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Abstract: Biofuel production from microalgae biomass has been considered a viable alternative to
harmful fossil fuels; however, challenges are faced regarding its economic sustainability. Process
integration to yield various high-value bioproducts is implemented to raise profitability and sustain-
ability. By incorporating a circular economy outlook, recirculation of resource flows is maximized
to yield economic and environmental benefits through waste minimization. However, previous
modeling studies have not looked into the opportunity of integrating productivity reduction related
to the continuous recirculation and reuse of resources until it reaches its end of life. In this work, a
novel multi-objective optimization model is developed centered on an algal biorefinery that simul-
taneously optimizes cost and environmental impact, adopts the principle of resource recovery and
recirculation, and incorporates the life cycle assessment methodology to properly account for the
environmental impacts of the system. An algal biorefinery involving end-products such as biodiesel,
glycerol, biochar, and fertilizer was used for a case study to validate the optimization model. The
generated optimal results are assessed and further analyzed through scenario analysis. It was seen
that demand fluctuations and process unit efficiencies have significant effect on the optimal results.

Keywords: algal biofuel; algal biorefinery; life cycle optimization; mixed integer nonlinear program-
ming

1. Introduction

The overwhelming environmental concerns associated with fossil fuel production and
consumption are only expected to rise in the following years as global energy demand
grows by around 1.3% every year [1]. This proves that further research into alternative
renewable sources of energy is necessary [2]. Biodiesel, which is considered as the main
substitute for fossil fuel, has numerous biomass feedstock alternatives, with microalgae
being considered the most valuable due to its high growth productivity and photosynthetic
efficiency [3–5]. Microalgae are aquatic microorganisms that grow in the process of photo-
synthesis, converting nutrients (carbon dioxide, water, etc.) into energy [6,7]. In addition,
growing microalgae uses a lower area of arable land compared to other biofuel candidates
such as corn, soybean, canola, and jatropha [8]. One of the promising attributes that makes
microalgae a viable option for alternative biofuel is the ability to harness carbon dioxide
from the atmosphere [9].

However, economic limitations are faced when looking into microalgal biofuel pro-
duction due to its higher overall costs as compared to the production of fossil fuels. Proper
investment strategies were found to be an integral factor to ensure long-term sustainability
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and growth in the diffusion of algal biofuel [10]. Aside from that, the processes involved
in biofuel production typically generate a lot of waste including unused biomass waste.
To maximize the algal biomass used in biofuel production, integrated process methods
are incorporated into the production system through biorefineries. An algal biorefinery is
built to produce energy and along with other products derived from biomass. Examples
of these are biogas, biodiesel, bioethanol, fertilizers, and cosmetics. The incorporation of
additional high-value products leads to increased profitability and biomass utilization for
the biorefinery.

With that, numerous researchers have investigated the integration of processes with
the aim of a zero-waste biofuel production system. Mitra and Mishra (2019) and Mohan
et al., (2019) investigated self-sustaining algal biorefinery design models with a closed-loop
approach regarding the byproduct utilization in the system [11,12]. In particular, Mitra
and Mishra (2019) discussed the current state of the art and potential advancements of a
zero-waste biorefinery from Arthrospira spp. through the valorization of multiple products,
such as biofertilizers, jet fuels, nutraceuticals, and c-phycocyanin, while Mohan et al.,
(2019) looked into the co-production of monomeric sugars, bioalcohols, and biohydro-
gen [11,12]. De Bhowmick et al., (2019) proposed biofuel and biochar co-production to
minimize and possibly achieve net zero waste discharge [13]. Hemalatha et al., (2019)
studied the potential of a microalgae biorefinery with a cascading resource recovery design
through the integration of dairy wastewater treatment processes [14]. Wu and Chang
(2019) evaluated an integrated microalgal biorefinery from a process systems engineering
standpoint using life cycle assessment and techno-economic assessment methodologies
to appraise the biorefinery’s environmental and economic benefits [15]. However, the
previously mentioned studies simply review the zero-waste concept applied to an algal
biorefinery without mathematically supported decision making presented. The inherent
complexity of designing biorefineries with several significantly interdependent processes
requires appropriate systematic management tools, such as optimization modeling, to
ensure that the potential benefits of closed-loop biorefineries are achieved, such as re-
duced resource consumption and waste or pollution generation, while minimizing any
unintended negative consequences [16,17]. Looking specifically into optimization models
on algal biorefineries, Garcia Prieto et al., (2017) developed a mixed integer nonlinear
programming model for the design of an integrated algal biorefinery aiming to maximize
its net present value [18]. However, the study only focused on a single objective involving
economic impact, which indicates that their solution may not be environmentally sustain-
able. This has been addressed through a superstructure optimization model proposed by
Gong and You (2014) covering algae cultivation, harvesting, drying, and lipid extraction to
minimize costs and greenhouse gas emissions, achieving zero emissions throughout the
process through reutilization [19]. The same reutilization of all wastes and products may be
achieved with proper design. A multi-objective target-oriented robust optimization model
was developed by Sy et al., (2018) for an integrated algal biorefinery polygeneration system
focusing on profit maximization and environmental footprint minimization, which was
later extended by Culaba et al., (2019) into a multi-period model to capture fluctuations
in demand through planning periods and allow for material storage to buffer disparities
between available supply and spikes in demand [16,17]. However, these studies did not
take into account the specific inputs and outputs of each process in the integrated algal
biorefinery by treating the algal biorefinery as a black box process unit. Each process within
an algal biorefinery entails several potentially complicated and conflicting decisions that
should also be taken into account. To address these, Ching et al., (2021) make use of artifi-
cial intelligence-based methodologies to model and possibly optimize the vacuum drying
process of Chlorococcum infusionum for algal biofuel production [20]. Focusing instead on
the cultivation and harvesting processes, San Juan et al., (2020) proposed a scheduling and
planning optimization algorithm that maximizes profit and minimizes environmental im-
pact through decisions such as species selection and cultivation and harvesting technology
selection and scheduling [21]. Nonetheless, these processes within an algal biorefinery
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cannot only be modeled as stand-alone systems, under the assumption that no interac-
tion exists between them. Accounting for interactions between these processes and other
process systems that can operate symbiotically with algal biorefineries may be helpful in
improving economic and environmental performances. A superstructure optimization
model was formulated by Galanopoulos et al., (2019) integrating an algal biorefinery with
a straw wheat biorefinery to minimize a single objective (i.e., biofuel production costs) [22].
Caligan et al., (2020) modeled the integration of a wastewater treatment plant and an
algal biorefinery connected through the potential of cultivating algae on wastewater [23].
Extending this, San Juan et al., (2020) proposed a multi-objective optimization model to
design an integrated system consisting of a wastewater treatment park, an algal biorefinery,
and a sludge-based bioenergy conversion system [24]. Čuček et al., (2014) formulated a
mixed integer linear programming model for the synthesis of a bioenergy supply network
utilizing a combination of first-, second-, and third-generation biofuels (e.g., bioethanol,
biohydrogen, and biodiesel) to maximize economic performance [25]. However, it is im-
portant to note that these systems do not feature a self-sustaining algal biorefinery because
of their dependence on other supplementary systems. Integrating these facilities may not
necessarily be practical when the facilities have already been established as stand-alone
systems geographically far away from each other, as installing connections between them
may be costly, inefficient, or impossible.

To be able to accurately calculate the environmental impact generated by a certain
product, the life cycle assessment (LCA) methodology is used. According to the ISO 14040
standard, a full product life cycle is measured starting from the extraction of raw materials
until the product end-of life. The LCA methodology has been applied to existing studies
relating to algal biorefineries. Chowdhury et al., (2018) made use of the LCA methodology
to simulate the effect of residence time on the production of algal bioenergy from dairy
manure [26]. The LCA model developed was able to predict that with diluted waste
and shorter residence time, energy requirement and greenhouse gas (GHG) emissions for
the bioenergy production can be reduced. Moreover, Barlow et al., (2016) used the LCA
methodology along with techno-economic assessment (TEA) to identify the sustainability
of incorporating hydrothermal liquefaction and wastewater treatment into the algal biofuel
production system [27]. It was determined that incorporating wastewater treatment into
the system was able to reduce the environmental impact of the biorefinery. However, the
LCA methodology simply provides an evaluation for a pre-determined system and cannot
alone be used in system design.

The life cycle optimization (LCO) methodology was created to be able to integrate the
advantages of the LCA methodology into an optimization model for application in system
design. With the use of TEA and LCA methodologies, Wu et al., (2018) were able to develop
an optimization model to obtain the optimal combination of cultivation and pretreatment
process chains for an algal biorefinery [28]. The optimization model aimed to minimize
environmental impact and maximize revenue. While having resource recirculation in the
form of heat and CO2 recovery, the study did not account for waste recovery and reuse for
wastewater and biomass residue, which are possible sources of revenue and can lead to
worsened environmental impact in the long run.

The LCA methodology is incorporated into this optimization model through the
environmental optimization objective. In the previously mentioned study by Wu et al.,
(2018), the impact assessment method used was life cycle GHG emissions [28]. Bussa
et al., (2018) stated that the ReCiPe impact assessment method is most recommended
for microalgal biorefinery systems as it covers numerous environmental factors, not just
concerning energy and greenhouse gas emissions [29]. Therefore, it was decided that the
ReCiPe impact assessment method would be used for the life cycle optimization model.

Therefore, there is a need to develop a mathematical optimization model on an inte-
grated microalgal biorefinery that optimizes profit and environmental impact, integrates
the life cycle assessment methodology to account for the environmental impacts associated
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with a microalgal biofuel process flow, and incorporates resource recirculation among
materials recirculated within the biorefinery centered on a closed-loop production system.

2. System Definition

The algal biorefinery featured in the study is divided into two main sections. The
process units included in the first section are microalgae cultivation, harvest and dewater-
ing, and lipid extraction, which are the upstream processes [30]. In this study, different
process unit alternatives are selected for the upstream processes, and a comparison of each
is presented in Table 1.

Table 1. Comparison of the different process unit alternatives.

Process Alternative Advantages Disadvantages Ref

Cultivation
Open pond Low installation and

operating costs
Varying culture
conditions

[31]

Photobioreactor High control over culture
parameters

High capital and
operating costs

Harvesting

Flocculation Over 90% recovery;
possibly low cost

Chemical
contamination; longer
settle time

[32]
Filtration 70–90% recovery High capital and

operating costs

Centrifugation Over 90% recovery; can
utilize most algae species Energy-intensive

Extraction
Microwave Around 90–95% yield

with great quality
High operating cost;
energy-intensive

[33]

Solvent Low-cost solvents Large amount of
solvent needed

The second section includes the downstream processes of the biorefinery, the conver-
sion of algal biomass into its intended end-products such as biodiesel, glycerol, biochar, and
fertilizer. The main output of the oil extraction process is algal lipids turned into biodiesel
and glycerol through transesterification [34]. Aside from that, waste is generated from
the lipid extraction process in the form of solid and liquid algal biomass residues. These
residues are converted into bioproducts such as biochar and fertilizer through pyrolysis
and anaerobic digestion, respectively [16]. With the methane generated from the anaerobic
digestion process, a link to a combined heat and power plant is established for conversion
to power and heat with the aim of recirculation back to the biorefinery. The biorefinery
process flow is presented in Figure 1. Aside from the main processes involving microalgal
biofuel production, recovery process units are also incorporated into the system. These
are added to incorporate resource recirculation into the biorefinery through the zero-waste
concept. Process units such as microalgae cultivation, harvesting, and lipid extraction each
have recovery processing alternatives that are to be decided by the optimization model.
Moreover, model decisions are also made regarding the usage of resource recovery process
units.

For the optimization model, the following cost components will be considered namely:
investment costs, operating costs, material purchase costs, utility costs, and inventory costs.
Investment costs refer to the initial capital expenses incurred to build the algal biorefinery
process units expressed on a cost per process unit basis. Operating costs include labor,
overhead, and material costs associated with each process unit expressed as a cost per
time period. Material purchase costs are set for each material input that is used up in the
production system, expressed as a cost per kg unit. Given that the optimization model
considers multiple time periods, inventory costs are included for each material expressed as
a periodic cost per kg material. Since all process units involved in the microalgal biorefinery
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are all assumed to be in a single facility, transportation costs are not considered in the
optimization model. These cost components are deducted from the revenue streams which
would be derived from the sale of products. Demand and selling price parameters are
determined for the final end-products of the biorefinery and presented in Table A1, while
cost parameters are presented in Tables A2 and A3 of the Appendix A.

Figure 1. Algal biorefinery process flow.

The material inputs that are handled in resource recovery process units include water,
solvent, flocculant, and catalyst. The optimization model involves multiple time periods to
be able to incorporate the cyclability of resource recirculation. Furthermore, capital and
operating costs are properly accounted for in the algal biorefinery with the consideration
of multiple periods. For this study, a base period of 10 years will be used.

3. Life Cycle Assessment

For the environmental objective of the model, measures for environmental impact
were obtained with the life cycle assessment (LCA) methodology. The goal of the study was
to evaluate the total environmental impacts of each process path in the algal biorefinery.
The system boundary of the study is presented in Figure 1. The study looked into each
biorefinery product from its raw material extraction until its usage and end-of-life disposal
scenarios. For LCA normalization, the functional unit to be utilized in the model was 1 kg
biodiesel produced in the biorefinery. Various research articles such as those written by
Gnansounou and Raman (2017), Dasan et al., (2019), Biller et al., (2013), Sy et al., (2018),
Garcia Prieto et al., (2017), and Wu et al., (2018) were used as the basis for the material
inputs and outputs as well as the energy consumption of each process unit [16,18,28,35–37].
After assessing the life cycle inventory, the researchers determined the overall impact
of the system using the SimaPro software. For the impact assessment portion of the
study, the ReCiPe 2016 Endpoint model was used in the simulation to be able to yield
a single score impact value for each configuration in the microalgal production system.
The environmental impact values generated from the LCA methodology were used as
inputs for the objective function of the model to represent the environmental impact of
each process path. Once a single score impact was determined for each production process
configuration in the algal biorefinery, the one with the lowest single score was considered
as the most sustainable configuration. However, this does not automatically mean that a
certain configuration is optimal since a balance must be met between the economic and
environmental objectives.

Data for the life cycle inventory for the different process paths are presented in
Tables A4 and A5 of the Appendix A. Each process path was evaluated with a single
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score that represents its overall environmental impact. Impact categories were subject to
normalization and weighting factors (see Table A6 of Appendix A) based on the ReCiPe
2016 method, aggregated to obtain the single score environmental impact. Looking firstly
into upstream processes only, namely cultivation, harvesting, and oven drying, the resulting
environmental impacts are presented in Figure 2. It is evident that the path with the greatest
impact includes the photobioreactor cultivation and centrifugation for harvesting. The
greatest contributor to this impact is the land use category due to the use of compost for
cultivation and the larger input requirement for centrifugation. Moreover, it is seen that the
upstream process with the highest contribution to environmental impact is centrifugation,
attributable to its large biomass requirement for biodiesel production. On the other hand,
the configuration with the least environmental impact is open pond cultivation paired with
flocculation.

Figure 2. Life cycle environmental impacts of each upstream process path for 1 kg biodiesel (OP—
open pond; PB—photobioreactor; FL—flocculation; CN—centrifugation; FN—filtration; OD—oven
drying).

Consequently, the environmental impacts of the downstream process paths are dis-
played in Figure 3. The path with microwave extraction is shown to have the biggest
environmental impact since it is more energy-intensive. The categories with the most
contributions to the environmental impact of both scenarios are human non-carcinogenic
toxicity and human health global warming attributable to the large energy requirements of
anaerobic digestion.

Finally, looking into all process paths, the impacts are all displayed in Figure 4. The
breakdown of environmental impacts for each process configuration and impact category
is also numerically presented in Table A7 of the Appendix A. The paths with the largest
environmental impact are those involving photobioreactor cultivation and centrifugation,
since it is more energy-intensive. Similar to the earlier result, land use is the greatest
contributor to the environmental impact values because of the use of compost for the
nutrients used to cultivate the algal biomass. Among all the process paths, the one with the
least impact is open pond cultivation with flocculation harvesting and solvent extraction,
which makes it the most likely process path for the algal biorefinery.
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Figure 3. Life cycle environmental impacts of each downstream process path for 1 kg biodiesel.

Figure 4. Life cycle environmental impacts of each process path for 1 kg biodiesel.

4. Model Formulation

A mixed integer linear programming (MILP) model was developed for the study
with the objectives of optimizing the profit and environmental impacts while satisfying
demand and capacity limitations. The indices, parameters, and variables are displayed in
Tables A8–A10 of the Appendix A.

4.1. Model Assumptions

• All parameters considered in this model are deterministic and known with certainty.
• The outputs produced by the facility are transported to customers at the same time.
• Processing of algal biomass in all facilities is instantaneous.



Energies 2021, 14, 1416 8 of 22

4.2. Optimization Model
4.2.1. Objective Functions

The profit is calculated by working out the difference between the revenue generated
from all products and the overall costs throughout the biorefinery, presented in Equation
(1). Equation (2) defines the revenue for each period, which is computed by multiplying
the selling price of each product by the total final outputs.

Profit = ∑t Revenuet − Total Cost (1)

Revenuet = ∑p ∑t SPptTOpt (2)

The breakdown of the total costs is presented in Equation (3), which are investment
costs, operating costs, material purchase costs, and inventory costs.

Total Cost = Investment + ∑t Operatingt + ∑t Purchaset + ∑t Inventoryt (3)

The total investment is the sum product of the fixed costs per process unit and the
binary variable for selecting the alternative, presented in Equation (4). The operating costs
for each period in the biorefinery are defined as the sum product of the operating costs per
process and the corresponding product output, as shown in Equation (5).

Investment = ∑i FCiBCi + ∑j FHjBHj + ∑k FEkBEk + ∑r FRrBRr + ∑u FPuBPu (4)

Operatingt = ∑i OCitPCit + ∑j OHjtPHjt + ∑k OEktPEkt + ∑r ORrtPRrt

+∑u OPutPPut
(5)

Equations (6) and (7) indicate the calculations for purchase and inventory costs,
respectively. The material purchase costs are calculated by multiplying the purchase cost
per input material with the total amount purchased each period. Meanwhile, the inventory
costs are the unit storage costs for each input and output material and the total inventory
level in each process unit.

Purchaset = ∑m MCmtMQmt (6)

Inventoryt = ∑m ICmtEImt (7)

The environmental impact minimization objective is defined in Equation (8). It is
the sum product of the environmental impact per output of each process unit and their
corresponding total output.

Impact = ∑i ECiPCi + ∑j EHjPHj + ∑k EEkPEk + ∑r ERrPRr + ∑u EPuPPu (8)

Since the model has dual objectives, there must be a balance between the economic
and environmental objectives to generate the optimal solution. The objective function is
defined as the maximization of the least desired value to balance the two objectives as
seen in Equation (9) [38]. Equations (10) and (11) define the efficiencies for each objective,
obtained by calculating the ratio of the attained improvement, which is the actual value
subtracted from the worst possible one, and the potential improvement, which is the best
possible value subtracted from the worst possible one. The best possible values for the
two objectives are acquired through the optimization of each corresponding objective
using a single objective linear programming model. The assumption is that the worst
possible value for the environmental impact objective is its value when the profit objective
is optimized, and vice versa.

Max Z = min
[
EffProfit, EffImpact

]
(9)
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EffProfit =
Profitworst − Profit

Profitworst − Profitbest
(10)

EffImpact =
Impactworst − Impact

Impactworst − Impactbest
(11)

With the nonlinear nature of the objective function defined above, it is necessary to
include linearizing constraints to the model to make sure that the optimization model
generates the optimal solution. Equations (13) and (14) illustrate that the final value for
efficiency is equal to the minimum of the efficiencies of the two objectives [38], while
Equation (12) shows the final objective function.

Max Z = Efficiency (12)

Efficiency ≤ EffProfit (13)

Efficiency ≤ EffImpact (14)

4.2.2. Constraints

The model constraints regarding the demand for the various products of the biore-
finery are presented in Equation (15). The total amount of each product to be transported
must be greater than or equal to the customer demand for each product, namely biodiesel,
glycerol, biochar, and fertilizer.

TOpt ≥ Dpt ∀p ∀t (15)

The capacity constraints define the production capability of each process as defined in
Equations (16)–(20). The overall production output of each process is set to be less than
or equal to the production capacity of that process unit multiplied by the binary variable
assigned to each process.

PCit ≤ BCi ∗CCi ∀i ∀t (16)

PHjt ≤ BHj ∗CHj ∀j ∀t (17)

PEkt ≤ BEk ∗CEk ∀k ∀t (18)

PRrt ≤ BRr ∗CRr ∀r ∀t (19)

PPut ≤ BPu ∗CPu ∀u ∀t (20)

The product input-to-output conversion is defined in process constraints shown in
Equations (21)–(26). For the conversion of product inputs to their corresponding outputs,
the output of the previous process is set to be greater than or equal to the overall production
output of the process multiplied by the conversion output yield.

∑j PHjtYHj ≤∑i PCit ∀t (21)

PPDry,t ∗ YPDry ≤∑j PHjt ∀t (22)

∑k PEktYEk ≤ PPDrying,t ∀t (23)

PPTrans,t ∗ YPTrans ≤ 0.6 ∗∑k PEkt ∀t (24)

PPAD,t ∗ YPAD ≤ 0.3 ∗∑k PEkt ∀t (25)

PPPyro,t ∗ YPPyro ≤ 0.1 ∗∑k PEkt ∀t (26)

PPCHP,t ∗ YPCHP ≤ 0.6 ∗ PPAD,t ∀t (27)

The equations regarding the relationships between the total final product outputs and
the production outputs of the conversion processes are displayed in Equations (28)–(31).
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The final product outputs are limited by the conversion efficiencies of their respective
processes.

TOBiodiesel,t ≤ 0.9 ∗ PPTrans,t ∀t (28)

TOGlycerol,t ≤ 0.1 ∗ PPTrans,t ∀t (29)

TOBiochar,t ≤ PPPyro,t ∀t (30)

TOFertilizer,t ≤ 0.4 ∗ PPAD,t ∀t (31)

As for the equations presenting how the production outputs of select processes branch
out into inputs and outputs of corresponding next processes, they are displayed in Equa-
tions (32)–(34). Equation (32) details the flow of materials from the extraction processes into
the anaerobic digestion, pyrolysis, and transesterification process units. Similarly, Equation
(33) describes biodiesel and glycerol to be the product outputs of the transesterification
process, while the outputs of the anaerobic digestion unit include the final product fertilizer
and inputs into combined heat and power process unit.

∑k PEkt ≥ PPTrans,t ∗ YPTrans + PPAD,t ∗ YPAD + PPPyro,t ∗ YPPyro ∀t (32)

PPTrans,t ≥ TOBiodiesel,t + TOGlycerol,t ∀t (33)

PPAD,t ≥ TOFertilizer,t + PPCHP,t ∗ YPCHP ∀t (34)

The relationship between the recovered material inputs in each facility and the respec-
tive material input usage in production for each facility is presented in Equations (35)–(38).
Equations (35) and (36) model the recovery of water and flocculant from harvesting, respec-
tively, while Equation (37) represents the recovery of solvent from the extraction process
alternatives. The same is done for the recovery of catalyst from the transesterification
process in Equation (38).

∑j PHjtYHj ≥ 0.9 ∗ PRWater,t ∀t (35)

∑j PHjtYHj ≥ 0.05 ∗ PRFloc,t ∀t (36)

∑k PEktYEk ≥ 0.1 ∗ PRSolv,t ∀t (37)

PPTrans,t ∗ YPTrans ≥ 0.2 ∗ PRCat,t ∀t (38)

Equations (39)–(42) describe the flow of the material inventory in the system un-
derstudy. The beginning inventory is defined in Equation (39) as a function of material
purchases and the ending inventory carried over from the previous period, while the
ending inventory is expressed as a function of the beginning inventory and recovered
material inputs in Equation (40). Equations (41) and (42) ensure that the amount of ma-
terial purchased and kept inventory are limited by the available inventory and purchase
capacities.

BImt = MQmt + EImt−1 ∀t (39)

EImt = BImt + PRmt ∀t (40)

EImt ≤ IKmt ∀t (41)

MQmt ≤ MKmt ∀t (42)

The available material inputs (i.e., water, flocculant, solvent, and catalyst) at the
beginning of each period should be able to satisfy the requirements of their respective
conversion processes (i.e., cultivation, harvesting, extraction, and transesterification). These
constraints are modeled in Equations (43)–(46).

BIWater,t ≥ 0.9 ∗∑i PCitYCi ∀t (43)
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BIFloc,t ≥ 0.05 ∗∑j PHjtYHj ∀t (44)

BISolv,t ≥ 0.1 ∗∑k PEktYEk ∀t (45)

BICat,t ≥ 0.2 ∗ PPTrans,t ∗ YPTrans ∀t (46)

Equations (47)–(49) require that the system activates one of the available alternatives
in each of the cultivation, harvesting, and extraction processes, while Equation (50) ensures
that other processes without alternative units must be installed through binary constraints.

∑i BCi = 1 (47)

∑j BHj = 1 (48)

∑k BEk = 1 (49)

BPu = 1 ∀u (50)

5. Model Validation

The mathematical optimization model was validated with the use of MATLAB R2020a
software along with the Cplex optimization solver. A base case is considered as an initial
scenario to be used for comparison in the scenario analysis. In order to attain the best
and worst possible values involving the two objectives which were used in calculating the
efficiency, optimization with single objectives was executed.

5.1. Profit Maximization

With the objective of profit maximization, the algal biorefinery chose to operate at its
maximum yielding annual biodiesel output of 49,473.14 kg. The optimal selection of process
alternatives with only profit consideration for cultivation, harvesting, and extraction is
shown in Figure 1. Based on the results, the process units chosen were those that require the
least fixed cost among other alternatives, which were open pond cultivation, centrifugation
harvesting, and solvent extraction. However, the maximized production of biodiesel results
in a trade-off for the environmental impact objective since this process configuration is one
of those with the biggest impact as calculated from the LCA methodology.

5.2. Impact Minimization

Consequently, looking into the environmental objective, biodiesel production was
performed only to meet the minimum annual demand of 25,000 kg. A larger production
amount would result in a higher impact given that the single score values are calculated
based on a unit output for each process. Figure 1 presents the process path that yields
the least environmental impact as calculated from the life cycle assessment. However, the
resulting profit value with this process flow drastically changes, resulting in a net loss (see
Table 2) given that the revenue generated is lower than the total production cost since less
biofuel and other bioproducts are produced from the microalgal biorefinery.

Table 2. Summary of single objective optimization results.

Maximized Profit Minimized Impact

Overall Profit—10 Periods (USD) 5,923,239.93 −36,518.68
Annual Impact (kPt) 8,682.01 592.40

Annual Biodiesel Output (kg) 48,977.79 kg 25,000 kg

The results presented above validate the hypothesis that a balance must be established
between the two objectives to obtain the optimal result. With that, the developed model
with the efficiency objectives highlighted in the model formulation section were added
onto the final model.
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5.3. Multi-Objective Model

Using the obtained results from the single-objective execution of the optimization
model, the best and worst values for the profit and environmental impact were retrieved.
With that, the efficiency could be calculated for both objectives which was then maximized
for the optimization model.

The resulting optimal efficiency value obtained from the model was 92.69%, as pre-
sented in Table 3, which means that the optimal multi-objective values are very close to their
respective single objective values. Annual biodiesel production equates to 49,951.43 kg,
which is higher than that of the first two single-objective runs while having a lower profit
than the maximum profit single objective. This shows the significance of incorporating
certain process paths in the system. Looking simply into the economic objective, a bigger
profit is achieved with less output due to the use of low-cost processes. Figure 1 shows the
optimal process path chosen for the biorefinery, which is identical to that of the minimum
impact single objective. This shows the balance that was established between the two
objectives to yield the optimal result.

Table 3. Summary of multi-objective optimal results.

Optimal Value Efficiency

Overall Profit—10 Periods (USD) 5,487,668.69 92.69%
Annual Impact (kPt) 1183.65 92.69%

Annual Biodiesel Output (kg) 49,951.43 -

Looking into the behavior of product purchasing given the incorporation of the
recovery processes, purchase amounts for each product are presented in Figure 5.

Figure 5. Behavior of purchase amounts for each input material over time.

For the first period, the maximum purchase amounts are seen since there is no initial
inventory count and no material recovered yet. By the second year, due to the recov-
ered materials from the previous period, a decrease in the purchase amount is observed.
However, since the recovery efficiency decreases over time, purchase amounts start to
increase after the second year. This behavior is beneficial to the algal biorefinery due to the
purchase cost savings and an overall decrease in use of new materials. To discuss further,
the inventory level of each material over time is assessed, as presented in Figure 6.

It can be observed that the behaviors of the purchase amounts and inventory levels of
each material follow an inverse relationship. The inventory rose to maximum levels during
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the second period due to the newly recovered materials from the first period. Moreover, the
inventory started to decrease, attributable to the decreasing efficiency level of the recovery
processes. Eventually, the inventory of materials would reach a minimum, which would
then indicate that a full purchase of new materials is needed.

Figure 6. Behavior of inventory levels for each input material over time.

6. Scenario Analysis

To assess the capabilities of the optimization model further, a scenario analysis was
conducted looking into the impacts of applying efficiencies to each process unit and
fluctuations in demand for biodiesel.

6.1. Impact of Process Unit Efficiencies

For the base case, it was assumed that all process units are always 100% efficient.
However, this is not true most of the time due to the occurrence of waste and differences
in raw material input quality. To look into the effect of the application of efficiencies to
each process unit, different efficiency levels were assigned to all process units to test the
corresponding impact on the objective functions. An efficiency level lower than 100%
indicates that a unit of input yields less output compared to its full capacity.

Decreasing the efficiency levels of each process unit yields less environmental impact
and less profit for the algal biorefinery (see Figure 7a). Although the decrease in impact
is favorable, the decrease in profit is not. This behavior occurs since less products are
produced within the system, which yields less revenue and overall environmental impact.
Aside from that, it is noted that the efficiency objective functions which are related to
the worst and best values for each of the objectives have an inverse relationship with the
process unit efficiencies, as seen in Figure 7b. This indicates that the resulting optimal
values from the multi-objective model move nearer to the optimal results from the single-
objective runs for each objective as efficiency decreases. However, this is not a favorable
outcome if looking at the big picture since the profit has an opposite trend.
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Figure 7. Results under varying process unit efficiencies: (a) Profit and environmental impact optimal values under varying
process efficiencies; (b) objective function efficiency values under varying process efficiencies.

6.2. Impact of Demand Fluctuations

Product demand does not always assume a deterministic value. Most of the time,
fluctuations in demand are caused by various industry factors affecting the operations of
the production line. To determine the impact when accounting for demand fluctuations,
a demand index, taking values from 1.5 to 0.5 at an interval of 0.1, was incorporated to
be multiplied to the current demand parameter to represent the changes in demand. The
results of the optimization model with the adapted fluctuations in demand are presented
in Figure 8a,b.

Figure 8. Results under varying demand parameters: (a) Profit and environmental impact optimal values under varying
demand; (b) objective function efficiency values under varying demand.

A higher demand, as represented by the demand indices ranging 1.5 to 1.1, indicates
higher production of biodiesel, which leads to a higher profit and environmental impact
(see Figure 8a). A similar trend is seen with regards to having a lower demand. This
indicates that the objective values are highly sensitive to the demand parameters that are
set in the model. The varying demand parameters come with changes in the efficiency
objective values as seen in Figure 8b. A higher demand setting yields a higher efficiency
value since the denominator for the profit efficiency, which is the potential improvement
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for profit, takes on a lower value. This is because the worst possible profit is increased due
to taking on a bigger demand. With lower demand comes the lower worst possible profit
value, which then results in a decrease in the efficiency objective value. This is an indicator
that the demand estimate for the base case may have been too low for the system. This
shows the importance of appropriate demand forecasting alongside a system that is able to
overcome demand fluctuations.

7. Conclusions and Recommendations

This study introduced a multi-objective optimization model for an algal biorefinery
incorporating a circular bioeconomy outlook with objectives of maximizing profit and
minimizing environmental impact. To determine the single score impact assessment for
the process units involved in the system boundary, a life cycle analysis (LCA) methodology
was utilized, looking into the life cycle of the products from cultivation until usage and
disposal. Incorporating this technique into the optimization model created a new approach
in determining the environmental impact associated with each product to be applied in
mathematical modeling. The model aimed to design a system for an algal biorefinery to
determine which processes to take in to consideration.

By looking into the profit and environmental impact objectives separately through
single-objective optimization, the conflict between the two was observed through their
inverse relationship. When profit maximization is prioritized, the resulting environmental
impact increases, which is unfavorable due to the harm it will cause for the environment.
On the other hand, when environmental impact is minimized, the algal biorefinery obtains a
net loss since the generated revenue is not enough to cover the overall production expenses.
Considering both objectives simultaneously through the optimization model would strike
a balance between profit and environmental impact for the algal biorefinery.

Consideration of process unit efficiencies as well as demand fluctuations causes
significant changes in the objective function values. A lower process unit efficiency results
in a decrease in profit and impact due to less product outputs. Similarly, having a lower
demand parameter yields less profit and environmental impact since biodiesel production
is decreased. This shows the impact of the changes in demand and process unit efficiencies
that are usually caused by numerous other factors outside the system.

A possible extension of this research may be through the incorporation of uncertain
parameters into the optimization model such as demand, microalgae nutrient content,
and process unit product yield. The LCA section of the study currently lacks further
investigation on the breakdown of environmental impacts in each process. A more in-
depth analysis on the results of the LCA methodology can also be added to the research,
expounding on the impacts of specific material inputs in the algal biorefinery. Moreover,
using real-life data for the estimating system parameters would lead to more accurate
findings for applied industry projects.
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Appendix A

Table A1. Demand and selling price for each product [16].

Demand (kg) Selling Price (USD/kg)

Biodiesel 25,000 12.50
Glycerol 2500 0.78
Biochar 1000 0.50

Fertilizer 200 0.25

Table A2. Purchase and inventory costs for each recoverable material [18].

Purchase Cost (USD/kg) Inventory Cost (USD/kg/pd)

Water 0.367 0.15
Potassium sulfate 0.12 0.15

Hexane 0.41 0.15
Sulfuric acid 0.74 0.15

Table A3. Fixed and operating costs for each process unit [16,18,36].

Fixed Cost (USD) Operating Cost (USD)

Open Pond 734,713.76 0.50
Photobioreactor 1,192,058.79 0.50

Flocculation 923,823.86 0.50
Centrifugation 285,617.51 0.50

Filtration 807,400.00 0.50
Oven Drying 632,120.00 0.50

Solvent Extraction 720,000.00 0.50
Microwave Extraction 936,000.00 0.50

Transesterification 1,050,441.71 0.50
Pyrolysis 357,760 0.50

Anaerobic Digestion 693,600 0.50
Combined Heat and Power 459,000 0.25

Table A4. Life cycle inventory for 1 kg of biodiesel (open pond systems) [15,16,18,35–37].

Stages Material OP-FL-SO OP-CN-SO OP-FN-SO OP-FL-MI OP-CN-MI OP-FN-MI

Cultivation—
Open
Pond

Water (kg) 6.4852 221.7602 6.3385 1.7546 59.9993 1.7150
Urea (g) 2.5779 88.1497 2.5196 0.6975 23.8497 0.6817

Diammonium
phosphate (g) 2.3185 79.2793 2.2660 0.6273 21.4498 0.6131

Electricity (MJ) 0.3599 12.3077 0.3518 0.0974 3.3300 0.0952
* Algal broth (kg) 6.6203 226.3802 6.4706 1.7912 61.2493 1.7507

Harvesting—
Flocculation

Potassium sulfate (kg) 0.0794 0.0215
Electricity (MJ) 7.7385 2.0937
Algal broth (kg) 6.6203 1.7912

* Wet biomass (kg) 5.4353 1.4706

Harvesting—
Centrifugation

Chitosan (g) 45.9690 12.4374
Electricity (MJ) 12.4740 3.3750
Algal broth (kg) 226.3802 61.2493

* Wet biomass (kg) 5.4353 1.4706

Harvesting—
Filtration

Electricity (MJ) 190.2355 51.4700
Algal broth (kg) 6.4706 1.7507

* Wet biomass (kg) 5.4353 1.4706
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Table A4. Cont.

Stages Material OP-FL-SO OP-CN-SO OP-FN-SO OP-FL-MI OP-CN-MI OP-FN-MI

Oven Drying
Wet biomass (kg) 5.4353 5.4353 5.4353 1.4706 1.4706 1.4706

Heat (MJ) 62.4516 62.4516 62.4516 16.8969 16.8969 16.8969
* Dry biomass (kg) 4.6200 4.6200 4.6200 1.2500 1.2500 1.2500

Extraction—
Solvent

Hexane (g) 2.9568 2.9568 2.9568
Electricity (MJ) 0.3326 0.3326 0.3326

Heat (MJ) 2.3100 2.3100 2.3100
Dry biomass (kg) 4.6200 4.6200 4.6200

* Algal oil (g) 1049.9884 1049.9884 1049.9884
* Liquid residue (g) 170.0000 170.0000 170.0000
* Solid residue (g) 40.0000 40.0000 40.0000

Extraction—
Microwave

Electricity (MJ) 36.7496 36.7496 36.7496
Dry biomass (kg) 1.2500 1.2500 1.2500

* Algal oil (kg) 1.0500 1.0500 1.0500
* Liquid residue (g) 45.9951 45.9951 45.9951
* Solid residue (g) 10.8224 10.8224 10.8224

Transesterification

Algal oil (g) 1049.9884 1049.9884 1049.9884 1049.9884 1049.9884 1049.9884
Methanol (g) 124.8787 124.8787 124.8787 124.8787 124.8787 124.8787

Sodium hydroxide (g) 10.4874 10.4874 10.4874 10.4874 10.4874 10.4874
Sulfuric acid (g) 15.8004 15.8004 15.8004 15.8004 15.8004 15.8004
Electricity (MJ) 0.1663 0.1663 0.1663 0.1663 0.1663 0.1663

Heat (MJ) 5.5902 5.5902 5.5902 5.5902 5.5902 5.5902
Water (kg) 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386

* Biodiesel (g) 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000
* Glycerol (g) 113.2825 113.2825 113.2825 113.2825 113.2825 113.2825

Pyrolysis
Solid residue (g) 40.0000 40.0000 40.0000 10.8224 10.8224 10.8224

Heat (MJ) 6.4168 6.4168 6.4168 1.7361 1.7361 1.7361
* Biochar (g) 5.9970 5.9970 5.9970 1.6225 1.6225 1.6225

Anaerobic
Digestion

Liquid residue (g) 170.0000 170.0000 170.0000 45.9951 45.9951 45.9951
Electricity (MJ) 54.7260 54.7260 54.7260 14.8066 14.8066 14.8066

Heat (MJ) 416.2671 416.2671 416.2671 112.6250 112.6250 112.6250
* Methane (g) 19.4064 19.4064 19.4064 5.2506 5.2506 5.2506
* Fertilizer (g) 69.8428 69.8428 69.8428 18.8966 18.8966 18.8966

Combined
Heat and

Power

Methane (g) 19.4064 19.4064 19.4064 5.2506 5.2506 5.2506
* Electricity (MJ) 0.2156 0.2156 0.2156 0.0583 0.0583 0.0583

* Heat (MJ) 0.4097 0.4097 0.4097 0.1108 0.1108 0.1108

* Output Material; OP—Open Pond; FL—Flocculation; CN—Centrifugation; FN—Filtration; SO—Solvent; MI—Microwave.

Table A5. Life cycle inventory for 1 kg of biodiesel (photobioreactor) [15,16,18,35–37].

Stages Input PB-FL-SO PB-CN-SO PB-FN-SO PB-FL-MI PB-CN-MI PB-FN-MI

Cultivation—
Open
Pond

Water (kg) 5.6105 191.8476 5.4836 1.5180 51.9062 1.4836
Chicken compost (kg) 0.2244 7.6739 0.2193 0.0607 2.0762 0.0593
Atmospheric air (kg) 0.2244 7.6739 0.2193 0.0607 2.0762 0.0593

Inoculum (kg) 0.5610 19.1848 0.5484 0.1518 5.1906 0.1484
Electricity (MJ) 5.5890 191.1152 5.4626 1.5122 51.7080 1.4780

* Algal broth (kg) 6.6203 226.3802 6.4706 1.7912 61.2493 1.7507

Harvesting—
Flocculation

Potassium sulfate (kg) 0.0794 0.0215
Electricity (MJ) 7.7385 2.0937
Algal broth (kg) 6.6203 1.7912

* Wet biomass (kg) 5.4353 1.4706

Harvesting—
Centrifugation

Chitosan (g) 45.9690 12.4374
Electricity (MJ) 12.4740 3.3750
Algal broth (kg) 226.3802 61.2493

* Wet biomass (kg) 5.4353 1.4706
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Table A5. Cont.

Stages Input PB-FL-SO PB-CN-SO PB-FN-SO PB-FL-MI PB-CN-MI PB-FN-MI

Harvesting—
Filtration

Electricity (MJ) 190.2355 51.4700
Algal broth (kg) 6.4706 1.7507

* Wet biomass (kg) 5.4353 1.4706

Oven Drying
Wet biomass (kg) 5.4353 5.4353 5.4353 1.4706 1.4706 1.4706

Heat (MJ) 62.4516 62.4516 62.4516 16.8969 16.8969 16.8969
* Dry biomass (kg) 4.6200 4.6200 4.6200 1.2500 1.2500 1.2500

Extraction—
Solvent

Hexane (g) 2.9568 2.9568 2.9568
Electricity (MJ) 0.3326 0.3326 0.3326

Heat (MJ) 2.3100 2.3100 2.3100
Dry biomass (kg) 4.6200 4.6200 4.6200

* Algal oil (g) 1049.9884 1049.9884 1049.9884
* Liquid residue (g) 170.0000 170.0000 170.0000
* Solid residue (g) 40.0000 40.0000 40.0000

Extraction—
Microwave

Electricity (MJ) 36.7496 36.7496 36.7496
Dry biomass (kg) 1.2500 1.2500 1.2500

* Algal oil (kg) 1.0500 1.0500 1.0500
* Liquid residue (g) 45.9951 45.9951 45.9951
* Solid residue (g) 10.8224 10.8224 10.8224

Transesterification

Algal oil (g) 1049.9884 1049.9884 1049.9884 1049.9884 1049.9884 1049.9884
Methanol (g) 124.8787 124.8787 124.8787 124.8787 124.8787 124.8787

Sodium hydroxide (g) 10.4874 10.4874 10.4874 10.4874 10.4874 10.4874
Sulfuric acid (g) 15.8004 15.8004 15.8004 15.8004 15.8004 15.8004
Electricity (MJ) 0.1663 0.1663 0.1663 0.1663 0.1663 0.1663

Heat (MJ) 5.5902 5.5902 5.5902 5.5902 5.5902 5.5902
Water (kg) 0.1386 0.1386 0.1386 0.1386 0.1386 0.1386

* Biodiesel (g) 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000
* Glycerol (g) 113.2825 113.2825 113.2825 113.2825 113.2825 113.2825

Pyrolysis
Solid residue (g) 40.0000 40.0000 40.0000 10.8224 10.8224 10.8224

Heat (MJ) 6.4168 6.4168 6.4168 1.7361 1.7361 1.7361
* Biochar (g) 5.9970 5.9970 5.9970 1.6225 1.6225 1.6225

Anaerobic
Digestion

Liquid residue (g) 170.0000 170.0000 170.0000 45.9951 45.9951 45.9951
Electricity (MJ) 54.7260 54.7260 54.7260 14.8066 14.8066 14.8066

Heat (MJ) 416.2671 416.2671 416.2671 112.6250 112.6250 112.6250
* Methane (g) 19.4064 19.4064 19.4064 5.2506 5.2506 5.2506
* Fertilizer (g) 69.8428 69.8428 69.8428 18.8966 18.8966 18.8966

Combined
Heat and

Power

Methane (g) 19.4064 19.4064 19.4064 5.2506 5.2506 5.2506
* Electricity (MJ) 0.2156 0.2156 0.2156 0.0583 0.0583 0.0583

* Heat (MJ) 0.4097 0.4097 0.4097 0.1108 0.1108 0.1108

* Output Material; PB—Photobioreactor; FL—Flocculation; CN—Centrifugation; FN—Filtration; SO—Solvent; MI—Microwave.

Table A6. Normalization and weighting factors for ReCiPe 2016 impact categories.

Category Normalization Factor Weighting Factor

Damage to human health 11.2 400
Damage to ecosystems 1186 400

Damage to resource
availability 0.000357 200

Retrieved from SimaPro ReCiPe 2016 Egalitarian impact assessment method.
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Table A7. Life cycle assessment results for 1 kg of biodiesel.

Impact Category OP-FL-
SO

OP-CN-
SO

OP-FN-
SO

OP-FL-
MI

OP-CN-
MI

OP-FN-
MI

PB-FL-
SO

PB-CN-
SO

PB-FN-
SO

PB-FL-
MI

PB-CN-
MI

PB-FN-
MI

Global Warming,
Human health 4.4227 3.9009 24.8744 7.0341 6.3919 5.8820 5.7478 5.2261 26.1995 8.3593 7.7171 7.2071

Stratospheric
ozone depletion

1.79 ×
10−4

5.37 ×
10−3

1.42 ×
10−3

1.79 ×
10−1

2.83 ×
10−4

5.36 ×
10−3

2.35 ×
10−4

5.43 ×
10−3

1.48 ×
10−3

1.79 ×
10−1

3.39 ×
10−4

5.42 ×
10−3

Ionizing radiation 1.14 ×
10−4

7.14 ×
10−5

2.01 ×
10−3

5.75 ×
10−4

1.39 ×
10−4

9.79 ×
10−5

1.33 ×
10−4

9.05 ×
10−5

2.03 ×
10−3

5.94 ×
10−4

1.58 ×
10−4

1.17 ×
10−4

Fine particulate
matter formation 0.5600 0.4905 3.3394 0.9656 0.8982 0.8303 0.7441 0.6747 3.5236 1.1497 1.0824 1.0145

Ozone formation,
Human health

7.96 ×
10−4

7.66 ×
10−4

3.85 ×
10−3

2.81 ×
10−3

1.18 ×
10−3

1.15 ×
10−3

1.05 ×
10−3

1.02 ×
10−3

4.10 ×
10−3

3.06 ×
10−3

1.43 ×
10−3

1.40 ×
10−3

Human
carcinogenic

toxicity
2.1092 1.8749 12.1635 4.1494 3.6177 3.3886 2.8535 2.6191 12.9078 4.8936 4.3619 4.1329

Human
non-carcinogenic

toxicity
14.7170 11.9791 122.8033 29.1829 24.7466 22.0706 19.5436 16.8058 127.6299 34.0095 29.5732 26.8973

Water
consumption,
Human health

7.01 ×
10−3

5.32 ×
10−4

2.28 ×
10−1

6.33 ×
10−3

6.93 ×
10−3

5.98 ×
10−4

7.12 ×
10−3

6.44 ×
10−4

2.28 ×
10−1

6.44 ×
10−3

7.04 ×
10−3

7.10 ×
10−4

Global Warming,
Terrestrial
ecosystems

0.9381 0.8274 5.2763 1.4894 1.3536 1.2454 1.2188 1.1080 5.5569 1.7700 1.6343 1.5260

Ozone formation,
Terrestrial
ecosystems

1.21 ×
10−2

1.20 ×
10−2

5.90 ×
10−2

5.58 ×
10−2

1.79 ×
10−2

1.78 ×
10−2

1.58 ×
10−2

1.57 ×
10−2

6.28 ×
10−2

5.95 ×
10−2

2.17 ×
10−2

2.16 ×
10−2

Terrestrial
acidification

5.06 ×
10−2

4.34 ×
10−2

3.28 ×
10−1

8.29 ×
10−2

7.14 ×
10−2

6.44 ×
10−2

6.51 ×
10−2

5.79 ×
10−2

3.43 ×
10−1

9.74 ×
10−2

8.60 ×
10−2

7.89 ×
10−2

Terrestrial
ecotoxicity

8.60 ×
10−4

3.99 ×
10−4

1.71 ×
10−2

1.33 ×
10−3

1.02 ×
10−3

5.69 ×
10−4

9.86 ×
10−4

5.24 ×
10−4

1.72 ×
10−2

1.45 ×
10−3

1.14 ×
10−3

6.94 ×
10−4

Water
consumption,

Terrestrial
ecosystems

4.70 ×
10−3

7.04 ×
10−4

1.47 ×
10−1

1.08 ×
10−2

5.02 ×
10−3

1.12 ×
10−3

4.89 ×
10−3

8.93 ×
10−4

1.48 ×
10−1

1.10 ×
10−2

5.21 ×
10−3

1.30 ×
10−3

Land use 0.0435 28.5368 0.3170 974.6366 0.0543 27.9031 0.0543 28.5476 0.3278 974.6474 0.0651 27.9139

Global Warming,
Freshwater
ecosystems

2.56 ×
10−5

2.25 ×
10−5

1.44 ×
10−4

4.06 ×
10−5

3.69 ×
10−5

3.39 ×
10−5

3.32 ×
10−5

3.02 ×
10−5

1.52 ×
10−4

4.82 ×
10−5

4.45 ×
10−5

4.16 ×
10−5

Freshwater
eutrophication

9.07 ×
10−3

8.64 ×
10−3

3.43 ×
10−2

1.93 ×
10−2

1.75 ×
10−2

1.71 ×
10−2 ×

10−2

1.28 ×
10−2

1.24 ×
10−2

3.80 ×
10−2

2.31 ×
10−2

2.12 ×
10−2

2.08 ×
10−2

Freshwater
ecotoxicity

6.78 ×
10−4

4.20 ×
10−4

1.00 ×
10−2

1.23 ×
10−3

1.01 ×
10−3

7.54 ×
10−4

8.43 ×
10−4

5.85 ×
10−4

1.02 ×
10−2

1.39 ×
10−3

1.17 ×
10−3

9.19 ×
10−4

Water
consumption,

Aquatic
ecosystems

4.77 ×
10−6

4.60 ×
10−6

1.27 ×
10−5

6.73 ×
10−6

4.85 ×
10−6

4.67 ×
10−6

9.24 ×
10−6

9.07 ×
10−6

1.72 ×
10−5

1.12 ×
10−5

9.31 ×
10−6

9.14 ×
10−6

Marine
ecotoxicity 0.7912 0.6257 7.2239 1.5643 1.3151 1.1533 1.0433 0.8777 7.4760 1.8163 1.5671 1.4053

Marine
eutrophication

1.10 ×
10−5

1.13 ×
10−5

2.20 ×
10−5

3.23 ×
10−5

1.23 ×
10−5

1.26 ×
10−5

2.09 ×
10−5

2.12 ×
10−5

3.19 ×
10−5

4.22 ×
10−5

2.22 ×
10−5

2.25 ×
10−5

Mineral resource
scarcity

4.23 ×
10−4

7.07 ×
10−5

1.31 ×
10−2

1.06 ×
10−3

4.39 ×
10−4

9.48 ×
10−5

4.39 ×
10−4

8.64 ×
10−5

1.31 ×
10−2

1.07 ×
10−3

4.55 ×
10−4

1.10 ×
10−4

Fossil resource
scarcity

2.78 ×
10−2

1.68 ×
10−2

4.22 ×
10−1

4.38 ×
10−2

4.10 ×
10−2

3.02 ×
10−2

3.46 ×
10−2

2.35 ×
10−2

4.28 ×
10−1

5.06 ×
10−2

4.77 ×
10−2

3.69 ×
10−2

TOTAL 23.6960 48.3245 177.2641 1019.427 38.5413 62.6127 31.3494 55.9779 184.9175 1027.081 46.1946 70.2661

* Output Material; OP—Open Pond; PB—Photobioreactor; FL—Flocculation; CN—Centrifugation; FN—Filtration; SO—Solvent; MI—
Microwave.
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Table A8. Model indices.

Indices Description

i Index of cultivation process alternatives (1 . . . I)
j Index of harvesting process alternatives (1 . . . J)
k Index of extraction process alternatives (1 . . . K)
r Index of recovery processes (1 . . . R)
u Index of single process units (1 . . . U)
m Index of recoverable material inputs (1 . . . M)
p Index of final products (1 . . . P)
t Index of time periods (1 . . . T)

Table A9. Model parameters.

Parameter Description

Dpt Demand of final product p for period t
SPpt Selling price of final product p for period t
FCi Fixed cost of cultivation process alternative i
FHj Fixed cost of harvesting process alternative j
FEk Fixed cost of extraction process alternative k
FRr Fixed cost of recovery process r
FPu Fixed cost of single process unit u
OCit Operating cost of cultivation process alternative i for period t
OHjt Operating cost of harvesting process alternative j for period t
OEkt Operating cost of extraction process alternative k for period t
ORrt Operating cost of recovery process r for period t
OPut Operating cost of single process unit u for period t
MCmt Purchase cost of material input m for period t
MKmt Purchase capacity of material input m for period t
ICmt Inventory cost of material input m for period t
IKmt Inventory capacity of material input m for period t
CCi Output capacity of cultivation process alternative i
CHj Output capacity of harvesting process alternative j
CEk Output capacity of extraction process alternative k
CRr Output capacity of recovery process r
CPu Output capacity of single process unit u
YCi Output yield of cultivation process alternative i per input material
YHj Output yield of harvesting process alternative j per input material
YEk Output yield of extraction process alternative k per input material
YRr Output yield of recovery process r per input material
YPu Output yield of single process unit u per input material
ECi Environmental impact per output of cultivation process alternative i
EHj Environmental impact per output of harvesting process alternative j
EEk Environmental impact per output of extraction process alternative k
ERr Environmental impact per output of recovery process r
EPu Environmental impact per output of single process unit u
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Table A10. Model variables.

Variables Description

BCi Binary variable, 1 if cultivation process alternative i is used
BHj Binary variable, 1 if harvesting process alternative j is used
BEk Binary variable, 1 if extraction process alternative k is used
BRr Binary variable, 1 if recovery process r is used
BPu Binary variable, 1 if single process unit u is used
PCit Production output of cultivation process alternative i for period t
PHjt Production output of harvesting process alternative j for period t
PEkt Production output of extraction process alternative k for period t
PRrt Production output of recovery process r for period t
PPut Production output of single process unit u for period t
MQm Purchase quantity of material input m for period t
BImt Beginning inventory of material input m for period t
EImt Ending inventory of material input m for period t
TOpt Total output of final product p for period t
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