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Abstract: A distributed electric vehicle (EV) charging scheduling strategy with transactive energy
(TE) management is presented in this paper to deal with technical issues in distribution network
operation and discuss the economic benefits of EV charging. At an individual EV level, EV owners
propose bids to actively participate in the distribution system operation. At the node level, an electric
vehicle aggregator (EVA) optimally allocates the available charging power to meet EV charging
requirements and cost benefits. At the distribution network level, a distribution system operator
(DSO) integrates an electricity price market clearing mechanism with the optimal power flow (OPF)
technique to ensure the reliability of the distribution network. Moreover, a distributed algorithm is
discussed for solving the EV charging problem with transactive energy management (TEM). The
clearing electricity price is achieved through a negotiation process between the DSO and EVAs using
the alternating direction method of multipliers (ADMM). The presented EV charging scheduling with
TEM is tested on a modified IEEE 33-bus distribution network scenario with 230 EV charging loads.
The simulation results demonstrate the effectiveness of the TE-based EV charging scheduling system.

Keywords: transactive energy; distribution networks; electric vehicle; alternating direction method
of multipliers

1. Introduction

In recent years, the market share of electric vehicles has rapidly increased. It is
estimated that global electric vehicle sales will reach a total of 22 million by 2025 [1]. The
charging needs of large-scale electric vehicles could cause significant impacts on the power
grid, including overloading, frequency deviation, and voltage violations [2]. To mitigate
these impacts, smart EV charging scheduling and control are extensively explored for a
microgrid [3–5]. To expand large-scale EV charging in distribution networks, Cao et al. [6]
formulated a large-scale EV charging control solution without violating node and substation
power limitations. Wang et al. [7] have developed an EV charging control scheme for grid
frequency regulation. Cao et al. [8] propose a vehicle-grid integration control strategy for
distribution network voltage regulation. All these studies illustrate that constructive EV
charging scheduling and control methods have the potential to reduce or eliminate the
negative impacts of EV charging on distribution networks. Nevertheless, few existing
works have studied both the economic benefits to EV customers of their participation in
the grid operation for distribution network stability.

To offer economic benefits, the application of transactive energy in EV charging
scheduling has been studied. Transactive energy is a set of mechanisms to balance power
generation and consumption through economic values as defined by the GridWise Archi-
tecture Council [9]. TE is a multi-agent system that aligns individual behaviors with the
interests of the entire system [10]. Lezama et al. [11] have developed a local market to
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coordinate the distribution of energy resources and wholesale markets. Vayá et al. [12] in-
troduced an optimal bidding strategy for EV owners to participate in day-ahead electricity
markets. Lakshmi et al. [13] have designed an energy management strategy for the optimal
utilization of EV bid fulfillment. The aggregator is responsible for proposing energy bids,
controlling the rate of charging/discharging of EVs, and minimizing the operation cost
of the microgrid. Gao et al. [14] propose a price-based iterative double auction market
mechanism between EV charge stations and EV drivers. The social welfare of both charger
owners and EV drivers is maximized in this way. However, these works focus on price
mechanisms and lack analysis of distribution power grid operations. Masood Et al. [15]
present a transactive energy framework for aggregated EV charging in the local market
to reduce the system peak load. Besides the peak load, the optimal operation needs to be
considered to ensure that the DSO benefits. Li et al. [16] designed a distributed transactive
energy trading framework to integrate photovoltaics. Li et al. [17] developed a hierarchical
scheduling method for heating, ventilation, and air-conditioning (HVAC) systems of office
buildings as well as for a few electric vehicles. However, large-scale EV charging may
cause significant impacts on the distribution network compared with conventional building
loads. These works [16,17] have addressed distribution power network operation with the
OPF technique, but lack price mechanism analysis. Hao et al. [18] developed transactive
controls with a double auction market for commercial buildings. However, it is limited
on the microgrid level. Wu et al. [19] explored the TE-based approach for large-scale EV
charging, but the market and coordination mechanism are not included. The research
towards applying truly transactive energy management, including the economic benefits
of market or price mechanisms and the optimal operation of the distribution network, to
large-scale EV charging scheduling, is still to be widely explored.

Traditional distribution networks are managed in a centralized manner to ensure the
stability of the distribution network through optimal power flow techniques. However,
the centralized control of large-scale EV charging in a distribution network is challenging
due to the complexity of communication and privacy concerns. Wang et al. [20] have
developed a fully distributed large-scale EV charging control strategy based on a consensus
algorithm. The total charging power losses are minimized and discharged power from
EVs to the grid is maximized. Zhou et al. [21] combined Nash equilibrium and Lyapunov
optimization and developed an incentive-based distributed scheduling of EV charging.
Yan et al. [22] have designed a model-free deep-reinforcement learning-based approach
for an optimal charging control strategy. Khaki et al. [23] have designed a hierarchical
distributed framework for EV charging, based on ADMM. The effectiveness of ADMM
in transferring a centralized scheduling framework to a decentralized or distributed frame-
work for the distribution network with community energy systems is presented in [24]. The
algorithms in [20–23] show the effectiveness of distributed EV charging scheduling and
control, but the operation stability of the distribution network is not considered. OPF is
widely adapted in power system operations to deal with practical issues. Farivar et al. [25]
propose a branch flow model for the analysis of distribution networks. This model offers a
new approach to solving OPF in a distributed manner. By combing the OPF techniques
with market mechanisms, an economical and reliable distribution system will enable the
realization of modern EV charging control with transactive energy management.

In this paper, a distributed EV charging schedule with transactive energy management
(TEM) strategy is presented to handle large-scale EV charging in distribution networks.
A distributed control system is developed to find a balance between EV charging costs and
distribution system operation stability. The contributions of this paper include:

• An innovative EV bidding strategy, designed to encourage individual EV customers
to actively participate in the distribution network operation. Only charging demand
and price information are shared with EVA and DSO in the bidding process. In this
way, the communication complexity is reduced and the system’s security is improved.

• A distributed multi-agent coordination algorithm was developed to integrate EV
charging optimization with the distribution network OPF technique based on the



Energies 2022, 15, 163 3 of 16

alternating direction method of multipliers (ADMM). In this algorithm, EV charging
scheduling and clearing electricity prices are determined through a negotiation process
among DSOs and EVAs. EVAs ensure that EV charging requirements and charging cost
economics are met, and DSOs guarantee the distribution network operation stability
with OPF. The negotiation process finds a balance among EV charging requirements,
EV charging economic benefits, and distribution system operation reliability.

• By applying transactive energy management, an EV charging price clearing mech-
anism is introduced. This mechanism engages EV bidding conditions, distribution
system operation, and the electricity market, and then clearing of the electricity price
in the negotiation process. The price signal is the only external signal for making the
final EV charging decision.

The rest of the paper is organized as follows: Section 2 provides an overview of
EV charging scheduling management. Section 3 introduces the EV charging model and
distribution network branch flow model. Section 4 formulates a 3-stage EV charging
scheduling problem with TEM. Section 5 shows the simulation results of a use case study.
Section 6 concludes this paper.

2. Overview of EV Charging Scheduling Management

Consider a radial distribution network with J buses, a DSO is designed at the slack
bus to ensure grid stability and address the economic benefits. In addition, several EVAs
are located at each node except the slack bus. Each EVA responds to a group of EVs based
on their physical locations. As shown in Figure 1, the system includes multi-criterion
optimizations among the DSO, EVAs, and individual EVs.

Figure 1. The system diagram of TE-based EV charging.

To coordinate the operation of the integrated EVs, EVAs, and DSO, a TE-based EV
charging mechanism is designed to achieve a reliable and cost-efficient electricity system.
In contrast to the traditional demand response control, EV customers can choose to buy and
prioritize the charging cost. As shown in Figure 2, EV charging scheduling management
comprises three stages. In Stage 1, an optimal EV bidding strategy of individual EV and
node-level aggregation is designed. Individual EV owners will propose their optimal
bidding strategy based on day-ahead electricity price forecasts and charging requirements.
Then, a node-level EVA will collect all bidding information within the node and form a
bidding price for the node. With this strategy, EVs can directly participate in the distribution-
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level market clearing mechanism in Stage 2. In Stage 2, the DSO will clear the electricity
bidding and find the clearing electricity price, and EVA will adjust its feasible power
demand. Meanwhile, the OPF technique will be addressed in this stage to ensure the
smooth operation of the grid. In Stage 3, the node-level EVA will optimally determine
the charging rate for individual EVs within the node by considering EV owners’ bidding
demands in Stage 1, the clearing electricity prices, and the available power in the node.

Figure 2. Three-stage EV charging scheduling management.

3. EV Charging and Distribution Network Model
3.1. EV Charing Model

An individual EV seeks to optimize its charging power scheduling for a time period
of T as defined by a vector of Pnj =

[
Pnj(1), . . . , Pnj(t), Pnj(t + 1), . . . , Pnj(T)

]
, where

nj ∈
{

1j, . . . , Nj
}

represents the location of nth EV supplied by EVA j. The EV charging
process is modeled as a discrete-time linear system as:

SoCnj(t + 1) = SoCnj(t) +
ηnj Pnj(t)∆t

EC
nj

(1)

where Pnj(t) is the charging power at time step t, EC
nj

indicates the battery capacity, ηnj is
the charging efficiency, and ∆t represents the time step duration. The energy requirement,
maximal and minimal charger power rating of individual EVs are defined as a series of
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constraints. It is assumed that the charging duration and energy requirement are known as
soon as EVs connect to the charging stations. The constraints of individual EV charging
schedules are: Pmin

nj
≤ Pnj(t) ≤ Pmax

nj
if active

Pnj(t) = 0 if inactive
(2)

SoCnj(t + dnj) = SoCT
nj

(3)

Vehicle-to-grid power flow is not considered in this paper. Therefore, the values Pmax
nj

and Pmin
nj

indicate the maximal and minimal EV charging rate for the time horizon. The

parameter dnj denotes the number of time steps remaining until departure and SoCT
nj

is the
target SoC by the next departure.

3.2. Distribution Network Model

Given a radial distribution network represented by graph G = (J, E), J = {0, . . . , J}
represents the set of feeder nodes and E denotes the set of lines between the buses in the
network, e.g., (i, j) ∈ E indicates the line that from bus i to bus j. Let bus 0 represent the
substation bus that connects to the utility as an external power source. The branch flow
model in a radial distribution network is shown in Figure 3.

Figure 3. The branch flow model in a radial distribution network.

For each node j ∈ J, let pj and qj be the active and reactive injection power, and
Vj denote the complex voltage on this bus. For each link (i, j) ∈ E, rij and xij are the
resistance and reactance of this line; Iij represents the complex current; Pij and Qij denote
the sending-end complex power from bus i to j. Except for the substation bus (indexed
as 0), each node j has a unique parent node i and a set of child nodes Cj. Let lij =

∣∣Iij
∣∣2

denote the squared line current magnitude of the line (i, j) and vj =
∣∣Vj
∣∣2 be the squared

voltage magnitude of node j. The power balance and flow equations of the distribution
network can be formulated as [26]:

pj(t) = Pij(t)− rijlij(t)− ∑
k∈Cj

Pjk(t), ∀j ∈ J

qj(t) = Qij(t)− xijlij(t)− ∑
k∈Cj

Qjk(t), ∀j ∈ J

vj(t) = vi(t)− 2(rijPij(t) + xijQij(t)) + (r2
ij − x2

ij)lij(t), ∀(i, j) ∈ E

(4)

lij(t) =
Pij(t)

2 + Qij(t)
2

vi(t)
, ∀(i, j) ∈ E (5)
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However, the quadratic equalities in (5) will cause non-convex optimization, which
is difficult to solve and does not guarantee convergence. Thus, a second-order cone
relaxation [25] is applied as the inequality constraints:

lij(t) ≥
Pij(t)

2 + Qij(t)
2

vi(t)
, ∀(i, j) ∈ E (6)

The OPF problem will be transformed to a convex one for radial networks. Meanwhile, to
satisfy this relaxation, the voltage of buses should be very close to the nominal value and
the power input to the bus should be under a certain limit. The additional constraints to
ensure the prescribed region are:

vmin
j ≤ vj(t) ≤ vmax

j , ∀j ∈ J (7)

0 ≤ lij(t) ≤ lmax
ij , ∀(i, j) ∈ E (8)

(7) prevents voltage violation, and (8) limits the current of each line ij respectively. The
values vmin

j and vmax
j are the minimum and maximum of voltage magnitude, and lmax

ij is
considered as the maximum of the current magnitude.

4. Problem Formulation of Distributed EV Charging Scheduling with Transactive
Energy Management
4.1. Individual EV Bidding Strategy and Node-Level Aggregation

The framework for individual EV bidding strategy and node-level aggregation is
shown in Figure 4. Firstly, according to the charging request, demand, and duration,
individual EVs will find the optimal bidding strategy and forward it to the EVA. Then, to
coordinate with others, the EVA needs to form the final bidding price and netload demand.

Figure 4. EV bidding and node-level aggregation.

Individual EV owners need to propose a bidding price to compete with others. To be
fair, a blind auction mechanism is considered in the bidding process. The bidding price is
defined by a vector λnj =

[
λnj(1), . . . , λnj(t), λnj(t + 1), . . . , λnj(T)

]
. At each time step, the

bidding price reflects both the current charging power demand and the remaining charging
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flexibility. For example, an EV owner whose vehicle has a longer charging duration and
a lower energy requirement is not inclined to offer a high price to obtain more charging
power. Thus, the preferred charging electricity price λnj(t) is formulated as:

λnj(t) = λDA(t) +
λCap(t)

Pmax
nj
− Pmin

nj

µnj(t)(Pnj(t)− Pmin
nj

) (9)

µnj(t) = min


(

SoCT
nj
(t)− SoCnj(t)

)
EC

nj

ηnj Pmax
nj

dnj ∆t
, 1

 (10)

At time step t, the day-ahead electricity price λDA and the feasible increase range of
the preferred charging electricity price λCap are assumed to be forecasted by the utility. The
charging urgency µnj is defined in (10) to reflect the flexibility of the remaining charging
duration dnj × ∆t.

Once the pricing principle was defined, individual EV owners will propose their
bidding schedule without negotiation with others. Each EV customer pursues a target
charging cost. The optimization formulation is given below:

min λnj · Pnj
T · ∆t

s.t. (1)–(3)

Pnj , ∀nj ∈ Nj

(11)

Cnj = λ∗nj
· P∗nj

T · ∆t (12)

where Cnj indicates the target optimal cost during the bidding process, while P∗nj
and λ∗nj

are
the optimal power demand and bidding price solved by problem (11). These only depend
on the day-ahead electricity price forecast and individual EV charging requirements. The
results can be solved with quadratic programming and selected as the target of initial
charging cost in stage 3.

The EVA serves as the bridge between individual EVs and the DSO. In stage 1, the
EVA aggregates power demand and finds bidding prices for all the EVs in the node. The
aggregated bidding price will inform the DSO for market clearing via the communication
shown in Figure 1. For individual EVA j ∈ {1, . . . , J}, where N denotes the number of
EVAs in the distribution network, the aggregated power demand can be formulated by:

pj = PF
j + ∑

n∈Nj

Pnj (13)

Let pj =
[
pj(1), . . . , pj(T)

]
be the aggregated active power demand by EVA for bus j,

and PF
j is the vector of aggregated uncontrollable load demand. The aggregated bidding

price for EVA j at time step t is:

λj(t) = ∑
n∈Nj

λnj(t)
Pnj(t)

∑
n∈Nj

Pnj(t)

 (14)

where the bidding price is denoted by λj. It is designed as the expected value of individual
EV owners’ bidding prices in proportion to the amount of power demand.

4.2. ADMM-Based DSO-EVA Coordination

Figure 5 shows the negotiation process between the DSO and EVAs to determine the
optimal clearing prices λ∗ for the distribution network and optimal feasible netload p∗j for
each EVA.
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Figure 5. The framework of ADMM-based DSO-EVA Coordination.

The EVA adjusts its power demand according to the clearing price and re-negotiates
with the DSO. EVAs aim to reduce the charging cost in terms of group EVs, so the objective
function can be formatted as:

f j

(
pj

)
= λclear · pj

T · ∆t (15)

where λclear indicates the vector of clearing electricity price proposed by the DSO during
the negotiation.

The DSO is located at the substation bus 0 as shown in Figure 1. It purchases elec-
tricity from the utility and ensures the reliability of the distribution network using OPF
techniques. The objective function of DSO is designed to reduce the cost due to energy loss
as shown below.

g
(

pj

)
= λDA · ∑

ij∈E

(
lij

T · rij

)
· ∆t (16)

where lij =
{

lij(1), . . . , lij(t), lij(t + 1), . . . , lij(T)
}

indicates a vector of the square of line
current magnitude for a time period of T × ∆t. The DSO also provides the functions of
a competitive market for this distribution network. It collects bidding price information
from EVAs and clears a unique electricity price to coordinate the power schedules for EVAs.
During negotiation, the clearing electricity price at time step t is given by:

λclear(t) =
∑

j 6=0:j∈N

(
λj(t)pj(t)

)
p0(t)

(17)

where p0 and q0 represent the vector of active and reactive power purchase from the utility
In this radial distribution system with a DSO and multi-EVAs, the goal of the DSO is

to minimize energy loss, while EVAs prefer to reduce the actual charging cost. The optimal
DSO-EVA coordination problem can be formulated as:

min g
(

pj

)
+ ∑J

j=1 f j

(
pj

)
over pj ∀j ∈ J

s.t. (4), (6), (7), (8)

pmin
j ≤ pj ≤ pmax

j

(18)

where pmin
j and pmax

j represent the minimum and maximum load for each EVA.
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Although the optimization problems (18) can be solved by a centralized method, it
is not computationally efficient and will cause privacy issues since all the information
needs to be transmitted and processed by the DSO. The decision variables for the DSO are
strongly coupled with each EVA’s decision variable. By introducing an auxiliary variable
zj, the ADMM method [27] can be used to solve the problem in a distributed manner. The
problem (18) can be redefined as:

min g
(
zj
)
+ ∑J

j=1 f j

(
pj

)
s.t. pj = zj ∀j ∈ J

(4), (6), (7), (8) for DSO

pmin
j ≤ pj ≤ pmax

j for EVA

(19)

where the auxiliary variable zj = pj proposed by the DSO is to link the injection power pj
of each node. The augmented Lagrange function is defined as:

Lp(pj, zj, y) = ∑J
j=1 f j

(
pj

)
+g
(
zj
)
+ ∑J

j=0

(
yj

T
(

pj − zj

)
+

ρ

2

∥∥∥pj − zj

∥∥∥2

2

)
(20)

where yj is a vector of Lagrange multiplier and ρ > 0 denotes the penalty parameter.
Therefore, the optimization problem (19) can be solved concurrently by each EVA and DSO.
At iteration k, each EVA solves the problem:

pk+1
j = argmin

(
fj

(
pj

)
+ yk

j
Tpj +

ρ
2

∥∥∥pj − zk
j

∥∥∥2

2

)
s.t. pmin

j ≤ pj ≤ pmax
j

(21)

The DSO solves the problem (22) to address the OPF. Meanwhile, it is also responsible
for updating the auxiliary vector zj through the problem (23) to coordinate with EVAs.

zk+1
j = argmin

(
g
(
zj
)
+ ∑J

j=1

(
−yk

j
Tzj +

ρ
2

∥∥∥pk+1
j − zj

∥∥∥2

2

))
s.t. (4), (6), (7), (8)

(22)

yk+1
j = yk

j + ρ
(

pk+1
j − zk+1

j

)
(23)

The ADMM iteration satisfies the residual, objective, and dual variable convergence.
Given by the residuals of primal feasibility r and dual feasibility s, the stopping criteria is
defined as: ∥∥∥rk

∥∥∥2

2
= ∑J

j=1

∥∥∥pk
j − zk

j

∥∥∥2

2
≤ εpri (24)∥∥∥sk

∥∥∥2

2
= ρ

∥∥∥zk
j
− zk−1

j

∥∥∥2

2
≤ εdual (25)

where εpri and εdual are feasibility tolerances for the primal and dual residuals.

4.3. TE-based EV Charging within a Node

After the DSO-EVA negotiation process, each EVA will receive the optimal feasible
power p∗j and clearing prices λ∗ from stage 2. Figure 6 shows the process of optimal EV
charging management within a node.

Individual EVs want to track the target charging cost Cnj in stage 1 because it is the
optimal solution without considering any distribution network congestion. Therefore, the
EVA needs to generate a sequence of actual EV charging rates for each EV under the node
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to meet this objective. In this paper, the objective function of EV charging for a group of
EVs under the EVA j is defined as:

min ∑
Nj
n=1

(
λ∗ · Pnj

T · ∆t− Cnj

)2

over Pnj , ∀nj ∈ Nj

s.t. (1)–(3)

(26)

The optimal solutions of individual EV charging rate schedule p∗nj
can be solved by the

quadratic programming method and the EVA will send this information to all EV charging
stations in the region.

Figure 6. EV Charging optimization within a Node.

5. Use Case Study

To validate the presented TE-based EV charging scheduling management algorithm, a
modified IEEE 33-bus system [27] is selected to simulate a medium-voltage distribution
network. The distribution nodes are classified into residential nodes and commercial
nodes based on their load patterns. Different building load profiles are obtained from [28]
and modeled into each node. The nominal voltage of the 33-bus distribution system is
12.88 kV and the topology is shown in Figure 7. In addition to building loads, a total of
230 EV charging loads are modeled in 14 nodes. The battery capacity EC

nj
is 40 kWh, the

minimal charge rate Pmin
nj

is 1.44 kW, and the maximum charge rate Pmax
nj

is 6.6 kW. The
EV arrival/departure time and initial/target SOC are generated based on [29]. Most EVs
charging at commercial areas will continue for two to four hours during the daytime. EVs
charging at residential areas will start in the evening or at late night and will end by 6:30
a.m. Without considering the service fee, the day-ahead electricity prices are obtained
from [30] as shown in Figure 8 and the feasible increasing range λCap is set as ¢2/kWh. The
length of the entire horizon is 24 h (7:00 a.m.–7:00 a.m.) and the duration of each time step
is 15 min.
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Figure 7. IEEE 33-bus distribution system with EV charging loads.

Figure 8. Day-ahead Electricity Price.

From the perspective of the distribution network, Figure 9 shows the load profiles of
the 33-bus system with and without TEM. Without TEM, the overall load will exceed the
substation capacity in the morning and evening when a large number of EVs are connected.
However, the charging loads are shifted smoothly when TEM is introduced so that the
load profile is always under the substation capacity. From Figure 9, it is obvious that
residential EV charging loads in the peak period (17:00–20:00) are moved to the off-peak
period (24:00–6:00). Figure 10 shows the voltage profile of the 33-bus system with TEM.
No voltage violation is observed because the coordination of the DSO and EVAs ensures
the stability of the distribution network. These results show that TE-based EV charging
management can avoid load congestion and improve grid performance.

From the perspective of nodes with EV charging loads, two representative nodes are
selected to demonstrate the results. In particular, Node 4 is a commercial node with 10 EV
charging loads, and Node 17 represents a residential node with 10 EV charging loads.
Figure 11 shows the load profile and EV charging results of commercial Node 4. With
TEM, part of the EV charging load is shifted to avoid exceeding the upper power bound of
the node. At the same time, all EV charging requirements are met within their charging
durations. Figure 12 shows the load profile and EV charging results of residential Node 17.
After applying TEM, almost all EV charging loads are shifted from the peak period to
an off-peak period. Residential EV charging has more flexibility to address its charging
schedule as well as provide grid service. Meanwhile, all EVs’ charging requirements are
satisfied. Therefore, TE-based EV charging management is feasible for individual nodes
and EVs.
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Figure 9. Load profiles of 33-bus system with and without TEM.

Figure 10. Voltage magnitudes of 33-bus system with TEM.

Figure 11. Load profile and EV charging results of Node 4 (a) Load profile; (b) EV charging results.



Energies 2022, 15, 163 13 of 16

Figure 12. Load profile and EV charging results of Node 17 (a) Load profile; (b) EV charging results.

Besides ensuring grid stability, TEM also considers customers’ charging costs.
Figure 13 shows the final EV charging price of EV charging with and without TEM. With
TEM, to encourage EV owners to shift their charging demand to support grid operation,
such as via voltage regulation and congestion management, the DSO will reduce the EV
charging-electricity price in the market clearing mechanism. This incentive mechanism
offers better economic benefits for any EVs participating in the TEM program. Table 1 lists
the groups of EV charging costs with and without TEM. The results show that TEM can
reduce about 39.55% cost for 230 EVs through a clearing price. Typically, at residential
nodes, EVs can save more than 50% of their charging cost because of overnight charging
periods. The charging of residential EVs presents more flexibility to be scheduled according
to clearing prices and grid peak/off-peak periods. At commercial nodes, although EVs
have less flexibility to respond to clearing prices, TEM can still result in about 10–20% cost
saving for connected EVs. As a result, TE-based EV charging management can also offer
economic benefits for distribution networks, nodes, and individual EVs.

Figure 13. EV charging price with and without TEM.

The presented method is simulated using MATLAB on a laptop with an Intel Core i7 of
2.8 GHz. The optimization problems are formulated using YALMIP [31] with CPLEX as the
solver. Figure 14 shows the convergence process for solving the ADMM-based DSO-EVA
coordination problem with the parameter values of ρ = 1 and εpri = εdual = 0.01. The
norms of primal residual and dual residual converge to 0.01 within 244 iterations. The
optimization problem has a large number of variables and constraints due to large-scale
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EVs and EVAs. Additional methods, such as the dynamic step size modification method
introduced in [24], will be explored in the future to improve computational efficiency.

Table 1. EV Charging cost of the 33-bus system with and without TEM.

Node Type Node Number Number of EV Cost with TEM
[¢]

Cost without TEM
[¢]

Cost Reduction
[%]

Commercial

4 10 685.54 778.54 11.95
8 20 1732.07 1566.27 9.57
22 10 445.9 568.7 21.59
25 40 1990 2320.68 14.25
31 30 2200.31 2432.68 9.55

Residential

7 20 1404.41 3049.55 53.95
14 20 2846.94 1366.07 52.02
15 10 1551.46 7045.9 54.59
16 10 629.12 1405.74 55.25
17 10 736.43 1589.63 53.67
20 20 1518.65 2959.82 48.69
28 10 647.3 1361.66 52.46
29 10 695.28 1425.7 51.23
33 10 721.79 1583.88 54.43

Overall 230 17805.2 29454.82 39.55

Figure 14. Iteration process of ADMM-based DSO-EVA coordination.

6. Conclusions

In this paper, a distributed EV charging schedule with transactive energy management
is presented. In the first stage, EVs will propose individual bidding strategies to reflect
their charging requirements and cost benefits while the EVAs will generate node-level
bidding strategies based on the individual EV bidding information in the node. At the
second stage, DSO and EVAs will negotiate to find a balance between the distribution
system operation stability and EV charging economic benefits. The DSO ensures network
operation with the OPF technique and the EVAs minimize charging costs. In particular,
an EV charging price clearing mechanism is developed, which is used in the coordination
process. This mechanism provides the incentive for EV charging customers to improve
network operation performance. Thus, EVAs and EVs can make their charging scheduling
autonomously with clearing price signals. A case study of an IEEE 33-bus distribution
feeder demonstrates the effectiveness of the presented TEM algorithms. However, the
use case presented in this paper applies certain level-2 AC EV charging. DC fast charging
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and extreme fast charging with battery energy storage systems are not considered. These
different charging requirements will cause additional complexity and uncertainty in the
distribution grid and will be a focus of our future study. Meanwhile, the fixed building
loads are the only consideration in this work. The market-based co-scheduling of the
HVAC system and large-scale EV charging control can be further explored for a diversified
TE system.
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