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Abstract: In recent years, the new type design of current transformer with bushing structure has
been widely used in the distribution network system due to its advantages of miniaturization,
high mechanical strength, maintenance-free, safety and environmental protection. The internal
temperature field distribution is an important characteristic parameter to characterize the thermal
insulation and aging performance of the transformer, and the internal temperature field distribution
is mainly derived from the joule heat generated by the primary side guide rod after flowing through
the current. Since the electric environment is a transient field and the thermal environment changes
slowly with time as a steady field under the actual conditions, it is more complex and necessary to
study the electrothermal coupling field of current transformer (CT). In this paper, a 3D simulation
model of a new type design of current transformer for distribution network based on electric-thermal
coupling is established by using finite element method (FEM) software. Considering that the actual
thermal conduction process of CT is mainly by conduction, convection and radiation, three different
kinds of boundary conditions such as solid heat transfer boundary condition, heat convection
boundary condition and surface radiation boundary condition are applied to the CT. Through the
model created above, the temperature rise process and the distribution characteristics of temperature
gradient of the inner conductor under different current, different ambient temperatures and different
core diameters conditions are studied. Meanwhile, the hottest temperature and the maximum
temperature gradient difference are calculated. According to this, the position of weak insulation of
the transformer is determined. The research results can provide a reference for the factory production
of new type design of current transformer.

Keywords: current transformer; finite element analysis; electro-thermal coupling; thermal field

1. Introduction

The new type design of current transformer for distribution network used epoxy
resin as the shell of secondary coil, compared with the traditional transformer, has high
mechanical strength, miniaturization, maintenance-free advantages [1,2]. In addition to
this, the new casting type current transformer internal using air as medium compared with
the traditional oil-immersed, SF6 type, it is friendly to the environment.

Insulation performance affects the reliable operation of transformers to a large extent,
and it is related to the temperature field distribution under the actual operating condition of
the transformer [3,4]. Transformer internal overheating, uneven temperature distribution
not only accelerate insulation degradation, reduce its operating life but also makes water
molecules in the air inside the transformer to migrate and form condensation, which en-
dangers equipment safety and causes transformer faults [5]. So, this article main studied
the new casting type current transformer’s electrical and thermal coupling performance,
which used in distribution network. Under the actual working conditions, the temperature
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field calculation of the transformer mainly depends on the ohmic heating of the primary
guide rod and the Joule heat generated by each part of the structure, which indicates that
the calculation of electrical and thermal environment is a coupled solution process [6-8].

In recent years, scholars have mainly studied the temperature field distribution of elec-
tric power equipment through numerical calculation and experimental measurement [9,10].
In some studies, the backward induction method is mostly used to determine the loss.
Although it has certain reference value, it is somewhat different from the loss caused by the
actual primary heat source due to the deviation of reasonable electrothermal coupling [11-13].
Aiming at SF6 CT, Xiuguang calculated the thermal field distribution characteristics of it
by calculating the heat source which generated by the primary guide rod under different
external ambient temperatures. It pointed out that after the thermal environment reaches
steady-state, the overheating of the CT will be around 35 °C which is independent of
the external ambient temperature. However, this model ignores the difference in heat
dissipation capacity between different structure positions of the transformer, which is
inconsistent with the actual working conditions [14]. Lan established a three-dimensional
model of the dry-type transformer by ANSYS commercial software. The model considers
three heat dissipation modes, namely conduction, convection and radiation, and sets differ-
ent convection coefficients for the transformer after taking the on-site installation of the
dry-type transformer into consideration. The hottest spot area of the transformer is studied,
and the distribution of temperature field of the transformer from bottom to top presents a
low-high-low distribution law [15]. Arjona established an axisymmetric model of dry type
transformer with load and no load cases by finite element method. The research considers
the convection, conduction and radiation effect, accurately predict the steady-state thermal
process of dry type transformer and provides the reference for improving equipment
heat dissipation performance, the model can also be applied to the transformer under the
operation condition of the forced convection heat [16]. Hui took the 110 kV SF6 current
transformer as the research object, studied the internal temperature field distribution of the
transformer under different external ambient temperatures, and emphatically analyzed
the influence of the abrupt decrease of ambient temperature on the transformer. The study
shows that, the internal overheating of the transformer remains the same, which has no
obvious difference under different external ambient temperatures. Such uneven tempera-
ture distribution and the sharp decrease of ambient temperature are very easily to lead to
local condensation inside the transformer, thus causing transformer faults [17]. Liu used a
quasi-3D electro-thermal field coupling method to study the distribution characteristics
of transformer temperature field. In this study, a simplified 3D model was established for
the calculation of core loss, a 2D model was established for the calculation of coil loss, and
both of them were regarded as heat sources in the form of sequential coupling to study the
overall temperature rise of the model [18].

In this paper, a new type design of current transformer for distribution network is
studied. According to the actual operation condition, the load is applied to the trans-
former. Based on the calculation principle of electro-thermal coupled multi-physical field,
the finite element calculation software is used to analyzed the electro-thermal coupling
field distribution characteristics of transformer under the different current, the different
environment temperature and the different guide rod core diameter. The weak links of
thermal insulation in the actual operation process of the transformer are obtained, more im-
portantly the research results can provide reference for the design of new casting type
current transformer factory production.

2. Electro-Thermal Coupling Model of New Current Transformer

The new current transformer model adopts the pouring casing structure and designed
as a coaxial cylinder. It is a complex configuration containing metal guide rod, air, semicon-
ductor materials, ceramics, epoxy resin and other media. The aluminum rod, as the primary
coil, is located in the geometric center of the transformer and flows through hundreds or
even thousands of amperes. It is the main heat source of the transformer. The structural
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parameters and physical properties of each part of the CT are shown in Tables 1 and 2,
Figure 1 representing the transformer elements.

Table 1. Structural parameter.

Parameters Guide Bar The Semiconductor Layer Epoxy Shell Bushing Metal Enclosures
Axial length (mm) 1177 1177 - 410 + 290 -
Radial length (mm) 20 10 110 - 350
Table 2. Physical property parameter.
. Conductivity Relative Heat Capacity At Density Therm'al.
Parameters Material (S/M) Permittivi Constant Pressure (Ke/MP) Conductivity
v (J/Kg-K) 8 (W/M-K)
Hardware Copper 5.998 x 107 - 385 8700 400
Guide rod Aluminum 3.774 x 107 - 900 2700 238
Bushing Ceramic 1.0 x 1078 5.5 426 1750 0.06
Coil shell Epoxy-resin 2.0 x 10714 45 1400 980 0.276
Metal
enclosures || EPOxy shell

Bushing

semiconductor layer

Guide bar

Figure 1. The transformer elements.

Before conducting the electro-thermal coupling simulation, in order to simplify the
calculation, the following assumptions were made for the new current transformer electro-
thermal coupling model [19,20].

1. Skin effect is not considered for the transformer under the operating environment of
power frequency.

2. The new current transformer has an internal quasi-stable field, and the influence of
displacement current is not considered in the analysis process.

3. Inthe model, the relative dielectric constant and conductivity of different materials
are constant.

4. The air area inside the transformer is incompressible gas.

2.1. The Coupling Calculation Flow of the Electro-Thermal Coupling Model

In this paper, the Newton iterative calculation method is used in the finite element
simulation software to realize the electro-thermal coupling calculation of the transformer.
Firstly, the 3D geometry model of the new current transformer is established in the cal-
culation environment, and the physical parameters of the electro-thermal coupling are
determined according to the materials of each part of the transformer. The unit volume
loss of the current conductor was calculated through the current field module, and then the
Joule heat loss caused by the primary guide rod was used as the excitation source in the
temperature field calculation environment for simulation solution. After that the overall
temperature field distribution of the transformer was calculated and thermal parameters
such as hot temperature and temperature gradient in the transformer were extracted.
Such calculated iteratively until the two calculated results meet the requirements of control
accuracy. Figure 2 shows the coupling calculation process of the new current transformer’s
electro-thermal coupling model.
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Figure 2. Flow chart of electro-thermal coupling calculation.

2.2. Physical Modeling

Based on the above assumptions, the governing equation of the new current trans-
former electro-thermal coupling model is as follows:

pCpu-VT +V.q=Q (1)
q=—kVT

where: p is the material density, kg/m?3; Cp is the heat capacity at constant pressure of
each part of material of the transformer, J/(kg-K); q is the conductive heat flux vector; u is
the fluid velocity vector; T is temperature K; k is thermal conductivity, W/(m-k); Q is the
volumetric Joule heat (W/m?) generated by the guide rod.

Considering the new current transformer normal operation in the 35 kV power dis-
tribution network system, then the frequency of China’s distribution network is 50 Hz.
In order to get close to the actual operating conditions and calculate the actual thermal
field distribution characteristics of the transformer accurately, the transient AC current
field is used to simulate the actual electrical environment. The guide rod as a large current
input, its frequency choice for AC 50 Hz, and transformer thermal environment parameters
changing with time is relatively slow, which can be considered as steady field. Since the
transformer is located in the distribution network switch cabinet, the external environment
basically remains unchanged. Therefore, it can be assumed that all boundary temperatures
contacted by the transformer and the external environment remain constant.
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2.3. Take Meshes

The new current transformer structure is a complex 3D model, in order to guarantee
both calculation accuracy and can control the time needed for the simulation calculation,
this article adopts the method of differential meshes subdivision, using different size
precision tetrahedral meshes to the new current transformer model. The meshes” maximum
size is 110 mm, and minimum size is 13.7 mm. The model consists of 115,882 tetrahedral
units, 48,562 triangular units, 12,911 edge units and 900 vertex units. The mesh generation
of the transformer model in this paper is shown in Figure 3.

Figure 3. The new current transformer meshes.

3. Heat Source and the Modes of Heat Transfer
3.1. The Analysis of Heat Generation

New current transformer temperature rise is mainly from the loss of the transformer
operation, it will be converted into heat energy lifting transformer temperature distribution.
Heat energy in the form of conduction, radiation and convection diffusion, when heat
production and heat dissipation reach equilibrium, transformer temperature will be sta-
ble [21]. The heat sources in the new current transformer are guide rod and secondary coil.
The guide rod can pass through hundreds of amps in normal operation, and the current
can reach up to thousands of amps. However, the current of the secondary coil is usually
within 5 A, so the loss generated by the secondary coil can be ignored, and only the Joule
heat generated after the flow of the guide rod can be considered.

Besides, there are some additional losses in the CT, mainly including eddy current
loss, circulation loss and stray loss. These additional losses are not considered in this paper
because they are relatively small and difficult to calculate.

3.2. Heat Transfer Analysis of CT

The heat transfer of the new current transformer mainly consists of conduction heat
transfer, convection heat transfer and radiation heat transfer. Among them, the heat con-
duction mainly occurs in the guide rod and insulating bushing, and the heat is transferred
from the higher temperature to the place with lower temperature. Convective heat transfer
occurs mainly in outer insulation umbrella skirt, and hardware, and the surface of the
carbon steel shell in contact with air. In order to calculate the actual condition of the
transformer temperature field distribution characteristics more accurately, in this paper,
considering the actual ventilation in the high voltage cabinet where the transformer is
located, the convection heat transfer coefficient h of the upper and lower fittings and the
outer insulation umbrella skirt of the transformer are respectively set in a differentiated
way. Radiant heat transfer occurs mainly on the wall in contact with air, radiating heat to
the surrounding fluid, and the main influencing factor is surface emissivity e [22].
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4. Results and Analysis

According to the actual operation and ventilation conditions of the transformer, the dif-
ferential convection heat transfer coefficient h was set for the upper and lower ends of the
transformer and the outer insulation umbrella skirt. Considering that the transformer was
installed in the high voltage cabinet, the ventilation condition was that the external cold air
flowed from the bottom of the cabinet, and after the transformer, the hot air flowed out
from the top of the cabinet. Based on this, in the case of natural convection, the lower end of
the transformer was at the cold air inlet, and the convection heat transfer coefficient was the
largest, which was 13 W/(m?2-K). The upper fixture was located at the hot air outlet, and the
convection heat transfer coefficient was the smallest, 10 W/(m?-K). The insulated umbrella
skirt was in direct contact with the surrounding air, which was the main channel for natural
cooling. Its convective heat dissipation intensity was less than that at the entrance of the
bottom, but larger than that at the exit of the top. It was set at 12 W /(m?-K). The external
surface of the transformer was always radiative heat transfer with the air environment,
and its surface emissivity ¢ was set at 0.3.

When the external environment temperature was 293.15 K and the current of the
guidance rod connected to the primary side bus was 2000 A, the overall temperature field
distribution under the final steady-state condition is shown in Figure 4.

330
325
320

315

310

305

300

295

Figure 4. Overall temperature distribution field map.

In order to observe the temperature distribution characteristics of various parts of the
structure of the new current transformer more intuitively, the temperature field distribution
cloud map of Y-Z section was selected, which is shown in Figure 5, and the temperature
gradient distribution cloud map of the transformer is shown in Figure 6. As can be seen
from Figure 5, the overall temperature field distribution rule of the new current transformer
was high in the middle and low at the end, high inside and low outside. Assuming the total
height of the transformer was H, then the hottest point of the transformer was located 0.4 h
away from the bottom, and the hottest point temperature reached 334 K, the maximum
overheating was 41 K.
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Figure 5. Y-Z temperature distribution field map.
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Figure 6. Y-Z temperature gradient field map.

It can be seen from Figure 6 that after the current passed through the transformer,
the internal and external temperature gradient difference iwass large, the maximum temper-
ature gradient difference could reach 2111 K/m, and the heat was mostly concentrated in
the secondary coil wrapping. The reason is that the heat dissipation mode at the secondary
coil of the transformer was mainly convection heat transfer with the external environment,
but the heat dissipation performance was poor because of the airway was narrow there.
In contrast, the head and tail ends were located in the vent and had sufficient convective
heat transfer with the air, so the heat dissipation was obviously better than the middle part
of the transformer.

4.1. The Temperature Field Distribution Characteristics with Different Current

The internal guide rod of the new current transformer was connected to the primary
side bus through the upper tool. The current usually passed through hundreds of amps or
even thousands of amps, which was the main heat source of the transformer. In order to
study the overall temperature of the transformer under different current loads, the elec-
tromagnetic environment of the transformer was controlled at the power frequency of
50 Hz and the external environment temperature remained unchanged at 293.15 K. Figure 7
shows the temperature rise curve of the guide rod. The external insulation umbrella skirt
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temperature rise curve of the new current transformer under different current load is
shown in Figure 8.

s —— 2000A

Temperature (K)

! T T T T T T
0 200 400 600 800 1000 1200

Axial distance of guide rod (mm)

Figure 7. The temperature curves of guide rod at different currents.
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The distance along the skirt {(mm)
Figure 8. The temperature curves of skirt under different currents.

As shown in Figure 7, the overall temperature rise curve of the guide rod was in the
form of “parabola”, and the peak temperature occurred at the axial center of the guide rod,
that is at 0.5 H. The maximum temperature of the guide rod was up to 334 K, when passing
through 2000 A, and the difference was 34 K compared with 800 A. At 2000 A, the maximum
overheating could reach 23 K, which was 5.75 times of the maximum overheating at 800 A.
It can be seen from Figure 8 that, under different current loads, the minimum temperature
of the external insulation umbrella skirt was consistent. This is because the umbrella skirt
was in contact with the external environment, and its minimum temperature remained
consistent with the external environment temperature after reaching equilibrium between
heat generation and heat dissipation.

It can be seen from Figures 9 and 10 that the hot spot temperature and the maximum
temperature gradient of the new current transformer increased with the increase of the
current load, and increased almost linearly. After data fitting, the growth rate k1 of the
hotspot temperature of the transformer was 0.029, and its determination coefficient R12
was 0.984. The growth rate K2 of the maximum temperature gradient of the transformer
was a rate of 1.480, and its determination coefficient R22 was 0.987. It can be seen that the
trend line of the transformer after fitting of the hot temperature and the maximum temper-
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ature gradient was more reliable, and compared with the hot temperature, the maximum
temperature gradient changed with the current load more significantly.

Hot spot temperature (K)

; T T T ; ‘I T
800 1000 1200 1400 1600 1800 2000
Current (A)

Figure 9. Hot spot temperatures at different currents.
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Figure 10. Maximum temperature gradients at different currents.

4.2. The Characteristics of Temperature Distribution Field Under Different External
Ambient Temperature

Since the CT was located in the high voltage cabinet and the internal environment
of the CT is closed, different external environment boundary temperatures were set to
simulate the temperature field distribution characteristics of the CT when it reached steady-
state under different external environment temperatures. As shown in Figures 11 and 12
and Tables 3 and 4, the maximum overheating and maximum temperature gradient of
the new current transformer occurred when the external environment temperatures were
273 K, 283 K, 293 K and 306 K respectively in this study.
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Figure 11. Maximum overheating at different external environment temperatures.
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Figure 12. Maximum temperature gradient at different external environment temperatures.
Table 3. Maximum overheating of CT under different external environment.
The External Environment Temperature (K) 273 283 239 306
Hot Spot 314 324 334 346
Temperature (K)
Temperature Difference (K) 41 41 41 40
Table 4. Maximum temperature gradient of CT under different external environment.
The External Environment Temperature (K) 273 283 239 306
Maximum Temperature Gradient (K/M) 2126 2119 2111 2100

It can be seen from Figure 11 and Table 3 that regardless of the external ambient tempera-
ture, the maximum internal overheating of the new current transformer was between 40 and
41 K. The hot spot temperature and overall temperature rise distribution of the CT were posi-
tively correlated with the external ambient temperature. According to the Figure 12 and Table 4,
with the gradual increase of the external ambient temperature, the maximum temperature
gradient of the transformer gradually decreased, but the decrease was small and both
remained above 2100 K/m. When the external ambient temperature was 306 K, the maxi-
mum temperature gradient dropped by only 1.2% compared with 273 K. So the maximum
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overheating and maximum temperature gradient of the new current transformer both
had no obvious relation with the external environment temperature. However, due to
the uneven distribution of internal temperature of the transformer under various exter-
nal ambient temperatures, water molecules in the air inside the transformer may have
migrated, and the material in the lower temperature area had a strong ability to absorb
water molecules, which may form condensation so that it would endanger the safe and
reliable operation of the transformer equipment.

4.3. Distribution Characteristics of Temperature Field Under Different Core Diameter Guide Rod

The metal guide rod connected to the primary side bus could pass through hundreds
of amps or even thousands of amps during normal operation, which was the most impor-
tant heat source of the new current transformer. Guide rods with different core diameters
had different current carrying and heat conduction capacities. In order to obtain the distri-
bution law of thermal parameters and realize the optimal design of the new type current
transformer, it was necessary to study the temperature field distribution characteristics of
the guide rods with different core diameters.

It can be seen from Figure 13 that, with the increase of the core diameter of the new
current transformer, its hot spot temperature ws negatively correlated with it. When the
guide rod core diameter was 15 mm, its hot spot temperature was 407 K, which increased
by 26% when compared with the guide rod core diameter was 22 mm. After fitting, the data
of hot spot temperature could be approximately regarded as a linear relationship, with its
determination coefficient R2 = 0.939. The hot spot temperature decreased with the increase
of the core diameter, and the rate of decline was 12.1.

420 -
400 o oo N
380 4

360 -

Hot spot temperature (K)

tad

I

=
1

320 4

Core diameter (mm)

Figure 13. Hot spot temperature at different core diameters.

As shown in Figure 14, the maximum temperature gradient of the new current trans-
former could be approximately regarded as an exponential decrease with the increase of
core diameter. When the diameter of guide rod was 15~18 mm, the maximum temperature
gradient decreased rapidly, while the decrease tended to be moderate in the range of
18-22 mm. The maximum temperature gradient at 18 mm core diameter was 2978 K/m,
which was 61.5% lower than that at 7726 k /m at 15 mm core diameter. The maximum
temperature gradient at 22 mm core diameter was 1759 K/m, which was only 40.9% lower
than the maximum temperature gradient at 18 mm core diameter.
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Figure 14. Maximum temperature gradient at different core diameters.

It is not difficult to see that when the core diameter of the new current transformer was
18-20 mm, the change rate of hotspot temperature and maximum temperature gradient of
the transformer tended to be saturated and both are in a reasonable range of values.

5. Conclusions

In this paper, a new type design of current transformer for distribution network is
taken as the research object. Based on the finite element multi-physical field coupling
method, the thermal field distribution law of the current transformer when it reaches the
thermal steady state in the actual electromagnetic environment is calculated and analyzed,
and the following conclusions are drawn:

1. The temperature distribution of the main heat source guide rod of the new current
transformer is in a “parabola” form. The hot temperature and the maximum tempera-
ture gradient of the transformer change linearly under different current.

2. Under different external ambient temperatures, the overall maximum overheating of
the transformer remains unchanged between 40 and 41 K. Although the maximum
temperature gradient decreases gradually with the increase of external ambient tem-
perature, the decline can be ignored. Due to the uneven distribution of temperature,
water molecules in the internal may migrate and form condensation, which will harm
the safe operation of the current transformer.

3. For the guide rod, which is the main heat source of the transformer, in the case of
different core diameters, its hot spot temperature and maximum temperature gradient
decrease with the increase of core diameter. Among them, the maximum temperature
gradient decreases exponentially with the increase of core diameter, and the rate of
change tends to saturation at 18-20 mm. At this point the core diameter size is the
most reasonable.
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