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Abstract: The implementation of each function of a battery management system (BMS) depends on
sensor data. Efficient sensor fault diagnosis is essential to the durability and safety of battery systems.
In this paper, a model-based sensor fault diagnosis scheme and fault-tolerant control strategy for a
voltage sensor and a current sensor are proposed with recursive least-square (RLS) and unscented
Kalman filter (UKF) algorithms. The fault diagnosis scheme uses an open-circuit voltage residual
generator and a capacity residual generator to generate multiple residuals. In view of the different
applicable state of charge (SOC) intervals of each residual, different residuals need to be selected
according to the different SOC intervals to evaluate whether a sensor fault occurs during residual
evaluation. The fault values of the voltage and current sensors are derived in detail based on the
open-circuit voltage residual and the capacity residual, respectively, and applied to the fault-tolerant
control of battery parameters and state estimations. The performance of the proposed approaches
is demonstrated and evaluated by simulations with MATLAB and experimental studies with a
commercial lithium-ion battery cell.

Keywords: battery management system; sensor fault diagnosis; fault-tolerant control; state of charge;
open-circuit voltage; multiple residuals

1. Introduction

The development of electric vehicles (EVs) is the consensus of all countries in the
world to deal with the energy crisis and environmental deterioration. Lithium-ion batteries
are currently the first choice for battery systems due to their excellent performance, but
given the limitations of their cell voltage and energy density, EVs are often equipped with
hundreds of battery cells [1]. Therefore, an appropriate battery management system (BMS)
is indispensable for the safe and reliable operation of battery systems [2]. A BMS has
many functions; however, most researchers focus on the estimation of the state of charge
(SOC) [3–5] and state of health (SOH) [6–8], and little attention has been paid to fault
diagnosis techniques until the occurrence of several accidents related to battery systems
in EVs in recent years [9,10]. Internal short-circuit and external short-circuit faults of the
battery caused by electrical abuse, electrical abuse, and mechanical abuse were considered
to be the main causes of battery system safety accidents [11–15]. The diagnosis of short-
circuit faults is basically based on measurement data collected by sensors to establish
various diagnostic models and compare the measured values with the predicted values
of the models to determine whether a fault has occurred [16,17]. Therefore, the accuracy
of collected sensor data directly determines the reliability of the battery fault diagnosis
results. In addition, once the acquisition sensor fails, it will affect the realization of other
functions that rely on data acquisition in the BMS and further affect the safety of the battery
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system [18]. Hence, sensor fault diagnosis is of great importance to ensure the healthy
operations of a BMS.

Sensor fault diagnosis methods are basically divided into hardware redundancy
methods and software redundancy methods. The former realizes sensor fault detection
and isolation by increasing the number of acquisition sensors or changing the topology
arrangement of acquisition sensors [19]. The latter includes model-based methods, machine-
learning-based methods, and expert-system-based methods. Among them, the model-
based method is the most widely used method in the literature [20], the basic idea of
which is to reconstruct the fault model and compare the predicted value of the model with
the measured value or reference value to determine whether a fault has occurred [21,22].
In other words, the fault diagnosis process of this method includes two steps: residual
generation and residual evaluation. Liu et al. [23] take the difference between the predicted
voltage of an equivalent circuit model and the measured value of a voltage sensor as the
residual and judge whether a sensor fault occurred by comparing the cumulative sum of
the residual and predetermined threshold, and then the structured residual method is used
to effectively isolate the sensor fault [24]. The difficulty of determining the threshold is the
shortcoming of the sensor fault diagnosis method using the voltage prediction error. Dey
et al. [25] compare the predicted and measured values of temperature, current, and voltage
based on the electrical–thermal coupling model and the sliding mode observer (SMO),
respectively, to construct three residuals to achieve sensor fault detection and isolation.
Biron et al. [26] also use an electrical–thermal coupling model to generate temperature,
current, and voltage residuals to achieve sensor fault detection and isolation, but the
residual generation process uses a Kalman filter (KF) and SMO. The problem with the need
to construct a current residual generator for the fault diagnosis method is that it is very
difficult and complicated to obtain the estimated value of the current that is often used as
the model input. To address this issue, Ablay et al. [27] use an electrical–thermal coupling
model and observer to generate residuals of temperature, voltage, and resistance for sensor
fault detection and isolation. Although the battery dynamic characteristic parameter such
as resistance is different in sensor fault and fault-free conditions, it is difficult to obtain the
reference resistance in the case of a sensor fault because it is easily affected by the current
rate and SOC interval. Therefore, it cannot be directly applied to the sensor fault diagnosis
of the battery system. In fact, not only do the dynamic characteristic parameters change
when the sensor fails but the various states of the battery also deviate from the expected
values [28,29]. Therefore, Xu et al. [30] use the state of energy (SOE) estimation error as the
residual to detect a current sensor fault. In addition, the errors of the estimated SOC and
capacity are treated as the residuals to detect and isolate the current and voltage sensors’
faults in our previous work [31]. Although the calculation of the estimation errors of SOC
and SOE is relatively fast, it takes a relatively long time to detect and isolate sensor faults.
On the other hand, the method with a capacity error can realize sensor fault diagnosis
in a relatively short time, but it cannot be applied to the initial stage of discharge due to
limitations [31].

In fact, the fault-tolerant control should be carried out after fault detection and isolation
to reduce potential safety hazards [32,33]. However, most studies are satisfied with the
detection and isolation of sensor fault, and very little work is documented in the literature
on sensor fault-tolerant control in battery systems. Xu et al. [30] add the current sensor
fault into a state vector and then realize the online identification and fault-tolerant control
of a current sensor fault through the proportional integral observer (PIO). Zhao et al. [34]
solve this issue by including a sensor fault into a state vector and reformulating the model
to achieve current and voltage sensors’ fault-tolerant control with the unscented KF (UKF)
algorithm. In their studies, the initial value of the sensor fault in the state vector is set to
0. In fact, it takes a lot of time to retune the measurement noise and system noise of the
UKF algorithm for the augmented model. Although the augmented model can realize
the fault-tolerant control of the battery state, it ignores the fault-tolerant control of the
parameter identification process. In addition, it takes a long time for the estimated value of



Energies 2021, 14, 829 3 of 15

the sensor fault to converge from the initial value of 0 to the true value. Except for methods
based on augmented models, almost no works in the literature have been found to discuss
how to estimate sensor fault values.

In order to solve the aforementioned issues, a model-based sensor fault diagnosis
scheme is proposed for battery systems in EVs. The main innovations are as follows:

· A model-based sensor fault diagnosis method with parameter residual and state
residuals is proposed. The estimation error of the battery static characteristic pa-
rameter, i.e., the open-circuit voltage (OCV), is used as a residual for sensor fault
diagnosis, which only has a good effect in the beginning and middle stages of the
charging and discharging process. The estimated capacity derived from the ratio of
the accumulated charge to the SOC difference at various nonadjacent sampling times
is used to generate state residuals to detect the sensor fault. These residuals are only
suitable for sensor fault diagnosis in the middle and late stages of the charging and
discharging process. In view of the different application intervals of the two residuals,
a sensor fault diagnosis scheme with two kinds of residuals is proposed.

· A fault identification and fault-tolerant control strategy is proposed. The fault values
of the voltage sensor and current sensor are derived based on the OCV residual and
the capacity residual respectively. Then, the fault value is applied to the parameter
identification and state estimation of the battery for fault-tolerant control to ensure
the safety of the battery.

The remainder of this paper is organized as follows. Section 2 develops the battery
model. Section 3 introduces the sensor fault detection and isolation scheme. Section 4 car-
ries out the sensor fault-tolerant control. Section 5 establishes simulation and experimental
validation. Conclusions are finally given in Section 6.

2. Battery Model

The battery model adopted here is the first-order resistor-capacitor model depicted
in Figure 1, which includes an OCV that is a nonlinear function of SOC [35,36], an ohmic
resistance Ro, and resistor-capacitor (Rp—Cp) elements that reflect the dynamics of the
batteries. I represents the battery charge/discharge current, and Up and Ut denote the
battery polarization voltage and terminal voltage, respectively.
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The electrical dynamics of this battery model can be written as{
Ut,k = OCVk −Up,k − IkRo,k
Up,k+1 = exp(−∆t/τk)Up,k + (1− exp(−∆t/τk))Rp,k Ik

, de f ine : τk = Rp,kCp,k (1)

The battery OCV is generally modeled as a nonlinear function of SOC [36]{
OCVk = k1zk + k2zk

2 + k3zk
3 + k4/zk + k5 ln(zk) + k6 ln(1− zk)

zk = zk−1 − η Ik∆t/Q
(2)
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where k1–k6 are the fitting coefficients of the OCV model, z represents the battery SOC, η is
the coulomb efficiency, ∆t is the sampling interval, and Q denotes the maximum available
capacity of the battery cell.

When the acquisition sensor is faulty, the sensor measurements can be expressed as{
Im = I + I f
Ut,m = Ut + U f

(3)

where Im and Ut,m are measured variables, and If and Uf are the current and voltage faults,
respectively. It is assumed that If and Uf are bounded by the finite values, and only one
sensor fault can occur at the same time.

3. Sensor Fault Detection

In this section, we mainly focus on the sensor fault detection with the multiple residu-
als scheme. The sensor fault isolation methods in the battery system are discussed in [31].
The proposed sensor fault diagnosis scheme is depicted in Figure 2. In the following
paragraphs, the specific elements of the scheme are described in detail.
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3.1. Residual Generator 1

In order to obtain higher model accuracy in a BMS, offline identification methods have
been gradually replaced by online parameter identification methods. When parameter
identification is performed by RLS [37] and nonlinear Kalman filters [38], the dynamic
characteristic parameters of the battery change with the current rate and SOC interval
during the discharge process, so it is difficult to obtain the reference value of the dynamic
characteristic parameters when the sensor fails to generate the residual. In fact, the battery
static characteristic parameter (i.e., OCV) can also be estimated by an online identification
method [39], and its reference value can also be calculated by Equation (2) at the whole
discharge process. Therefore, the residual r1 can be defined as

r1 = OCVr −OCVe (4)

where the reference value OCVr is calculated via Equation (2), and the estimated OCVe is
obtained by the online identification method.

RLS is a widely used optimization algorithm in battery parameters identification. For
a system shown in Equation (5), parameters can be iteratively updated with RLS [39].

yk = ϕkθk + ek (5)

where yk is system output, ϕk is the coefficient vector, θk is the parameter vector, and ek is
the terminal voltage prediction error.

For the lithium-ion battery model, the terminal voltage Ut,m,k is usually regarded as
the output yk, ϕk, and θk can be defined as{

ϕ(k) =
[

1 Ut,m,k−1 Im,k Im,k−1
]

θ(k) =
[

Mk a1 a2 a3
]T (6)

Mk, a1, a2, and a3 are the transformation quantities when the nonlinear Equation (1) is
linearized, which can be expressed as

Mk = OCVe − a1OCVe

a1 = −∆t−2RpCp
∆t+2RpCp

a2 = − Ro∆t+Rp∆t+2RoRpCp
∆t+2RpCp

a3 = − Ro∆t+Rp∆t−2RoRpCp
∆t+2RpCp

(7)

Therefore, when the θk at each sampling moment is identified by RLS, the estimated
value of OCVe can be further obtained:

OCVe,k =
Mk

1− a1
(8)

Then, the residual r1 can be calculated at the whole discharge process. It should be
noted that the estimation error of OCV is smaller in the middle and high SOC intervals and
larger in the low SOC interval [39], which may cause false alarms in the low SOC interval.

3.2. Residual Generator 2

Once the sensor fails, the predicted voltage based on the Kalman filters for state
estimation has a good followability with the actual measured voltage, but the sensor fault
will cause the estimated states to deviate from the accurate values. Therefore, changes
in states such as SOE [30], SOC [31], and capacity (an index of battery health) [31] can be
used for sensor fault diagnosis. Considering that it takes a long time to diagnose sensor
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faults with changes in SOC and SOE, the estimated capacity error shown in Equation (9) is
selected to diagnose sensor faults.

r2 = Qr −Qe (9)

where the reference capacity Qr is a constant value in one charge and discharge cycle,
which can be determined as the average value of the estimated capacity Qe of the previous
charge and discharge cycle. The estimated capacity Qe is calculated by

Qe(t1, t2) =
∑t2

t1
η Im(t)

ze(t1)− ze(t2)
=

∆Q(t1, t2)

∆ze(t1, t2)
(10)

where t1 and t2 are two values of k at two different sampling times, and ze(t1) and ze(t2) are
estimated SOCs based on the UKF algorithm.

The lithium-ion battery model can also be transformed to the state-space equation
[

Up,k+1
ze,k

]
=

[
exp(−∆t/τk)Up,k + (1− exp(−∆t/τk))Rp,k Im,k

ze,k−1 −
η Im,k∆t

Q

]
+ wk

Ut,m,k = OCVk −Up,k − Im,kRo,k + vk

(11)

where w and v are the process noise and measurement noise. Note that capacity Q here is a
constant value, which is determined as the average value of the estimated capacity Qe of
the previous charge and discharge cycle. OCVk here is the value obtained by substituting
ze,k estimated by UKF into the OCV model.

The specific process of updating the battery state ze,k in Equation (11) according to the
UKF algorithm can be found in our previous study [31]. Then, the estimated capacity Qe
can be derived from Equation (10). It should be pointed out that there are two issues in
directly using Equations (14)–(16) for sensor fault diagnosis. Since the capacity is the ratio
of the amount of charge accumulated over a period of time to the change in SOC, Equation
(10) does not apply to the initial stage of battery discharge (i.e., high SOC interval) [31]. In
addition, the estimation accuracy of capacity is closely related to the selection of t1 and
t2. The more electricity is discharged between t1 and t2, the smaller the estimation error
of capacity, but the higher the missed alarm rate of fault diagnosis. Conversely, the less
electricity is discharged between t1 and t2, the larger the estimation error of capacity, and
the higher the false alarm rate of fault diagnosis. After many trials, we suggest that the
selection and determination of t1 and t2 should be based on whether the SOC difference
between these two times is more than 5%. In view of the unpredictability of the current
rate during the battery discharge, multiple groups of t1 and t2 are selected to generate
capacity residuals to participate in sensor fault diagnosis. The diagnosis process needs to
judge and eliminate residuals with SOC differences of less than 5%. Assuming that the
entire discharge process needs to collect n sets of data and the sampling interval is ∆t, the
capacity residuals can be defined as follows

r2 = Qr −Qe(t1, t2), t1 = 60, t2 = 600, 1201, . . . , n
r3 = Qr −Qe(t1, t2), t1 = 60 + m∆t, t2 = 600 + m∆t, m = 0, 1, . . . , (n− 600)
r4 = Qr −Qe(t1, t2), t1 = 60 + m∆t, t2 = 1200 + m∆t, m = 0, 1, . . . , (n− 1200)
r5 = Qr −Qe(t1, t2), t1 = 60 + m∆t, t2 = 1800 + m∆t, m = 0, 1, . . . , (n− 1800)
r6 = Qr −Qe(t1, t2), t1 = 60 + m∆t, t2 = 3600 + m∆t, m = 0, 1, . . . , (n− 3600)

(12)

where t1 starts from 60 instead of 1 because it takes into account the convergence process
of the algorithm during state estimation.
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3.3. Residual Evaluation

In view of the different applicable SOC intervals of each residual in the battery
discharge process, it is necessary to select different residuals according to the SOC interval
as follows to determine whether a fault has occurred during residual evaluation.

90% ≤ ze ≤ 100%, |r1| ≥ |Jv|, fault
10% ≤ ze ≤ 90%, |ri| ≥ |Jc|, and ∆ze ≥ 5% , i = 2, . . . , 6, fault
0 ≤ ze ≤ 10%, |ri| ≥ |Jc|, and ∆ze ≥ 5% , i = 3, 4, 5 fault

(13)

where Jv and Jc are the thresholds for OCV residual and capacity residuals, respectively.
The threshold J directly determines the false alarm rate and missed alarm rate of fault
diagnosis. Based on experience, Jv and Jc are defined as 0.1 V and 0.1 Ah, respectively, in
this study.

4. Sensor Fault-Tolerant Control Strategy
4.1. Voltage Sensor Fault Identification and Tolerant Control

Active fault-tolerant control after fault detection is of great significance for improving
the safety of battery systems, and the accurate fault identification value is the basis for
fault-tolerant control. In this section, we propose a new method for determining the values
of a sensor fault to improve the effect of fault tolerance.

For voltage sensor faults, the parameters related to the voltage sensor fault value Uf
will be derived from the perspective of parameters identification based on the RLS algorithm.

When a voltage sensor fault occurs, the battery terminal voltage Ut,m will be
transformed into

Ut,m,k = U f ,k + OCVe,k − a1OCVe,k + a1Ut,m,k−1 + a2 Im,k + a3 Im,k−1 (14)

When the value of Uf is not known, the coefficient vector ϕk and parameter vector θk
are still defined according to Equation (6), Mk actually represents

Mk = U f ,k + OCVe,k − a1OCVe,k (15)

The estimated OCVe is

OCVe,k =
Mk

1− a1
−

U f ,k

1− a1
(16)

Since only the voltage sensor fails, the reference OCVr has not changed, so the residual
r1 is

r1,k = OCVr,k −
Mk

1− a1
+

U f ,k

1− a1
(17)

When a voltage sensor fault occurs, a2 and a3 are the coefficients of the current. Their
changes can be basically ignored. The main parameters that change are Mk and a1, but
as the sampling time increases, Mk and a1 also tend to stabilize, then OCVr,k =

Mk
1−a1

, and
Equation (18) can be simplified as

U f ,k = (1− a1)r1,k (18)

Since the voltage sensor fault threshold Jv is less than the sensor fault Uf, the value of
r1 just exceeding the threshold Jv cannot be regarded as the fault value Uf. Instead, after
r1 exceeds the threshold Jv, it will quickly reach a stable value and fluctuate around this
value. The average value of the fluctuation value can be regarded as a voltage sensor fault
Uf for fault-tolerant control. The mathematical expression is as follows
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U f ≈
∑ta

tb
(1− a1)r1,k

(tb − ta)/∆t + 1
(19)

where ta is the starting time when r1 reaches a stable value, and tb is the time when r1
reaches and keeps a stable value for a certain period of time.

After the fault value Uf is obtained, parameter identification and state estimation can
be fault tolerant by Equations (14) and (20), respectively.

[
Up,k+1

ze,k

]
=

[
exp(−∆t/τk)Up,k + (1− exp(−∆t/τk))Rp,k Im,k

ze,k−1 − η Im,k∆t/Q

]
+ wk

Ut,m,k = U f ,k + OCVk −Up,k − Im,kRo,k + vk

(20)

4.2. Current Sensor Fault Identification and Tolerant Control

When a current sensor fault occurs, we derive the current sensor fault value If from the
perspective of capacity residual generation. Equations (9) and (10) can be transformed into

r(t1, t2) = Qr −
∑t2

t1
η Im(t)

ze(t2)− ze(t1)
, r(t3, t4) = Qr −

∑t4
t3

η Im(t)
ze(t3)− ze(t4)

(21)

where r(t1, t2) is the capacity residual from t1 to t2 when there is no current sensor fault,
and r(t3, t4) is the capacity residual from t3 to t4 when a current sensor fault occurs. The
selection of t1 and t2 is based on the fact that the SOC change during this period is equal
to the SOC change during the t3 and t4 period, i.e., ze(t3)− ze(t4) = ze(t1)− ze(t2). Then,
according to Equation (21), the value of the current sensor fault If can be derived as follows

r(t3, t4)− r(t1, t2) =
∑

t4
t3

η I f (t)−∑
t4
t3

η Im(t)+∑
t2
t1

η Im(t)
ze(t1)−ze(t2)

⇒ ∑t4
t3

η I f (t) =(r(t3, t4)− r(t2, t1))(ze(t1)− ze(t2)) + ∑t4
t3

η Im(t)−∑t2
t1

η Im(t)
(22)

When the current sensor fault If is obtained, the fault-tolerant control of the battery
parameters and states is carried out as follows:

Ut,m,k = OCVe,k − a1OCVe,k + a1Ut,k−1 + a2

(
Im,k − I f

)
+ a3

(
Im,k−1 − I f

)
(23)

[
Up,k+1

ze,k

]
=

 exp(−∆t/τk)Up,k + (1− exp(−∆t/τk))Rp,k

(
Im,k − I f

)
ze,k−1 −

η(Im,k−I f )∆t
Q

+ wk

Ut,m,k = OCVk −Up,k −
(

Im,k − I f

)
Ro,k + vk

(24)
When a sensor fault occurs, Equations (19) and (22) can be used to quickly obtain

the fault values and avoid the difficulty in retuning the parameters required to build
the augmented model. The process of fault identification and fault-tolerant control is
summarized as shown in Figure 3.
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Figure 3. Senor fault identification and tolerant control.

5. Verification and Discussion
5.1. Experiments

The effectiveness of the proposed diagnosis scheme and fault-tolerant control strategy
was verified by conducting experimental tests and simulating studies on a LiNiMnCoO2
cell. The rated capacity and voltage are 2.1 Ah and 3.6 V, respectively. The dynamic stress
test (DST) data when the sensors have no faults, that is, the current and voltage profiles,
are shown in Figure 4. The corresponding reference SOC in the sensor fault-free condition
is illustrated in Figure 5. To simulate the voltage sensor fault and current sensor fault, a
voltage of 0.25 V and a current of 0.25 A were injected into the voltage and current profiles
shown in Figure 4, respectively.
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Figure 4. Dynamic stress test (DST) test at 25 ◦C in the sensor fault-free condition: (a) current profile;
(b) voltage profile.
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Figure 5. Reference state of charge (SOC) in the sensor fault-free condition.

5.2. Sensor Fault Detection

In the absence of a sensor fault, the residuals based on OCV and capacity are shown in
Figures 6 and 7. The absolute value of residual r1 remains within 0.1 V in the 10–100% SOC
interval and exceeds 0.1 V in the 0–10% SOC interval. That is to say, the residual r1 has a
higher false alarm rate in the low SOC interval and is more suitable for fault diagnosis in
the middle and high SOC intervals. As for the capacity residuals that cannot be used at the
beginning of discharge, the residuals obtained by different t1 and t2 have different effects
in the discharge process. The residual r2 is relatively smooth and stable throughout the
discharge process, which is very close to the reference capacity Qr, but the missed alarm
rate is higher in the later stage of the discharge. r3 is the capacity residual obtained by
continuously calculating the data of 600 sampling points (that is, the SOC change is less
than 5%) during the discharge process. The maximum value exceeds 0.1 Ah in the low
SOC interval, which means the false alarm rate is higher in the low SOC range. r4, r5, and
r6 are the capacity residuals calculated according to Equation (12) using the data of 1200,
1800, and 3600 sampling points during the discharge process. The SOC change in these
residuals exceeds 5%. Note that the smaller the SOC change, the greater the residual value
in the low SOC interval, which also means higher sensitivity to a sensor fault. Therefore,
for the dynamic operating conditions shown in Figure 4, the residual r1 participates in
the sensor fault diagnosis in the high and middle SOC intervals, the residuals of r2 and r3
only participate in the sensor fault diagnosis in the middle SOC interval, and r4, r5, and r6
participate in both the middle and low SOC intervals.
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Figure 6. Estimated open-circuit voltage (OCV) and the residual r1: (a) OCV; (b) r1.
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Figure 7. Estimated capacity and capacity residuals: (a) capacity; (b) r2, r3, r4, r5, and r6.

Residual responses for when a voltage sensor fault occurred at the 50th minute are
illustrated in Figure 8. r1 exceeds the threshold Jv in 51.1 min, rises rapidly to 0.245 V,
and then fluctuates around 0.25 V until the battery is discharged to 10% SOC. r3 exceeds
the threshold Jc in 54.5 min, followed by r4, r5, r6, and r2, which is consistent with our
expectation that the smaller the SOC change, the higher the sensitivity to a sensor fault.
In addition, it can be seen that the OCV residual takes a shorter time to detect the voltage
sensor fault than the capacity residuals.
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Figure 8. Residual responses for a voltage sensor fault: (a) r1; (b) r2, r3, r4, r5, and r6.

Residual responses for a current sensor fault occurring at the 50th minute are shown
in Figure 9. r1 increases slowly after the current sensor fault occurs, exceeds the threshold
Jv at 72.4 min, and continues to increase slowly. Similar to the occurrence of a voltage
sensor fault, among the five capacity residuals, r3 with a relatively smaller SOC change
is still the first to exceed the threshold Jc at 62.4 min. However, unlike the voltage sensor
fault diagnosis, the capacity residuals take a shorter time to detect the current sensor fault
than the OCV residual.
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Figure 9. Residual responses for a current sensor fault: (a) r1; (b) r2, r3, r4, r5, and r6.

Since the voltage and current sensor faults are first detected through r1 and r3 shown in
Figure 10, the sensor fault values can be calculated by Equations (19) and (22), respectively.
For the voltage sensor fault, ta and tb are 56.3 min and 61.3 min, respectively, the average
value of the voltage sensor fault Uf is 0.247 V, and the fault error is 0.003 V. If tb is farther
from ta, the fault value Uf may be more accurate, but it will cause the later time to start
fault-tolerant control. Therefore, this study chooses the mean value of the residual r1 within
5 min as the fault value. Figure 11a shows the fault-tolerant control process of battery
parameter identification. The battery static characteristic parameter OCV is automatically
corrected to the reference value from 61.3 min based on the voltage fault value and the
SOC difference caused by the fault.
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For the current sensor fault, the time when r3 reaches the threshold Jc is selected as t4,
namely 62.4 min, t3 is set to be 10 min forward from t4, the SOC change between t3 and t4 is
calculated, and t1 and t2 are selected when the sensor does not fail. The selection of t1 and
t2 is based on the fact that the SOC change during this period is equal to the SOC change
during the t3 and t4 period. Then, according to Equation (22), the fault value of the current
sensor If is set to 0.245 A, and the error is 0.005 A. Figure 11b shows the fault-tolerant
control process of battery state estimation. The battery SOC is automatically corrected to
the reference value based on the current fault value and the SOC difference caused by the
fault from 62.4 min.

6. Conclusions

In this paper, a hybrid sensor fault diagnosis scheme and fault-tolerant control strategy
are proposed. The hybrid fault diagnosis scheme realizes the diagnosis of a current sensor
fault and voltage sensor fault by calculating multiple OCV and capacity residuals in parallel.
Further, the sensor fault values are derived by postprocessing the residuals applied to the
fault-tolerant control of parameter identification and state estimation. Finally, simulations
and experimental studies were conducted in a commercial NMC lithium-ion battery cell
to verify the fault diagnosis scheme and fault control strategy. One shortcoming of this
method is that it is only suitable for faster sampling frequencies and not suitable for
operating conditions with large sampling intervals. Taking into account the number of
calculations, this study chose five capacity residuals. In view of the different sensitivity of
different residuals to faults, selecting the appropriate capacity residuals to meet complex
vehicle practical application conditions is the focus of our future research.
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