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Abstract: In this paper, novel methods for the evaluation of digital-filter stability are investigated.
The methods are based on phase analysis of a complex function in the characteristic equation of
a digital filter. It allows for evaluating stability when a characteristic equation is not based on a
polynomial. The operation of these methods relies on sampling the unit circle on the complex plane
and extracting the phase quadrant of a function value for each sample. By calculating function-
phase quadrants, regions in the immediate vicinity of unstable roots (i.e., zeros), called candidate
regions, are determined. In these regions, both real and imaginary parts of complex-function values
change signs. Then, the candidate regions are explored. When the sizes of the candidate regions are
reduced below an assumed accuracy, then filter instability is verified with the use of discrete Cauchy’s
argument principle. Three different algorithms of the unit-circle sampling are benchmarked, i.e.,
global complex roots and poles finding (GRPF) algorithm, multimodal genetic algorithm with phase
analysis (MGA-WPA), and multimodal particle swarm optimization with phase analysis (MPSO-
WPA). The algorithms are compared in four benchmarks for integer- and fractional-order digital
filters and systems. Each algorithm demonstrates slightly different properties. GRPF is very fast and
efficient; however, it requires an initial number of nodes large enough to detect all the roots. MPSO-
WPA prevents missing roots due to the usage of stochastic space exploration by subsequent swarms.
MGA-WPA converges very effectively by generating a small number of individuals and by limiting
the final population size. The conducted research leads to the conclusion that stochastic methods
such as MGA-WPA and MPSO-WPA are more likely to detect system instability, especially when
they are run multiple times. If the computing time is not vitally important for a user, MPSO-WPA is
the right choice, because it significantly prevents missing roots.

Keywords: digital filters; discrete-time systems; stability analysis; digital signal processing

1. Introduction

Stability analysis is an important topic in almost every area of engineering. Most
electronic circuits must be stable to operate properly and to execute tasks for which they
are designed. It is also vitally important in digital signal processing. In general, the
discrete-time linear time-invariant (LTI) system is (asymptotically) stable if and only if all
the roots (i.e., zeros) of the characteristic equation (f(z) = 0) are within the unit circle on
the complex z-plane [1-3]. A direct approach to testing stability is to find all the zeros of the
characteristic equation (e.g., a denominator of a transfer function). However, this might be a
difficult task because, for some systems, e.g., those of fractional order [4,5], the characteristic
equation may not be based on a polynomial. To prove the system stability, one has to show
that there are no roots of the characteristic equation in an infinite region outside the unit
circle (|z| > 1). However, despite the progress in computational techniques, root finding
for complex functions of complex variables remains an open scientific problem [6-15].

For fractional-order systems, one can employ the graphical method proposed in [16] to
evaluate the system stability. By means of one-to-one transformation, the region of stability
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on the complex plane is obtained, for which the parameter values inside it guarantee
the stability of the system. In [4,5], the stability criterion for fractional-order systems
is used to offer simple numerical procedures for testing the system stability. In [17], a
modification of the Mikhailov stability criterion is formulated, which can be used to test the
stability of discrete-time fractional-order systems. However, none of the aforementioned
methods is general enough to be used to test the stability of discrete-time systems with
arbitrary characteristic equations (e.g., those being interconnections of various fractional-
order systems [18]). Therefore, we investigate general numerical techniques that allow for
testing the stability of arbitrary systems based solely on the characteristic equation, hence
without any significant analytical preprocessing.

We already proposed numerical tests [19,20] for evaluation of the system stability
by employing modern techniques of global root finding based on Delaunay’s triangula-
tion [21,22]. In [18], the global complex roots and poles finding (GRPF) algorithm was
implemented to test the stability of discrete-time LTI systems. Furthermore, we recently
developed two novel roots and poles finding methods that combine efficient evolutionary
algorithms, called multimodal genetic algorithm with phase analysis (MGA-WPA) [23] and
multimodal particle swarm optimization with phase analysis (MPSO-WPA) [24,25]. Each
of these methods employ complex-function phase analysis and discrete Cauchy’s argument
principle (DCAP); hence, they are not sensitive to numerical precision issues resulting from
overflow of arithmetic operations. The motivation behind this work is to benchmark and
compare the abovementioned methods in stability tests targeting discrete-time LTI systems,
especially digital filters.

This work is an extension of a conference paper [24]. This extension covers a much
broader number of benchmarks. Moreover, conclusions are presented by way of compari-
son to other numerical methods of stability evaluation.

2. Stability of Digital Filters

Fundamental equations describing the stability of digital filters are presented in
this section.

The integer-order discrete-time LTI system (e.g., digital filter) can be represented in
the Z-transform domain by the transfer function:

where X denotes the input signal and Y denotes the output signal. The characteristic
equation
f(z)=0 )

for (1) is based on the polynomial of the z variable

L

f(z) = Den(z) = [[(z— pi) ®)

i=1

where p; denotes the ith root of the function Den(z).
The fractional-order discrete-time LTI system (e.g., digital filter) [4,5] can be repre-
sented by the transfer function

H(z) = 3 = @)

where
u=z(1-z"1H~ )
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In contrast to integer-order systems, the characteristic equation of the fractional LTI
system is not based on a polynomial of the z variable but on the complex function:

f(z) = Den[z(1 —z"1)*] = 0. (6)

Both integer- and fractional-order systems are stable if and only if all the zeros of the
characteristic equation on the complex z-plane are located inside the unit circle. Hence,
to prove that the system is stable, all the roots of the characteristic equation must be
found outside the unit circle. However, the region outside the unit circle is infinite and,
in consequence, computationally difficult. Therefore, in the developed tests, the region
outside the unit circle is transformed into the unit circle using the following transformation:

z=w "l (7)

By employing the transformation (7), which maps the outer region of the unit circle
to its inner region on the complex w-plane, the root-search area is reduced to the region
inside the unit circle. The presented methods allow for exploring complex functions with
singularities (i.e., poles). However, to reduce the computing time, the singularities of
g(w) = f(w™') can be extracted. Hence, the following equation is advantageous for
an analysis:

F(w) = (w - p)*g(w) =0. ®)
In (8), p is an exemplary singularity of ¢(w) = f(w™!) and K is its multiplicity.

3. Complex-Function Phase Analysis

All stability tests based on complex-function phase analysis initially employ similar
procedures. That is, each method requires, in the first step, that the algorithm accuracy
€ and the initial number of nodes N are set. The algorithm accuracy is defined as the
numerical precision of root computations for the function F(w), which means the number
of digits after a decimal point in computed zeros and poles. The accuracy e is utilized in a
criterion stopping the computations. In each method, the space inside the unit circle on the
complex w-plane is sampled to find the regions where zeros and poles can be located. When
such regions are found, more samples are added inside them to narrow down areas of zero
and pole locations. Such an area reduction, also referred to as the algorithm convergence,
is finished when the diameter of the largest region is smaller than the algorithm accuracy.
When the algorithm accuracy and the initial number of nodes are determined, each method
generates a set of samples (i.e., nodes) inside the unit circle on the complex w-plane

W = {wl,wz,...,wN}. (9)

The nodes are generated in a different way for each considered method, i.e., using
either the self-adaptive mesh refinement (GRPF), the particle swarm optimization (MPSO-
WPA), or the genetic algorithm (MGA-WPA). The details are described in Section 4. Then,
the nodes are triangulated inside the unit circle on the complex w-plane using Delaunay’s
triangulation. Hence, a triangular mesh consisting of edges

E = {61,62,...,€p} (10)

is generated between the nodes W. For each node, the phase quadrant is evaluated, in
which the value of function F(w) is located. Hence, the algorithm operates on four numbers
associated with the w-plane quadrants

1, O0<argf(wy,) <%

)2, F<Largf(wy) <m
Q(wn) - 3’ T S argf(wn) < 3771 (11)
4

, 3 <argf(wy) <27
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The algorithm is not very sensitive to numerical precision of function-value computa-
tions because the principal argument of the complex number is located within the interval
[0,277). Then, the distance between quadrants is computed for the nodes located on the
same edge:

AQ(ex) = Q(wp) - Q(wq) (12)

The value of the quadrant distance is from the set {—2,—1,0,1,2}. The vicinity
of zero/pole can be detected by finding edges, called candidate connections, such that
|AQ(ex)| = 2. It stems from the fact that any zero/pole of the function F(w) is a point where
complex-function values change the sign for both real and imaginary parts. Hence, each
zero/pole is a point around which the function values belong to all four different quadrants
of the complex plane, as it is presented in Figure 1. The detected candidate connections
are collected in a single set E.. The triangles, including at least a single candidate edge
from the set E, are collected in a single set of candidate triangles T.. Then, all the edges of
the triangles belonging to T; are collected in the set E;. Those edges that occur only once
in E; represent the boundary C of candidate regions because internal edges can only be
attached to two candidate triangles. The boundary C of candidate regions is constructed
only from the edges, such as |AQ(ex)| < 2. Then, the set C is decomposed into the subsets
Ck, where Cy denotes a closed contour, which is a boundary of the kth candidate region.
Starting from any edge in the set C, the algorithm searches for the edge connected to that
edge. Then, the process is repeated iteratively and the boundary of a region is constructed
by finding the next edge connected to the previous one. Finally, if no edge is connected to
the previous edge, the last edge should close the contour and the construction of the next
candidate region can be started.

For each candidate region, Cauchy’s argument principle [26,27] has to be applied to
its boundary contour Cy in order to verify the actual existence of a root of the function F(w)
within this region:

1 [ F(w)
U= 27j Jo, Flw)
] /G

(13)

where j = v/—1. Based on Cauchy’s argument principle, gy is equal to the number of all
the zeros counted with their multiplicities minus the number of all the poles also counted
with their multiplicities, located within the contour C;. The candidate-region contour
contains discrete samples; hence, Cauchy’s argument principle is used in its discretized
version. That is, discrete Cauchy’s argument principle (DCAP) is used [22]. The existence
of zero/pole inside the unit circle is confirmed by the counterclockwise summation of
quadrant differences along a path between the nodes around a candidate region. The result
represents the total change in the argument of the function F(w) along a closed contour Cy
and is given for the sampled function as

1 P
9= 3 L AQ(e) (14)
p=1

where AQ(ep) belongs to a contour around the candidate connection.

The parameter g is a positive integer when any function zero is found inside a
candidate region. When multiple zeros are located inside a candidate region, the value of
qx indicates the number of zeros inside this region (calculated with their multiplicities).
When one or more zeros are found, the system is unstable. The parameter gy is a negative
integer when a pole is found.
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Figure 1. Triangulated area inside the unit circle |w| < 1 for function F(w) = (1 — w)?* + 0.4w(1 —
w)* + 0.85w? and a = 1.1. Zeros are located at w = 0.53 + 0.57;. The candidate edges (|AQ| = 2) are
between nodes 2—4, 69, and 7-9. The zeros are located inside contours 1-2-3—4 (w = 0.53 — 0.57j)
and 5-6-7-8-9 (w = 0.53 4 0.57j). The boundary of candidate regions consists of cyan lines (-).
Quadrants of w-plane: *Q=1, “Q=2, °Q=3,and *Q=4.

4. Numerical Tests for Stability Evaluation

In this section, numerical tests for evaluating stability of digital filters and systems
(i.e., GRPE, MGA-WPA, and MPSO-WPA) are presented.

4.1. GRPF Algorithm

The GRPF algorithm generates a regular triangular mesh of nodes in a defined region
as well as detects zeros and poles based on the complex-function argument (i.e., phase
quadrant) in each node location, as presented in Section 3. Its successful application to
stability tests of discrete-time LTI systems is presented in [18]. In this paper, we present this
method to establish a reference for evaluation of MGA-WPA and MPSO-WPA. A flowchart
of the stability test applying the GRPF algorithm is presented in Figure 2. It is executed
following those steps:
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4.1.1. Initialize algorithm, set
GRPF parameters.
Generate regular triangular
mesh.

4.1.2. Evaluate function
argument for each node located
at triangular mesh vertices.
Analyse phase quadrants.
Search for candidate

connections. /

-~

End algorithm. There is
no root nor pole on
complex plane. Digital
filter or system is stable.

Candidate NO
connection

exists ?

-

4.1.3. Increase mesh
density in vicinity of
candidate connections.

Accuracy
achieved ?

-

4.1.4. Apply DCAP to
candidate regions. Print root
and pole values. If one or more
roots are found inside candidate

region, digital filter or system
is unstable.

J

Figure 2. Flowchart of stability test with the global complex roots and poles finding (GRPF) algorithm.
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4.1.1. Algorithm Initialization and Mesh Generation

For its execution, the algorithm requires parameters such as the algorithm accuracy e
and the mesh resolution r. The region inside the unit circle on the complex w-plane is then
triangulated with a regular mesh using Delaunay’s triangulation, creating a set of nodes
located at triangle vertices.

4.1.2. Search for Regions in Vicinity of Zeros and Poles

The algorithm operates on four numbers associated with the w-plane quadrants
(refer to (11)). Then, the distance between quadrants for nodes located on the same mesh
connection is computed (refer to (12)). The vicinity of zero/pole can be detected by finding
edges such as [AQ,| = 2. If the candidate connection is not found, then the algorithm
returns information stating that the considered system is stable and ends its execution.
Otherwise, the maximum length of the collected candidate connections is computed.
If the maximum length of candidate connections is greater than the initially assumed
accuracy € of the algorithm, it proceeds to the step of mesh refinement around candidate
connections (see Section 4.1.3). If the maximum candidate-connection length is smaller
than the assumed accuracy ¢, the algorithm proceeds to the step of final stability verification
(see Section 4.1.4).

4.1.3. Mesh Refinement around Candidate Connections

The mesh is refined to increase the accuracy of zero/pole locations (refer to [18]). For
this purpose, additional nodes are added in the vicinity of candidate connections. Then,
Delaunay’s triangulation is executed to obtain a new mesh. Values of the function F(w)
are evaluated in new nodes, and the algorithm proceeds for the locally denser mesh and
searches for regions in the vicinity of the zeros/poles (see Section 4.1.2).

4.1.4. Stability Verification by Inspection of Candidate Regions

In the final step, the existence of zeros inside the unit circle is confirmed by using
DCAP and Equation (14). If the parameter gy is a positive integer, then a function zero is
found inside a candidate region and the considered system is unstable.

4.2. MGA-WPA Algorithm

Genetic algorithms (GAs) were originally proposed by Holland [28]. This approach
employs a mathematical model of biological evolution to solve optimization problems.
The original algorithm is based on binary operations on chromosomes of individuals
(i.e., population members). The chromosomes are moved to a new population by genetic
operators of selection, crossover, and mutation. The selection operator chooses from
the population the chromosomes that are reproduced, the crossover operator exchanges
parts of chromosomes between individuals, and the mutation operator changes alleles in
chromosomes. A modification of the original GA, which operates in the continuous domain,
is referred to as the breeder GA (BGA) [29]. Benchmarks indicate that BGAs outperform
classical GAs in continuous search problems [30]. The crossover and mutation operators
are main genetic operators for continuous functions. The mutation scheme generates new
population members in a region defined by coordinates of a mutated individual and a
mutation range. The crossover scheme generates new population members in a region
between candidates with the most promising chromosomes. The BGA algorithm finds
the single best solution of a fitness function but cannot deal with multimodal searching
with multiple good solutions. Hence, the MGA-WPA algorithm was proposed in [23],
which adapts BGA to solve problems of finding multiple zeros and poles. The proposed
algorithm employs a set of rules allowing for population diversity and precise exploration
of different regions on the complex plane. The population diversity stems from spatial
separation of candidate regions. An individual either belongs to a candidate edge or not;
thus, a new population is easily diversified and generated only in regions of zero or pole
locations. The mutated or crossovered individuals are not replaced by new individuals;
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hence, the population size increases in each iteration of the algorithm. In this paper, we
implement MGA-WPA to test stability of digital filters. A flowchart of the stability test
with the MGA-WPA algorithm is presented in Figure 3. This algorithm is executed following
those steps:

4.2.1. Initialize algorithm, set
MGA-WPA parameters.
Generate initial population.

4.2.2. Evaluate function
argument for each member of
population. Analyse phase
quadrants. Search for candidate I=1+]

connections.

End algorithm. There is
no root nor pole on
complex plane. Digital
filter or system is stable.

Candidate NO
connection

exists ?

4.2.3. Generate new
individuals by crossover
and mutation of candidate
connection coordinates.

Accuracy
achieved ?

4.2.4. Apply DCAP to
candidate regions. Print root
and pole values. If one or more
roots are found inside candidate
region, digital filter or system
is unstable.

Figure 3. Flowchart of stability test with the multimodal genetic algorithm with phase analysis
(MGA-WPA).
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4.2.1. Algorithm Initialization and Generation of Initial Population Members

For its execution, the algorithm requires parameters such as the algorithm accuracy e,
the size of initial population N, the mutation range Ry, and the mutation precision Ky,.
Then, the uniformly distributed random population is generated inside the unit circle on
the complex w-plane:

W= {wl,w2,...,wN} (15)

where N is the initial population size.

4.2.2. Search for Regions in Vicinity of Zeros and Poles

For each individual population member, whose coordinates on the complex w-plane
are denoted as w; (i = 1,2,...,n;, where n; is the population size in the /th iteration),
the complex-function argument and the associated phase quadrant (11) are evaluated.
Then, Delaunay’s triangulation is applied to coordinates wy;, i.e., triangular connections
between population members are generated. The phase-quadrant distance (12) along
each of the connections is computed, and candidate connections are found. If there are
neither zeros nor poles on the complex plane, candidate connections are not found and
the algorithm execution is terminated. This means that the considered digital filter (or
the system in general) is stable. If at least one candidate connection is found, then the
candidate-connection length is computed. If the maximum length of collected candidate
connections is smaller than the assumed accuracy, then the algorithm proceeds to the step
described in Section 4.2.4. In other cases, the algorithm proceeds to the next step described
in Section 4.2.3.

4.2.3. Crossover and Mutation of Population

New members of the population are generated by genetic operations of crossover and
mutation. The genetic operations are executed on the coordinates of candidate connections.
The crossover is executed on two individuals w: and wl’-’ , which form the ith candidate
connection. Then, the coordinates of a new individual resulting from the crossover are
given by

Wi = Re(w] + a;(w] — w)))

16
T jm(w, + (! — w) (16

where i = 1,2,...,k;, w,,4; denotes the coordinates of a new individual, w; denotes the
coordinates of the first individual within the ith candidate connection, wlf’ denotes the
coordinates of the second individual within the ith candidate connection, a; and b; are
random numbers between 0 and 1, and k; is the number of candidate connections detected
in the /th iteration. The mutation operation is executed by mutating the coordinates of
candidate-connection centres. Hence, the coordinates of new individuals resulting from
the mutation are given by

Wy, ki = Re(s; + AiRycim;) + jIm(s; + AjRyidim;) (17)
si = 0.5(w} + w!) (18)

A; = 0.5|w! — w!| (19)

m; = 2 "iKu (20)

wherei =1,2,...,k;, W,k +i denotes the coordinates of a new individual, w; denotes the
coordinates of the first individual within the ith candidate connection, wlf’ denotes the
coordinates of the second individual within the ith candidate connection, s; denotes the
coordinates of the ith candidate-connection centre, A; denotes half of the length of the
ith candidate connection, ¢; and d; are random numbers between —1 and 1, Ry denotes
the mutation range between 0 and 1, u; is a random number between 0 and 1, and Ky
denotes the mutation precision. As a result of the crossover and mutation operations, new
population members are generated. The number of generated new individuals depends
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on the number of detected candidate connections. For each candidate connection, two
individuals (i.e., one crossovered and one mutated) are generated. Hence, the population
size n; is increased in each iteration based on the following formula:

npy1 = ny + 2k;. (21)

In (21), k; denotes the number of candidates detected in the [th iteration. After the
generation of new population members, the index [ is increased and the algorithm is looped
to the step consisting of searching for candidates, described in Section 4.2.2.

4.2 4. Stability Verification by Inspection of Candidate Regions

In the final step, the existence of zeros inside the unit circle is confirmed by using
DCAP and Equation (14). If the parameter gy is a positive integer, then a function zero is
found inside a candidate region and the considered system is unstable.

4.3. MPSO-WPA Algorithm

The algorithm of particle swarm optimization (PSO) was introduced by Kennedy and
Eberhart [31]. It originated from the observed social and cooperative behavior of various
intelligent colonies in nature. PSO, like GAs, is initialized with random population of
nodes, called particles. The set of particles is defined as a swarm. Tracking of particle
coordinates in space, which are associated with the best known solutions, and simultaneous
sampling of the space while moving the population towards them are the basic principles
of PSO operation. The most widely known variant of PSO [32] introduces inertia to the
original formula as follows:

v; = wo; + cruy (pi — X;) + cauia(pg — ;) (22)

x; = x} + ;. (23)

In (22) and (23), v; and U§ are, respectively, current and previous velocities of the
ith particle. The variables p; and p, are, respectively, the best coordinates found so far
by an individual particle and the best coordinates found so far by a whole swarm. The
scaling factors c; and c; represent, respectively, attractions towards the best position of
the ith particle and the best position of the whole swarm. The parameters u; and u; are
randomly generated numbers between 0 and 1. The inertia weight w determines how
much the previous velocity is preserved. The particle coordinates x; are updated by adding
velocity v; to the previous particle coordinates x/. The original algorithm is dedicated to
global-minimum searching and is not fully efficient when exploring multimodal functions.
Multimodal optimization is focused on exploring a single function (from the characteristic
equation in the case of filter-stability testing) to find multiple (most accurate) solutions,
usually in different distant space regions. However, the original method suffers from
premature convergence to a global solution because all particle velocities are updated in
each iteration by pg. This led to an uprise in new learning techniques that determine the
information distribution between particles [33,34]. The swarm learning methods not only
employ movement direction and velocity but also define how swarms are divided and
distributed in search regions. It is extremely important, especially in the case of multimodal
search, where regions of interest are distant from each other. MPSO-WPA [25] merges the
PSO algorithm with the function-phase analysis to find roots and poles. In MPSO-WPA, the
diversity of swarms stems from acceleration of the particles towards the nearest candidate
connections. It allows for diversification of swarms and thorough exploration of regions
of zero and pole locations. In this paper, we employ MPSO-WPA to test the stability
of discrete-time LTI systems. A flowchart of the stability test applying the MPSO-WPA
algorithm is presented in Figure 4. This numerical test is executed following those steps:
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4.3.1. Initialize algorithm, set
MPSO-WPA parameters.
Generate first “static” global
swarm Wo,0.

\
l

4.3.2. Generate subsequent
swarm Wi,.

4.3.3. Evaluate function

argument for each particle 4.3.4. Move particles
coordinates. Analyze phase ~ [— towards candidate
quadrants. Search for connections.

candidate connections.

Candidate NO
connection Ex'plgrc glo.ballly area
exists ? inside unit circle.
End algorithm. There is
Candidate NO no root nor pole on
connection —1 complex plane. Digital
exists ? filter or system is
YES stable.

Number of
iterations to

Accuracy create
achieved ? subsequent
swarm j=j+i
reached ?
YES
i
YES

4.3.5. Apply DCAP to
candidate regions. Print root i=i+1, j=0
and pole values. If one or
more roots are found inside
candidate region, digital
filter or system is unstable.

Figure 4. Flowchart of stability test with the multimodal particle swarm optimization with phase
analysis (MPSO-WPA) algorithm.

4.3.1. Algorithm Initialization and Generation of Initial Swarm

For its execution, the algorithm requires parameters such as the algorithm accuracy e,
the inertia weight g, the scaling factor s, the number of particles in swarms 7, the number
of swarm iterations L, and the initial velocity of particles. Next, a uniformly distributed
random swarm (i.e., a set of particle coordinates) is generated within the unit circle on the
complex w-plane:

Wi = {wij1, wijo, . Wijn} (24)
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where i is the swarm number and j is the iteration number. The indices i and j are set to
zero for the initial swarm. It is assumed that Wy is not updated in subsequent iterations.

4.3.2. Generation of Subsequent Swarms

Next, the ith index is incremented and a subsequent, uniformly distributed swarm
Wi ; = {wij1,wijp, ., Wi} is generated on the complex plane. The first swarm (i = 1) is
generated globally, and its role is to perform a wide-space search on the complex w-plane.
If the ith index is greater than one, then such a swarm is divided into sub-swarms and
generated locally only inside the candidate regions.

4.3.3. Search for Regions in Vicinity of Zeros and Poles

In this step, the function argument is evaluated for coordinates of each particle,
and the phase quadrant in which the function value is located, is computed using (11).
Then, Delaunay’s triangulation is applied to coordinates of all the particles, i.e., triangular
connections between the particles are generated. Next, the phase-quadrant distance along
each of the connections is computed using (12), and candidate connections can be found.
If any candidate connection is not found, then the first swarm globally explores the unit
circle by randomly changing the coordinates of its particles. If after L random changes
of coordinates of particles in the first swarm no candidate connection is not found, then
the algorithm returns information stating that the system is stable and exits. Otherwise,
the coordinates of the centre of each candidate connection and its length are computed. If
the maximum length of the collected candidate connections is smaller than the initially
assumed accuracy, then the algorithm proceeds to the step described in Section 4.3.5.
Otherwise, if the number of current iteration is equal to the number of swarm iterations
L or its multiple, the algorithm executes the loop to the step described in Section 4.3.2 or
proceeds to the next step described in Section 4.3.4.

4.3.4. Narrowing Candidate Regions

For each particle, the distances between its location and candidate-connection centres
are computed. Then, again for each particle, the closest candidate-connection centre is
determined and its coordinates are stored in the following set:

Pij = A{pij1 Pijor s Pijn} (25)

where i is the swarm number and j is the iteration number. Next, each particle contained in
the ith swarm is accelerated in the direction of its closest candidate centre by updating its
velocity through vector operations:

Vi1 = 8Vij +cu(P; — W) (26)

where V; ; denotes the particle velocities; ¢ denotes the scaling factor; ¢ denotes the inertial
weight, which determines how much the particle preserves its original direction of motion;
and u denotes a random number between 0 and 1. Next, the coordinates of the ith swarm
particles W; ; are updated by

Wijt1 = Wij + Vij (27)

Then, the step consisting of searching for candidates, described in Section 4.3.3, is
executed.

4.3.5. Stability Verification by Inspection of Candidate Regions

Finally, the existence of zeros inside the unit circle is confirmed by using DCAP and
Equation (14). If the parameter g is a positive integer, then a function zero is found inside
a candidate region and the considered system is unstable.
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5. Numerical Results

Numerical benchmarks were executed on a personal computer equipped with Intel
i7-4700MQ processor. The codes for the stability tests were developed in Matlab. The
characteristic equation, i.e., a function for which the roots (i.e., zeros) are investigated, and
the algorithm parameters are the input data. The output data are values and multiplicities
of the zeros and poles that have been found. Moreover, the code returns information
on whether the considered system is stable or unstable. In the first test, the stability of
integer-order digital filter is evaluated. Then, fractional-order systems are evaluated in
terms of stability.

5.1. Integer-Order Digital Filter
Let us consider the digital filter [20] described by

G
H(z) = —= 2
®)= 15 8)
where G is the gain factor and A(z) is the characteristic-equation function defined by
A(z) = 4 1.0000 — 2.5400z ! + 3.0429z 7% — 2.9211z 3
+3.7088z* — 3.9740z° + 3.0221z° 29)

—23163z77 +1.9791z 8 — 1.12652
+0.3855z 10 — 0.2189z 1 4+ 0.1171z 12,

For the filter stability, all the zeros of A(z) must be located inside the unit circle. By
applying the transformation (7), one obtains

A(w) = + 1.0000 — 2.5400w + 3.0429w? — 2.9211w°>
+ 3.7088w* — 3.9740w° + 3.0221w°

—2.3163w” + 1.9791w® — 1.1265w°
+0.3855w'% — 0.2189w!! + 0.1171w!2.

(30)

The stability test for GRPF is executed with the mesh resolution » = 0.07. Hence,
the initial number of generated nodes is equal to 919. To obtain comparable results,
the benchmarks for MGA-WPA and MPSO-WPA are also executed with the same initial
number of individuals or particles, respectively. The accuracy of the algorithms is set to
¢ = 1075, The final distributions of nodes with Delaunay’s triangulations for exemplary
runs of GRPF, MGA-WPA, and MPSO-WPA are presented in Figure 5. The tested filter is
unstable because all the algorithms find two conjugate zeros inside the unit circle:

w = 0.829238 £+ 0.536757].

The stability test lasts 0.15 s for GRPF, 0.3 s for MGA-WPA, and 0.23 s for MPSO-
WPA. The GRPF algorithm executes 14 iterations and generates 1080 nodes in total. The
MGA-WPA algorithm executes 17 iterations and generates 1033 individuals in total. The
MPSO-WPA algorithm executes 11 iterations and generates 1019 particles in total. The
computing times and final numbers of nodes for GRPF, MGA-WPA, and MPSO-WPA are
presented in Table 1.
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Figure 5. Distribution of nodes with Delaunay’s triangulation in the final iteration for (a) the GRPF,
(b) MGA-WPA, and (c) MPSO-WPA methods. The stability tests of integer-order digital filter are executed
in the transformed region |w| < 1. Phase quadrants of mesh nodes on the w-plane: *Q=1, *Q=2,
Q=3,and °Q=4.

Table 1. Computing times and numbers of generated nodes in the stability tests of a considered
integer-order digital filter.

Method Computing Time (s) Nodes
GRPF 0.15 1080
MGA-WPA 0.3 1033
MPSO-WPA 0.23 1019

It is worth mentioning that the zeros located very close to the unit circle are difficult to
compute because the quadrant distances are computed only between the particles located
inside the unit circle. In consequence, a function zero located close to the unit circle may
be missed. In order to avoid such a situation, the number of generated nodes may be
increased to collect more phase samples of the complex function, especially at the points
located close to the unit circle. Another solution is to increase the size of the search region,
e.g., by considering the region |w| < 1.1 and by verifying if the detected zero is positioned
within the unit circle. In our opinion, a more reliable and less computationally demanding
approach is to increase the w-plane search region.

5.2. High-Order Systems

Stability tests of high-order systems are computationally demanding because a large
number of zeros complicates the phase portrait of the complex function in the characteristic
equation. It may lead to false detection of candidate regions and to exploration of irrelevant
regions by the algorithms. Let us consider a system for which the characteristic equation is
given by the function

L

flz)=(z-2)]]z- (-1'04(1+ %)]. (31)

i=1

As one can notice, the system is unstable because a single zero of such a characteristic
equation is located outside the unit circle on the complex z-plane (z = 2). The characteristic
equation is mapped onto the w-domain. Although the algorithms that utilize the phase
analysis do not need to remove singularities from a complex function, in this benchmark,
singularities are removed according to (8) due to long computing times. The stability tests
are executed for the accuracy set to e = 107>, The initial number of generated nodes is set
to 919. With the increase in parameter L, the phase portrait of the characteristic function
F(w) becomes more and more complicated. If only 919 nodes are generated initially, the
GRPF method is not able to converge when the system order is set at 80 and higher. A
more dense initial mesh is required to overcome this limitation. However, MGA-WPA
and MPSO-WPA usually converge for a system order higher than 80 in our benchmarks.
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The number of finally generated nodes and the times necessary for the convergence (i.e.,
computing times), when the system order is varied, are presented in Table 2.

Table 2. Computing times and numbers of generated nodes in stability tests of considered high-order

systems.
Method L Computing Time (s) Nodes

GRPF 1 0.17 1312

5 0.18 1312

10 0.19 1315

20 0.20 1315

40 0.23 1343

MGA-WPA 1 0.24 965
5 0.20 961

10 0.21 973

20 0.22 969
40 0.25 1055

80 0.52 1901
100 0.95 2785
MPSO-WPA 1 0.23 1019
5 0.24 1019
10 0.24 1019
20 0.61 1519
40 0.97 1720
80 3.06 2956
100 4.34 3334

The algorithms are fast and efficient for low-order systems, i.e., for low values of the L
parameter. However, in the case of a complicated phase portrait of the considered complex
function, the algorithms require longer times and a large number of nodes to converge for
the assumed accuracy. The distributions of nodes with Delaunay’s triangulations in final
iterations for the system (31) when L = 40, with singularities removed, are presented in
Figure 6.

Im{w)
Im(w)

Figure 6. Distribution of nodes with Delaunay’s triangulation in final iteration for (a) the GRPE, (b) MGA-
WPA, and (c) MPSO-WPA methods. The stability tests of a high-order system with L = 40 are executed
in the transformed region |w| < 1. Phase quadrants of mesh nodes on the w-plane: *Q=1, *Q=2,
°Q=3,and *Q=4.
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5.3. Fractional-Order Digital Filter

Let us consider the fractional-order digital filter described by the transfer function:

1
H(z) = —~ —~ (32)
(F1r) P +a(l2) +c

where a and ¢ are the design parameters, « and B are the fractional-order parameters, and T
is the sampling period. The characteristic equation of the filter in the w-domain is given by

F(w) = s(@HB) 4 gs® 4 ¢ (33)
where 21 )
—w
= ="z 4
T Tt w) 34
The pole w = —1 can be removed; hence, the stability is tested based on the following
equation:
F(w)(1+w)* ™ = 0. (35)

Let us assume that« = 8 = 0.5,2 = 1, c = —1000 4 50, and T = 0.001. The initial
number of generated nodes for all the methods is set to 919. The algorithm accuracy is set
to ¢ = 10~°. The final distributions of nodes with Delaunay’s triangulations for exemplary
runs of GRPF, MGA-WPA, and MPSO-WPA are presented in Figure 7. The tested filter is
unstable because all the algorithms found a single root inside the unit circle:

w = 0.346947 + 0.022324;.

In exemplary runs, the stability test lasts 0.15 s for GRPF, 0.18 s for MGA-WPA, and
0.20 s for MPSO-WPA. The GRPF algorithm executes 14 iterations and generates 993 nodes
in total. The MGA-WPA algorithm executes 15 iterations and generates 962 individuals
in total. The MPSO-WPA algorithm executes 8 iterations and generates 1019 particles in
total. The computing times and final numbers of nodes for the GRPF, MGA-WPA, and
MPSO-WPA methods are presented in Table 3.

Figure 7. Distribution of nodes with Delaunay’s triangulation in final iteration for (a) the GRPF,

(b) MGA-WPA, and (c) MPSO-WPA methods. The stability tests of a fractional-order digital filter are

executed in the transformed region |w| < 1. Phase quadrants of mesh nodes on the w-plane: *Q =1,
Q=2 °Q=3,and °Q=4.
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Table 3. Computing times and numbers of generated nodes in the stability tests of the considered
fractional-order digital filter.

Method Computing Time (s) Nodes
GRPF 0.15 993
MGA-WPA 0.18 962
MPSO-WPA 0.20 1019

Let us consider another computationally difficult case. The fractional-order digital
filter (32) is now considered for the parameters « = p = 0.5, 2 = 1, c = —1000 — 100j,
and T = 0.01. The pole w = —1 is not extracted in order to obtain an “island”-like
phase portrait of the considered function. Empirical tests show that the mesh size must
be smaller than or equal to 7 = 0.039 in order to detect the digital-filter instability (i.e., to
find a zero inside the unit circle on the w-plane) using the GRPF method. Therefore, the
algorithm must generate the mesh, which consists of more than 2971 nodes to detect the
filter instability. The mesh with a smaller number of nodes causes the algorithm to miss
the function zero located inside the unit circle and returns false information that the digital
filter is stable. The distributions of nodes with Delaunay’s triangulations for the mesh sizes
r = 0.04 (2971 nodes) and r = 0.039 (2977 nodes) are presented in Figure 8. The failure of
the GRPF-based stability test for the considered fractional-order digital filter is presented
in Figure 8a.

z z
< 0 [Esereceises < op B
£ i £
B M%% ) %
05 05k 4
%g %WM%’
1 At
55 1 o5 B o5 i Ts 85 El 55 B 5% 1 75
Re(w) Re(w)
(@) (b)

Figure 8. Distribution of nodes with Delaunay’s triangulation for the stability test of a fractional-order
digital filter with the use of GRPF for mesh size (a) r = 0.04 and (b) r = 0.039. A single zero is not
detected for mesh size r = 0.04 because it is not dense enough. Phase quadrants of mesh nodes on
the w-plane: *Q=1, “Q=2, °Q=3,and *Q=4.

The GRPF method is not based on a stochastic generator such as MGA-WPA and
MPSO-WPA; hence, its multiple executions always return the same test results. Only
increasing the mesh density allows one to detect the digital-filter instability in the case of
the first failure. On the other hand, MGA-WPA and MPSO-WPA are stochastic methods.
The convergence process is different in each run; hence, multiple algorithm executions
may allow one to detect the filter instability properly after a few failures. To benchmark
MGA-WPA and MPSO-WPA, the detectability of an unstable zero for a varying number
of initial nodes is tested for each algorithm in 5 runs. The random distribution of nodes
in each run for MGA-WPA allows one to detect instability properly, even with a small
number of initial nodes such as 250. With a small number of nodes, the algorithm avoids
spending computing time on a function-phase analysis in redundant nodes. However,
a reduced number of nodes increases the probability of stability-test failure. A trade-off
must be carefully established between the number of nodes and the risk of failure at the



Energies 2021, 14, 1488

18 of 23

algorithm’s first iteration. Table 4 presents the number of runs with correctly detected filter
instability for the MGA-WPA method as a function of the number of initial nodes. The
distributions of nodes in the last iteration with Delaunay’s triangulations for a varying
number of nodes for MGA-WPA algorithm initialization are presented in Figure 9.

Table 4. Initial number of individuals (nodes) and number of runs with correctly detected zeros for
the MGA-WPA method. The stability test is executed 5 times for each number of nodes. A faultless
run means that the filter instability is detected (zero is found inside the w-plane unit circle).

Nodes Faultless Runs

2977 5

2500 3

2000 4

1500 2

1000 3

500 1

250 1

1 1 1

0.8 0.8 0.8-
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Figure 9. Distribution of nodes with Delaunay’s triangulation for the stability test of a fractional-order
digital filter with the use of MGA-WPA. The stability test results are presented for an initial number
of nodes set to (a) 2000, (b) 1000, and (c) 250. The “island”-like region with unstable zero is detected.
Phase quadrants of individuals on the w-plane: *Q=1, *Q=2, *Q=3,and *Q=4.

The stability test executed with MPSO-WPA returns even more interesting results.
MPSO-WPA takes advantage of swarm intelligence and involves global searching, which
prevents missing zeros/poles on the complex plane. If a candidate connection is not
detected in the first iteration, the MPSO-WPA algorithm uses the next swarm by randomly
changing its positions to search for the missed zeros and poles. In consequence, the zero
detection occurs 4 and 2 times more often compared to MGA-WPA for 500 and 250 initial
nodes respectively. These results show clearly that, in the situation in which a small
number of nodes is generated at algorithm initialization, MPSO-WPA is less likely to miss
zeros/poles than MGA-WPA. It allows one to significantly reduce the number of nodes
generated at the algorithm initialization and hence to reduce computation time. Table 5
presents the numbers of runs with correctly detected filter instabilities for MPSO-WPA with
a varying number of nodes in the initial and first swarms. The distributions of nodes with
Delaunay’s triangulations in the last iteration for a varying number of nodes at MPSO-WPA
initialization are presented in Figure 10.



Energies 2021, 14, 1488

19 of 23

Table 5. Number of particles (nodes) in the initial and first swarms and number of runs with correctly
detected digital-filter instability for the MPSO-WPA method. The stability tests are executed 5 times

for each number of nodes.

Nodes in Initial Swarm

Nodes in First Swarm

Faultless Runs

2477 500 5
2000 500 5
1500 500 5
1000 500 5
500 500 5
250 250 4
100 150 2
1 1- 1
0.8 0.8- 0.8
0.6 06 0.6
04 0.4r 0.4
02 02r 02
B op Lo 2 o \Z//,/, /7 .
021 s 02 s )
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Figure 10. Distribution of nodes with Delaunay’s triangulation for the stability test of a fractional-
order digital filter with the use of MPSO-WPA. The results of the stability tests are presented for a
number of nodes in the initial and first swarms set, respectively, to (a) 1500 and 500, (b) 500 and 500,
and (c) 100 and 150 nodes. The “island”-like region with unstable zero is detected. Phase quadrants
of particles on the w-plane: *Q=1, *Q=2, *Q=3,and *Q=4.

5.4. Fractional-Order System

The presented methods can be applied to test the stability of various discrete-time
systems, also of those described by the fractional-order state-space equations [4,5]:

A*x(n+1) = Agx(n) + Bu(n)
y(n) = Cx(n) + Du(n) (36)
where « is the fractional order and A = A — 1 is the difference between the discrete-time

state-space system matrix A and the identity matrix I. In (36), the fractional difference is
defined as

"‘xn:n— i~ “Ix(n
() = X 1>J(j)q1<> ®7)

where g1 is the backward shift operator.
Let us consider the fractional-order system represented by the matrix

0.6 —145
A= [ 1 1 } (38)
For the systems (36) and (38), the characteristic equation is given by
flz) =det[z(1 -z 1)*T— Af] =0. (39)

By applying the transformation (7) and by multiplying by w?, one obtains

F(w) = w?f(w) = (1 —w)* + 0.4w(1 — w)* 4 0.85w>. (40)
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The stability tests are executed for the parameter « = 1.1. The accuracy of algorithms
is set to e = 107°. The number of initially generated nodes is set to 919. The final
distributions of nodes with Delaunay’s triangulations for GRPF, MGA-WPA, and MPSO-
WPA are presented in Figure 11.
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Figure 11. Distribution of nodes with Delaunay’s triangulation in final iteration for (a) the GRPF, (b)
MGA-WPA and (c) MPSO-WPA methods. The stability tests of a fractional-order system are executed
in the transformed region |w| < 1. Phase quadrants of mesh nodes on the w-plane: *Q=1, *Q=2,
Q=3,and °*Q=4.

Each of the benchmarked methods returns information stating that the system is
unstable and finds two conjugate zeros inside the unit circle:

w = 0.529268 + 0.569170j. (41)

The stability test based on GRPF generates 1068 nodes and lasts 0.16 s. The test
based on MGA-WPA generates 1005 individuals and lasts 0.36 s. The MPSO-WPA method
generates 1019 particles and lasts 0.2 s. The computation times and final numbers of nodes
for the GRPF, MGA-WPA, and MPSO-WPA methods are summarized in Table 6.

Table 6. Convergence times and final numbers of nodes for the GRPF, MGA-WPA, and MPSO-WPA
methods for the stability test of a fractional-order system.

Method Computation Time (s) Nodes
GRPF 0.16 1068
MGA-WPA 0.36 1005
MPSO-WPA 0.20 1019

6. Discussion

The recently published methods for finding roots and poles, i.e., GRPF, MGA-WPA,
and MPSO-WPA, are based on Delaunay’s triangulation and the function phase analysis.
The main difference between the algorithms stems from the method of node generation and
the enhancement of node density in the vicinity of roots and poles. The GRPF algorithm
initially generates a regular triangular mesh of nodes. Then, the mesh becomes denser in
the regions where roots and poles might be located. MGA-WPA generates a uniformly
distributed random population and uses genetic operations to create new individuals
in the vicinity of roots and poles. MSPO-WPA generates uniformly distributed random
swarms consisting of particles and moves them towards roots and poles. The considered
algorithms generate nodes that are differently located. Hence, in order to fairly compare
the performance of these methods, a few assumptions must be made. Firstly, the accuracy
of algorithms ¢, denoting the decimal-point precision of the root and pole computations,
must be equal. Secondly, to compare the total number of function evaluations and the
time necessary to converge, each algorithm must be initiated with the same number of
nodes. The GRPF method generates a regular triangular mesh of nodes. The number of
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generated nodes depends on the parameter » and on the size of the search region. For
r = 0.1, r = 0.05, and r = 0.01, this algorithm generates, respectively, 547, 1801, and 40,717
nodes inside the unit circle. The number of initially generated nodes is set directly by a user
for MGA-WPA and MPSO-WPA. Meshing is another problem in algorithm comparison
because it can result in two common issues. The first one is related to the failure of root or
pole detection, especially when roots and poles are located close to each other and create
an “island”-like region. The second issue is related to the mesh geometry around the unit
circle, which may cause computational issues when a root/pole is located close to the
unit circle. Increasing the mesh density around the unit circle can be a solution to this
problem. However, meshing that involves a high number of nodes also has a drawback.
That is, the function phase must be evaluated in each node, which increases the execution
time of the algorithm. Therefore, the trade-off between the number of generated nodes
and the execution time should be established according to the considered characteristic
equation. The benchmarks clearly show that, if computing time is not vitally important for
the user, MPSO-WPA is the right choice, as it prevents missing zeros/poles. However, the
GRPF or MGA-WPA methods are the right choice in the case of characteristic equations
with simple phase portraits and without “island”-like regions. These methods do not
generate redundant nodes, in contrast to MPSO-WPA, to overcome missing zeros/poles
and consequently require fewer computing resources and less time. It is worth mentioning
that MGA-WPA requires, on average, fewer nodes than GRPF to find a solution with a
given accuracy. On the other hand, the computing time of GRPF method is shorter in
comparison to MGA-WPA. However, this shorter computing time stems mainly from the
higher number of nodes generated in each algorithm loop. The mesh refinement algorithm
of GRPF creates extra nodes in the centres of the edges in candidate regions. Hence, for each
detected candidate connection, five new nodes are generated (i.e., one in the centre of the
candidate edge and four in the centres of edges that form the candidate-region boundary).
The MGA-WPA algorithm generates two nodes for each detected candidate connection
(i.e., the first one from crossover and the second one from mutation). In consequence,
MGA-WPA algorithm is slower because it iterates the algorithm loop executing Delaunay’s
triangulation more frequently.

7. Conclusions

The GRPF, MGA-WPA, and MPSO-WPA methods for stability testing of digital filters
are presented and benchmarked in this paper. The methods evaluate the stability of
integer- and fractional-order digital filters and systems. The algorithms merge optimization
techniques with phase analysis on the complex plane. The results obtained with the use
of the algorithms are satisfactory. The tested algorithms are very fast in most cases. If
either the digital filter or the system includes only a few zeros or poles and the phase
portrait is not complicated, computations take a fraction of a second. In the presented
cases, the longest stability test for a digital filter with two zeros located inside the unit
circle on the complex w-plane lasts 0.36 s. Even for a high-order system (order set to 100),
with a complicated phase portrait, the computation time rises up to 0.95 s for MGA-WPA
and 4.34 s for MPSO-WPA. The algorithms do not require singularities to be removed
from the considered complex functions. However, testing stability without removing
singularities as well as testing stability of high-order systems may be computationally
inefficient for functions with complicated phase portraits. It is worth noticing that each
algorithm has slightly different properties. GRPF is very fast and efficient; however, it
requires an initial number of nodes to be large enough to detect all candidate edges. In the
exemplary benchmark of GRPF, it is necessary to generate as many as 2971 initial nodes
to detect the fractional-order digital filter instability. However, MGA-WPA and MPSO-
WPA allow for detecting digital filter instability using only 250 nodes generated at the
algorithm initialization. For MGA-WPA, a small number of individuals is sufficient for the
convergence, limiting the final population size. Furthermore, the MGA-WPA method may
not find any root or pole if the initial population members are separated by a large distance.
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However, the stochastic nature of MGA-WPA increases the probability of finding all roots
and poles when the algorithm is executed multiple times. MPSO-WPA also prevents
missing roots and poles due to the usage of stochastic space exploration by subsequent
swarms; however, such an algorithm that prevents missing zeros/poles requires high
computing time. These properties lead to the conclusion that stochastic-based methods
such as MGA-WPA and MPSO-WPA are more likely to detect system instability, especially
when run multiple times. If the computing time is not important for the user, MPSO-WPA
is the right choice, as it prevents missing zeros/poles. If computing time is important and
“island”-like regions are not expected to occur on the complex w-plane inside the unit circle,
it is recommended that either MGA-WPA or GRPF is used.
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Abbreviations

The following abbreviations are used in this manuscript:

BGA breeder genetic algorithm

DCAP discrete Cauchy’s argument principle

GA genetic algorithm

GRPF global complex roots and poles finding algorithm
LTI linear time-invariant

MGA-WPA  multimodal genetic algorithm with phase analysis
MPSO-WPA  multimodal particle swarm optimization with phase analysis

PSO particle swarm optimization
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