch(t)−Pb
dch(t)

})
/Eb (9)

SOC(t) ∈ [SOCmin , SOCmax] (10)

where Pb
dch(t) and Pb

ch(t) are the discharging charging power at time t, respectively. SOC(t)
is the battery SOC at each time step, tstep, bounded by an upper limit, SOCmax and lower
limit, SOCmin. EESS denotes the battery capacity in kWh.

The charging/discharging power of the BESS is also bounded due to the following
constraints.

Pb
ch(t) ≤ Pb

ch,maxηchub(t) (11)

Pb
dch(t) ≤ Pb

dch,max(1− ub(t))/ηdch (12)
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where ηch and ηdch are the charging and discharging efficiencies of the battery, respectively.
ub is a binary variable denoting the charging (“1”) or discharging (“0”) status at each
time step.

Assuming that the BESS cannot discharge and charge simultaneously, its formulation
is as follows:

Pb
dch × Pb

ch = 0 (13)

2.5. Load and Utility

A fluctuating residential load profile, Pd(t), is taken as a continuous function with a
time step of 1 h. The electricity price information invigorates the consumer to be active in
power trading and to manage power demand.

Pg(t) = Pd(t)− PsT(t)− PwT(t)− PDR(t) + Pb(t) (14)

where Pg(t) represents the net load and PDR(t) is the capacity of DR in time slot t, respectively.
The power supplied by the utility is Pg(t), which is positive if the power is imported

from the grid because of deficient power generation or negative if the power is exported to
the grid [8]. In our work, the power exported to the grid is zero, and the financial benefits
caused by excess electricity are also zero. Pb(t) is on the right side because BESS power is
negative when it is discharging and positive when it is charging.

3. Proposed Optimal Operation for Multi-Agent System
3.1. Two-Layer MAS Model

The MAS is composed of numerous distributed intelligent agents that communicate
and cooperate within the environment for each agent in order to solve the multifaceted
optimization problems. The MAS characteristics can be summarized as capable of dealing
with complex and large problems, extendibility and flexibility, intelligence and autonomy,
handling distributed data and expertise, and modularity and cooperation [29–31]. For the
MAS model to work effectively, the organization of the communication among agents and
operation is important. Hierarchical systems need to optimize different types of energy
management systems. The smart grid architecture model has been used as a typical power
management system consisting of the hierarchical layers for implementing information
exchange and technical functions. In order to communicate between each agent in MAS,
addressing communication networks or links is also a huge research area. In this regard,
we assumed that the communication is based on basic Ethernet communication, and the
database is the blackboard [5].

In this paper, based on the smart grid architecture model, a two-layer MAS is con-
ducted to achieve the coordinated and efficient management of energy considering BESS
and DR. Figure 2 illustrates the proposed MAS model, including the communication
method between agents. Our work constructs a two-layer MAS consisting of an MGO
agent on the upper layer and RE, Battery, and Load agents on the lower layer. MGO
agent receives information regarding the RE agent in only one direction and conducts
two-way communication with Battery and Load agents. The RE agent monitors the WT
and PV states and predicts renewable power generations based on the environment, such
as wind speed or solar radiation. Meanwhile, the Battery agent perceives the current BESS
SOC and participates in the game theory. Load agent recognizes the DR capacity and
is involved in incentive pricing based on game theory. Agents in the lower layer have
distributed relationships because they do not communicate with each other. Consequently,
the upper layer should send out an economic dispatch, whereas the lower layer provides
data concerning the state of the unit or reacts to the response from MGO agent.
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Figure 2. Proposed two-layer multi-agent system (MAS) model.

The goals of the optimization operation are not only to reduce the MG operation cost,
but also to supply power safely, considering the balancing problem between generation
and load. The optimal steps of the proposed MAS model are explained as follows:

1. RE agent includes PV and WT power generation. The agent recognizes the environ-
ment, such as solar radiation or wind speed, and delivers information on renewable
power generation to the MGO agent in a time slot.

2. Because BESS is mainly used to adjust the peak power, the Battery agent monitors
the SOC and determines the optimal BESS sizing based on the game theory with the
operation schedule of the MGO agent.

3. The load agent recognizes the available capacity to reduce the peak load during
the time slot. This agent makes a decision with differential incentives based on a
pay-as-bid pricing mechanism using game theory.

4. The MGO agent receives the market price, load demand, and operation information
from agents in the lower layer. After receiving the communication, the agent solves
the game theory, which is discussed in Section 3.2. MGO operates to minimize MG
operation costs through determined capacities of the BESS and DR.

3.2. Game Theory Strategy
3.2.1. Non-Cooperative Game Formulation

Game theory is a decision-making strategy involving a number of cooperative or non-
cooperative players. The communication between MG and users has been proposed using
the Stackelberg game model, which combines energy storage capacity and consumption
by applying a non-cooperative game-theoretic method based on the Nash equilibrium,
which is defined as a stable decision based on the payoffs received by players after their
best choices [12]. In the process of finding satisfaction, each player responds to the
other opponents’ choices with its best decision. In a non-cooperative game, the players
aim to maximize/minimize their profit/cost and then search for the Nash equilibrium.
Their strategies are directed with their own purposes, assuming that the players in
the game theory are rational. Our work formulates a game theory that minimizes the
MG operating cost.

The non-cooperative game among users can be formulated as follows:

(1) Players: Agents in the set N participates in the game theory strategy;
(2) Strategies: Each agent n∈N decides its strategy by determining the usable power

capacity and setting the cost to maximize its payoff;
(3) Payoff: Pn(xn, x-n, yn) is a cost function for user n.
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Based on the payoff function, agents set their capacity or incentive value until the
Nash equilibrium is achieved. Let (x−n

*, . . . , x1
*, . . . , xn

*) denote the Nash equilibrium,
and the optimal output is yn

*, then:

Pn(xn
∗, x−n

∗, yn
∗) ≤ Pn(xn, x−n

∗, yn)
Pn(xn

∗, x−n
∗, yn

∗) ≤ Pn(xn
∗, x−n, yn)

(15)

Here, xn
* and x−n

* are represented as the BESS and MG operation cost or DR capacity
and cost during the time slot at the Nash equilibrium. yn

* indicates the optimal BESS
sizing or DR incentive value, which are the intermediate solutions, after achieving the
optimal point.

Proposition 1. For each agent n∈ N, the daily cost function Pn is continuously differentiable in
xn. Thus, the space of agent cost function is a non-empty convex compact subset of Euclidean space
in xn.

Proof. Due to the continuous characteristics of the daily cost function Pn(xn, x−n, yn), it is
continuously differentiable in xn. Because the Hessian of Pn(xn, x−n, yn) is a positive semi-
definite, Pn(xn, x−n, yn) is convex [32]. Proposition 1 is a prerequisite for Proposition 2. �

Proposition 2. For ∀n∈N, the Nash equilibrium of the non-cooperative game exists and is
also unique.

Proof. Since the cost function Pn is convex in xn, the Nash equilibrium is proved to be
present and also unique [23]. �

Proposition 3. The uniqueness of Nash equilibrium, proven in Proposition 2 is Pareto optimality.

Proof. According to Proposition 2, the non-cooperative game has the Nash equilibrium
among all agents. No one can change their payoff without the permission to change the
strategies of other agents, and then Pareto optimality is defined as the opted strategy state
when no one can increase their payoff by modifying the strategies of users without affecting
other agents’ payoff [33]. Consequently, it is noted that the Nash equilibrium in the game
is the Pareto optimality. �

Proposition 4. For the optimal output yn as the BESS capacity or DR incentive, there is a unique
yn that can minimize MG cost. It is comprehended that there is a specific cost value with a certain
BESS capacity or DR incentive.

Proof. In the BESS strategy, MG operating cost function is expressed as Equation (16).

Pn = ∑
h

{
CGrid(t) ·

(
Pg(t)− kh · yn

) }
+ ∑ xn (16)

where CGrid(t) and kh denote the electricity price and parameter of discharging/charging of
BESS, respectively.

The parenthesis function on the right side is the polynomial, and BESS cost and xn
is the primary function [23]. Therefore, the function Pn is convex in yn and exists as an
optimal BESS capacity, yn

*. Conversely, in DR strategy, the cost function, Pn can be written
as follow:

Pn = ∑
h
{CGrid · (PGrid − khx−n)} + ∑ yn · PDR(t) (17)

where kh represents the parameter of the expected DR incentive price considered in MGO.
The parenthesis function is the primary function and the consumer benefit, xn is a

secondary function. The optimal DR incentive value exists, hence, the proof is complete. �
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From Propositions 1–4, it can be seen that the non-cooperative game certainly de-
pends upon the payoff function. For the optimal strategy to minimize MG cost, our work
formulates the payoff function using a payoff matrix with game theory strategy.

3.2.2. BESS Strategy

The battery of MG is scheduled based on the game theory between MGO and Battery
agents. In the BESS, the Nash equilibrium is formed at the economic optimal trade-off
point between the MG operation and BESS costs. Generally, higher BESS capacity could
level the power load, reducing operating costs. The BESS cost (SCn) is a function of the
storage size in terms of rated power and energy.

SCn = cp · Pn
rated + cE · En

rated + c f ixedO&M · Pn
rated + cvariO&M · En

rated (18)

where cp and cE are the specific costs of the BESS adopted technology, depending on the rat-
ing power, Pn

rated and the nominal capacity, En
rated, of the nth BESS. cfixedO&M and cvariO&M

are the coefficients of fixed and variable operation and maintenance costs, respectively.
Considering the lifetime, Equation (19) is reformulated.

Cn
BESS =

Ks

365
· SCn (19)

where Ks denotes a capital recovery factor with a value of 0.1, considering that the BESS
lifetime is 10 years.

The cycle life of the lithium-ion battery refers to the number of discharge and charge
cycles, which is a function of DOD. The aging relationship between cycle life and DOD is
as follow:

Cycle Li f e = β0 · DOD−β1 · exp(β2(1− DOD)) (20)

Here, β0 = 2731.7, β1 = 0.679, β2 = 1.614.
To ensure the lifetime of Ks used in Equation (19), the battery constraint that the DOD

should be 80% or less is satisfied. In the first part of the BESS strategy, the Battery agent
presents the BESS maximum capacity, which is set as equal to five times the peak load.

3.2.3. DR Strategy

Our study proposes a pay-as bid strategy to determine DR incentives while game
theory between MGO and Load agents increases the participation of DR. The purpose
of DR bidding and incentives is to optimize the general satisfactions of MGO and Load
agents. Assuming that the agent in the game theory is rational, the Load agent submits
bids that are ordered pairs of the proposed incentives and capacities. Because participation
and incentives have a positive correlation, it is critical to find the perfect competition in
the operation concept. The payoff factor of the DR game is expressed, accounting for the
residential battery cost function of the Load agent.

αt
bat(∆EDR) = −at log

(
1− ∆EDR

B

)
(21)

where αt
bat and ∆EDR denote the cost of the battery in house as a function of stored energy

and DR capacity, respectively. at is a pricing coefficient determined by utility. B represents
a parameter and also serves as the maximum value of |∆EDR|.

Since ∆EDR/B < 1, the quadratic equation can be understood from its Taylor expansion.

αt
bat(∆EDR) ≈ −at

(
−∆EDR

B
− ∆EDR

2

B2

)
=

at · ∆EDR
B

+
at · ∆EDR

2

B2 (22)
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The total load can be rewritten as PDR, assuming that the load is constant for an hour.
Thus, the DR’s payoff factor can be represented by a quadratic function.

αt
bat(∆EDR) = αt(PDR) = vDRPDR + uDRPDR

2 (23)

The DR incentive is obtained between the cost of the residential battery and market
pricing. Under the assumption that a higher incentive value corresponds to higher partic-
ipation, MGO agent should find the Nash equilibrium that can satisfy both DR capacity
and economics. When the DR is not needed, the MGO agent suggests a lower price than
the minimum incentive of the Load agent, thus that game theory does not start. During
DR strategy, the Load agent presents the maximum power market price as an incentive
value with the maximum capacity. Consumers pay the market price consumed regardless
of their bids and submission, assuming that the market price does not depend upon the
DR strategy.

3.3. Optimization Technique
3.3.1. MG Formulation

The MGO aims to determine the operation of the MG, including the market price,
DR incentives, and BESS cost by the maximum use of renewable energy. Referring to the
objective functions [8,18], the objective function that minimizes the utilization cost is as
follow:

min f (x) = min

(
T

∑
t=1

[
Pg(t)× CGrid(t) + Cn

BESS + PDR(t)× CDR(t)
] )

(24)

where CDR(t) denotes the determined incentive in time slot t.
The following constraints are imposed to determine the feasible solutions of the cost

function.

• Power balance constraint

PsT(t) + PwT(t) + Pg(t) = Pd(t)− PDR(t) + Pb(t) (25)

Equation (25) is the equality constraint, which is the premise of the stable operation
of the MG energy management. The reason for Pb on the right-hand side is that BESS
discharging is negative, whereas charging is positive.

• Generation limit constraints for PV, WT, and BESS

0 ≤ Ps ≤ Ps
max (26)

0 ≤ Pw ≤ Pr (27)

0 ≤ Pg ≤ Pg
max (28)

0 ≤ PDR ≤ PDR
max (29)

Equations (26) and (27) are the PV and WT power constraints, respectively. Equation (28)
ensures that the power between the utility and MG does not exceed the transmission
capacity limitation. The constraint of Equation (29) implies that the total usable capacity of
DR during the day is limited.

3.3.2. Multi-Agent Guiding PSO

PSO is a population-based stochastic optimization method inspired by the social
behavior of bird flocking and results in optimal solutions via repeated simulations to
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improve candidate solutions [34]. This can be viewed as a distributed behavioral algorithm
that can perform n-dimensional searches to find solutions to various optimization problems.
In the PSO algorithm, the kth individual of the population in the n-dimensional search
space is evaluated based on the objective function at its current position. Each particle
consists of an n-dimensional position vector, Xk = [xk1, xk2, . . . , xkn]T and velocity vector,
Vk = [vk1, vk2, . . . , vkn]T. The velocity and position of a particle, k, can be expressed at the
(i + 1)th iteration.

→
Vk

i+1
= iwi+1 ·

→
Vk

i
+ c1 · r1 ·

(
pbestik −

→
Xk

i)
+ c2 · r2 ·

(
gbesti −

→
Xk

i)
(30)

→
Xk

i+1
=
→
Xk

i
+
→
Vk

i+1
(31)

subject to

iwi+1 = iwmax −
iwmax − iwmin

imax
(i + 1) (32)

where r1 and r2 are two different random numbers of the uniform distribution within the
range [0 1], and c1 and c2 represent learning rates with positive constants. pbesti is the
best solution, and gbesti is the best global position at the ith iteration. iwi+1 denotes the
inertia weight for the (i + 1)th iteration to control the velocity in the PSO algorithm. iwmax
and iwmin are the initial and final inertia weights, respectively, and imax is the maximum
number of iterations.

Since PSO has no evolutionary algorithms, it affords the advantage of convergence
speed in power systems [35]. The fast convergence rate and accuracy are suitable for
real-time optimization processes. However, while processing some model functions, the
PSO can become trapped in local optima. Dynamic Guiding PSO (DG-PSO) ensures particle
swarm migration and prevents entrapment by the local optima with the limiting absolute
value of the global position [36]. If the values of the global position are not changed at the
end of each iteration, the algorithm is triggered by using two tuning factors: Contraction
and expansion. However, the limitations of gbest are changed in the process of the algorithm
and the user-defined tuning factors do not randomly control the global position. Hence,
DG- PSO cannot ultimately solve the local optima. Therefore, an improved algorithm is
required to find global optima and effectively reflect the decision-making of the agents. Our
work proposes the Multi-agent Guiding PSO (MAG-PSO), which adjusts the best global
position based on the results implemented through the game theory among the agents.{

gbestmax = max(abs(gbest1))
gbestmin = min(abs(gbest2))

(33)

where gbestmax represents the absolute maximum vector value of n-dimensional gbest1
in the operation with the optimal BESS capacity and gbestmin denotes the absolute mini-
mum vector values of gbest2 derived during operations with incentives determined by the
game theory.

In order to prevent entrapment by the local optima, the updating position vector is
obtained follows.

→
Xk

i+1
=
→
Xk

i
+
→
Vk

i+1
− wi+1 · r3 · gbesti (34)

subject to

wi+1 = wi − (wi − 0.4) · exp
(
−abs(gbesti − pbestik) ·

(i + 1)
imax

)
(35)

where wi+1 and r3 are the weight and random number ranging from 0 to 1, respectively.
The advantages of the proposed MAG-PSO are as follows: It can prevent the DR

curtailment effect and achieve satisfactory optimization results by inhibiting particles from
entering the local optima. The convergence speed also increases because the gbest maximal
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and minimal limits reduce the range in which particles should move, and agent guiding
aids the PSO to quickly search for the optimal solution.

3.3.3. Hybrid Optimization Process

In the MAS, each agent tries to find the optimum BESS capacity and DR incentive
to satisfy their own purposes. After comparing the daily cost corresponding to the BESS
capacity or DR incentive, each of the two game theory strategies may reach a Nash equilib-
rium. Then, the MGO agent selects the final optimal strategy that minimizes the daily cost.
The process of MG operation with game theory is performed in the following steps.

Step 1:Construct the two-layer MAS model and initialize the MG input parameters, such
as PV, WT, BESS, and Load.

Step 2:Define an objective function as (16) and (17) with the following constraints (24)–(29).
Obtain the intermediate solutions derived from Method 1 and 2. Further details of
the process are as follows:

Method 1: Game Theory Strategy for BESS

1 Set yn = yn
max

2 Calculate initial xn and x-n
3 repeat
4 Define objective function as Equation (16) and solve cost function in Equation (15)
5 if xn changes then
6 Update and broadcast xn
7 end
8 if A new update is received then
9 Update x-n accordingly
10 end
11 until No user changes its strategy
12 Select minimal daily cost Pn(xn

*, x-n
*, yn

*)

Method 2: Game Theory Strategy for DR

1 for h = 1:24
2 Set yn = yn

initial

3 Calculate initial xn and x-n
4 repeat
5 Define objective function as Equation (17) and solve cost function in Equation (15)
6 if yn changes then
7 Update and broadcast yn
8 end
9 until No user changes its strategy
10 end
11 Select minimal daily cost Pn(xn

*, x-n
*, yn

*) at each time slot h

Step 3:Establish the objective function and constraints given by Equations (24–29).
Step 4:In the MAG-PSO, set the required input parameters to initialize the algorithm.
Step 5:Obtain the best global particle position sets at the optimal capacity of BESS and DR,

respectively, and store them in the repository.
Step 6:Start iteration
Step 7:Implement Multi-Agent Guiding. Update the maximum and minimum values of

the global particle positions.
Step 8:Update the velocity and position of each particle according to Equations (30) and (34).

Calculate the fitness value of each particle.
Step 9:Determine whether the stopping criteria is satisfied. If the number of iterations

reaches the maximum, go to the next step. If not, repeat the iteration.
Step 10:Output the iteration results based on MAG-PSO.
Step 11:Obtain BESS charge/discharge operation and DR scheduling during the time slot.
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The overall optimization procedure of the proposed hybrid method is shown in Figure 3.

Figure 3. Overall procedure of the proposed optimal hybrid method operation.

4. Simulation Results

In order to validate the superiority of the optimal operation, a hybrid method is
demonstrated considering a grid-connected MG. Our work not only demonstrates the BESS
strategy results but also simulates the DR incentive using the dual-game theory strategy.
Moreover, it proves that the optimization problem of minimizing the MG operation cost is
solved by the MAG-PSO algorithm. The simulations have been implemented in MATLAB
R2020a installed on a personal laptop with Intel®® Core i5-8400 CPU @ 2.80 GHz and
16 GB RAM.

4.1. Data Description

To evaluate the feasibility of the proposed hybrid method, the parameters of the
PV and wind generators are given in Table 1. Here, the six WT and five PV systems are
installed in the MG and take on the role of RE sources. Figure 4 depicts the wind velocity,
solar irradiation data, residential load, and utility grid electricity price, which are taken
from [37]. Regardless of the capacity of the BESS, the maximum and minimum SOC values
are set equal to 10% and 90%, respectively [17]. In addition, the initial SOC level at the
start of the day is always set to 50% of the BESS capacity. For conducting the proposed
MAG-PSO algorithm, the number of particles, the maximum number of iterations, and
learning rates have been set as 3000, 250, and 2, respectively [34,38].
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Table 1. Input parameters.

Parameter Value Unit

PV generators
Covered area, A 25 m2

Efficiency, ηs 16 %
Maximum power 4 kW
No. of PV panels 5
Wind generators
Cut-in velocity, vc 3 m/s
Cut-off velocity, vf 25 m/s
Rated speed, vr 10 m/s
Efficiency, ηw 95 %
Maximum power, Pr 5 kW
No. of WT 6

Figure 4. Input data over a 24 h horizon. (a) Wind velocity and solar irradiation. (b) Power load and
market price.



Energies 2021, 14, 603 15 of 21

4.2. Optimal Operation Results
4.2.1. Method 1: BESS Strategy

The game theory strategy for BESS is based on a trade-off, which can be used to find
the optimal sizing of BESS. The sum of the MG operation and BESS cost is plotted for the
BESS capacity in kWh. However, plotting the operating costs for all capacities requires
considerable time. Table 2 represents the calculation of MG operating costs based on the
capacities of 200 kWh, 100 kWh, and 35 kWh. The Battery agent justly satisfies the condition
that the DOD should be less than 80% to ensure its lifetime. Honestly, the MG operating
cost without BESS and DR scheduling are also the highest. As shown in Table 2, the MG
operating cost decreases as the BESS capacity increases. This is because a sufficient BESS
capacity becomes the resource to take more responsibility for the load of MG. Meanwhile,
the BESS cost also increases as the BESS capacity increases. Since the MG operating cost is
expressed as a polynomial and the BESS cost as a linear function, the optimal BESS capacity
to minimize the objective function is unique. According to the results of Method 1, the
BESS capacity for the proposed MG model is 32 kWh.

Table 2. Microgrid (MG) operating and battery energy storage system (BESS) costs according to
BESS capacity.

0 kWh 35 kWh 100 kWh 200 kWh

Operating Cost (¢) 3790.52 3429.54 3353.90 3268.80
BESS Cost (¢) 0 292.445 835.556 1671.11

Figure 5 illustrates the amount of energy purchased without the BESS and with 32 kWh
and 200 kWh BESS. Comparing the amounts of power purchased from 8 to 20 h when
the electricity price is high, note that purchased energy is lower using BESS. In particular,
the 200 kWh BESS significantly curtails the MG operating cost by reducing the amount of
purchased power at 8 h and from 13 to 16 h, when the electricity price is high.

Figure 5. Energy purchased from the utility grid.

Figure 6 shows the charging/discharging energy and SOC of BESS. The 32 kWh BESS
supplies power from 6 to 15 h, and the volatility of SOC is greater than when the capacity
is 200 kWh. This means that the appropriate BESS capacity is obtained for the balance
of power supply and demand. Finally, MG operation cost decreases to 3486.86¢, and the
utilization cost is 3754.238¢.
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Figure 6. Optimal charging/discharging cycles and state of charge (SOC) of BESS. (a) 32 kWh BESS.
(b) 200 kWh BESS.

4.2.2. Method 2: DR Strategy

The DR strategy is applied to the incentive decisions that decrease the MG utilization
costs while increasing consumer participation. This strategy, which is similar to that
of BESS, is based on the trade-off between the DR capacity and incentive price. In the
game theory between MGO and Load agents, the former has data on renewable power
generation and market prices. On the premise that a higher incentive value increases the
participation rate, each agent makes a rational decision. The maximum DR participation
per hour is 4 kWh, and the total DR participation per day is limited to 25 kWh. In order to
reflect Australia’s actual market operations, the conventional DR program has been taken
from [39], which is engaged through the aggregator with 18.82¢ incentives value for 1 to
4 h a day.

Figure 7 illustrates the power load profiles with and without the DR program. The
DR game strategy intends to reduce power regardless of the peak energy time. If there is
an RE that can satisfy the power load, the incentive value is fixed at 0 to preclude the game
theory from being established. The conventional DR can only participate for up to 4 h a
day, thus, it should reduce energy when the power market prices are high.
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Figure 7. Load patterns of each demand response (DR) strategy.

Table 3 shows the operation results of the conventional DR program and Method 2.
To ensure the feasibility of Method 2, the total DR cost, capacity, MG operating cost, and
utilization cost are expressed. The conventional DR reduces the load by 14 kWh because of
the time limit. The DR cost is also low by 262.51¢ due to its low capacity. In contrast, the
game theory DR strategy intends to reduce power by a total of 22.96 kWh, which curtails
the operating costs to 3126.13¢. As a result, the utilization cost is 7.1% less than that without
the DR program and 3.8% less than that with the conventional DR program.

Table 3. Comparison of the DR programs.

Conventional DR Program Method 2

DR Capacity (kWh) 13.94 22.96
Daily DR Cost (¢) 262.5082 395.5845
Operating Cost (¢) 3400.10 3126.13
Utilization Cost (¢) 3662.6082 3521.7145

Figure 8 depicts the hourly DR capacity and incentive values derived from Method 2.
Here, the average incentive value for one day is calculated as 16.8 ¢/kWh. Certainly, the
higher the capacity, the higher the incentive value.

Figure 8. Proposed DR strategy results.
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4.2.3. Hybrid Method

The hybrid method focuses on minimizing the MG operating cost using BESS and DR
strategies. Table 4 represents the DR capacity and utilization costs for each strategy. The
proposed hybrid method reduces the operating cost by 8.5%, whereas the Battery agent
satisfies the lifetime constraint. The daily DR capacity is 15.94 kWh, and the total incentive
value is 263.12¢. Then, the average incentive value is 16.5 ¢/kWh, which is less than that of
Method 2. This means that the proposed hybrid method utilizes a more cost-effective DR
because it reduces the utilization cost. Furthermore, the synergy between BESS and DR can
be seen by deriving costs lower than those of Method 1 and 2. In addition, to investigate
whether a higher DR capacity results in a lower utilization cost, the decision intention of
the Load agent is limited to increasing the DR capacity. It can be seen from Table 4 that
the total DR is 18.55 kWh, and the utilization cost is 3503.047¢. In this supposition, the
utilization cost excluding the DR incentive cost is 10.46¢ less, but the DR cost is 43.401¢
more expensive, which not only spoils the autonomy of the agent but also fails to minimize
the MG cost. Therefore, it should be noted that the proposed operation strategy can produce
economically optimal results.

Table 4. Comparison of each operation method.

Base Method (w/o
Method 1 and 2) Method 1 Method 2 Hybrid Method

DR Capacity (kWh) 0 0 22.96 15.94
Utilization Cost (¢) 3790.52 3754.238 3521.7145 3470.106

Figure 9 illustrates the purchased energy from the utility, which is associated with the
MG operating costs. BESS shifts the required energy in Method 1, and DR curtails the power
load in Method 2. The hybrid method requires the least amount of energy from 5 to 18 h,
indicating the impact of BESS and DR. In the proposed optimal operation, the purchased
energy capacity during the high-cost period has the largest reduction. Consequently, it is
clear that the hybrid method applies the most economical decision among agents and also
reduces the MG utilization cost.

Figure 9. Comparison of optimal purchased energy.

In order to demonstrate the superiority of the MAG-PSO, performance tests have
been implemented through a comparison with PSO and DG-PSO [30]. The MAG-PSO has
been proposed to prevent BESS operations and DR participation from contracting each
other. For a fair comparison, the simulation was conducted 20 times, and the results for the
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best, worst, and average solutions were obtained, along with computation times for each
algorithm. Table 5 presents the simulation results for the different algorithms. The error
between the best and average values of the MAG-PSO algorithm is approximately 0.085%,
reaching an optimal solution compared with the other algorithms. These quantitative
results demonstrate the efficiency of the MAG-PSO algorithm in providing the optimal
hybrid method results, accounting for the economic and computational factors and without
being trapped in the local optima.

Table 5. Results of the best, worst, and average solutions.

Algorithm Best Solution (¢) Worst Solution (¢) Average (¢) Run Time (s)

PSO 3586.420 3612.051 3600.918 387.7077
DG-PSO 3534.873 3544.219 3538.318 377.8955

MAG-PSO 3468.955 3472.075 3470.106 342.0087

Table 6 shows the detailed optimal operation results for each of the three algorithms.
It can be observed that the MAG-PSO has the lowest utilization cost of 3470.106¢ and
adopts a higher DR capacity compared with the other algorithms. The PSO without the
guiding global position and weighting position vector does not use sufficient DR capacity,
and as a result, the total cost is high. Although the DG-PSO adopted more DR capacity
than the PSO, the average incentive price per kWh is slightly higher than that of the other
algorithms, at 16.7¢. The MAG-PSO performs better than the PSO and DG-PSO in terms of
simulation time due to the limitations on the best global position and the adjustment of the
position vector. Considering that the maximum peak power is only 32 kWh, note that the
run time benefit would be improved in larger power systems. Based on the comparative
results, our work concludes that the proposed optimal operation method is appropriate for
minimizing the utilization cost and ensuring game theoretical decisions among agents.

Table 6. Comparison of results.

Algorithm DR Capacity (kWh) Average Incentive (¢/kWh) Utilization Cost (¢)

PSO 7.69 16.46 3600.918
DG-PSO 11.77 16.7 3538.318

MAG-PSO 15.94 16.5 3470.106

5. Conclusions

This paper proposed an optimal hybrid method operation for grid-connected MG
based on game theory. The hybrid method consisted of BESS and DR strategies based on
the game theory for the MAS model. BESS method determined the optimal BESS sizing
based on the trade-off between operation cost and BESS cost considering depreciation.
Meanwhile, the DR method was formulated to minimize the utilization cost by proposing
an hourly incentive value to determine the optimal DR capacity. The optimization problem
was constructed considering the electricity price from the utility, ESS, and DR costs and was
solved using MAG-PSO, which adjusted the best global position and position vector of the
particle in order to prevent the curtailment of DR participation. The results demonstrated
that the proposed method was reasonable compared with the conventional method and
even presented the synergy between BESS and DR with lower utilization costs than Method
1 and 2. In addition, the superiority of the proposed MAG-PSO in terms of utilization cost
and performance was confirmed through comparison with other algorithms. Therefore,
the proposed optimal hybrid method operation provided the MGO not only a solution to
reduce the utilization cost but also reasonable and economic decisions in the MAS model
with autonomy. Our future work is underway to focus on not only solving hybrid method
with game theory considering uncertainties of renewables sources, loads, and market prices
by combining data-driven approach but also improving efficient information transmission
and processing in the situation of adopting short-term power operations.
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