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Abstract: Mountain huts are stand-alone micro-grid systems that are not connected to a power grid.
However, they impact the environment by generating electricity and through day-to-day operations.
The installed generator needs to be flexible to cover fluctuations in the energy demand. Replacing
fossil fuels with renewable energy sources presents a challenge when it comes to balancing electricity
generation and consumption. This paper presents an integration-and-optimization process for
renewable energy sources in a mountain hut’s electricity generation system combined with a lifecycle
assessment. A custom computational model was developed, validated with experimental data and
integrated into a TRNSYS model. Five different electricity generation topologies were modelled to
find the best configuration that matches the dynamics and meets the cumulative electricity demand.
A lifecycle assessment methodology was used to evaluate the environmental impacts of all the
topologies for one typical operating year. The carbon footprint could be reduced by 34% in the case of
the actually implemented system upgrade, and by up to 47% in the case of 100% renewable electricity
generation. An investment cost analysis shows that improving the battery charging strategy has a
minor effect on the payback time, but it can significantly reduce the environmental impacts.

Keywords: mountain hut; micro-grid; renewable energy sources; computational modelling; experi-
ment; lifecycle assessment; investment costs; payback time

1. Introduction

Stand-alone micro-grid systems have been widely studied, discussed, demonstrated
and even tested in residential applications, but they are rarely discussed and applied
to mountain huts (MHs). MHs have a specific energy demand that provides suitable
living and working conditions for the staff as well as comfort for the visitors [1]. To
generate sufficient electrical energy throughout the days, weeks, months and years, MH
micro-grid systems in the past relied mostly on fossil-fuel-based technologies that are
easy to operate are affordable [2,3], but these are far from optimal when considering the
environmental impacts and target emissions such as NOx or particles [4,5]. Nowadays,
the environmental approach is a top priority in natural environments, where pollution
is a critical factor and different authorities look for the best measures to prevent the
deterioration and contamination of natural habitats with wild fauna and flora [6,7]. EU
policy is for a more sustainable and low-carbon economy and the example of an MH is a
perfect demonstration of the highly efficient penetration of local renewable energy sources,
which is among the many targets of the European Commission’s sustainable approach [8,9].
Besides technical feasibility and environmental impacts, the economic aspects of energy
systems should also be considered. Mori et al. [10] show that the optimal system might not
be the best one considering any single criterion, but should instead be a reasonable balance
among energy efficiency, environmental impacts and economic constraints.
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Fully energy-self-sufficient buildings are still very rare, but the integration of pho-
tovoltaics (PV), wind power and small energy storage systems has become popular in
residential areas [11,12]. PVs were shown to be a potential route with which to achieve
a zero-emissions building or even a positive-energy building by Zomer et al. [13]. The
integration of renewable energy sources (RESs) into an energy supply system raises certain
issues when it comes to balancing electricity demand and supply because of their variable
and non-storable nature [14]. This applies to wind energy and PVs, which are two technolo-
gies that could be effectively implemented in MHs throughout Europe [15]. Stand-alone
systems represent a challenging case for RESs integration, due to the inability to import
deficits and export surpluses of energy. Therefore, stand-alone energy systems require en-
ergy storage systems [16]. In the case of MHs, the storage can be a battery rack, a hydrogen
storage system or a combination of both, depending on the micro-grid’s configuration and
the availability of RESs. Lacko et al. presented the case of an isolated household in a coastal
region using a hydrogen storage system [17,18]. Bojic et al. even used the grid as a virtual
energy storage system [19]. Mulleriyawage et al. optimized their battery storage capacity
for a PV–battery system in a household case study connected to the grid [20]. Apart from
this, it was shown to be very challenging to achieve complete independence from the grid
in many cases [21].

In addition, in MHs, all the technologies are subjected to much greater challenges
due to the specific operational dynamics and the extreme weather conditions. Research in
Antarctica with a hydrogen storage system linked to PVs in extreme weather conditions
was discussed by Cabezas et al. [22], and the combination of wind power and an alkaline
electrolyser in Norway was considered by Ulleberg et al. [23]. One of the limitations of
the studies with stand-alone MH energy systems based on RESs is the lack of required
input data, such as the local metrological conditions (wind, sun, temperature, humidity)
and exact MH electrical load profiles (peak power, cumulative energy requirements, daily
dynamics) that define the nominal power of the installed RES system and the capacity of
the energy storage system [24]. To optimize the operation and make micro-grid systems
sufficient in all conditions, the focus of the research should be on power and energy
management [25,26]. Ayeng’o et al. presented a PV model for determining the optimal
configuration point between PVs and batteries using many parameters that influence the
output voltage [27]. Cho et al. showed that the proper sizing of the batteries is critical for
the better operation of a stand-alone system [28]. Soudan et al. studied three scenarios for
optimizing a PV–battery–diesel off-grid installation by considering different operational
conditions (cloudiness, time of irradiation, etc.) [29]. By adding the economic criteria of
Haratian et al. in an off-grid renewable energy system, including a solar panel, a wind
turbine and batteries, it was shown that the most economical configuration among different
RES configurations was the PV–battery combination [30].

An MH that is in a sensitive natural habitat has negative environmental impacts
because of its operation. Environmental impacts during the year arise due to different
direct (electricity generation, heat generation, wastes from operation, septic tank, etc.) and
indirect activities (transport, wastes from visitors, etc.) that cause emissions into the air,
water and soil, and have an impact on the Earth’s resources [31]. Focusing on energy
generation, most environmental impacts arise from electricity and heat, if the energy is
generated from fossil fuels such as diesel, gasoline, liquefied petroleum gas and natural
gas [32]. With the integration of RESs, the environmental impacts could be significantly
reduced due to a reduction in the use of fossil fuels, but energy storage systems have to
be properly introduced and optimized, depending on the availability of the RESs and
the MH’s energy demands [33]. It was shown by Mori et al. that 1 kWh of electricity
generated from small gen-sets has a carbon footprint of approximately 920 g CO2 eq./kWh,
compared to the carbon footprint of micro-hydro with just 4 g CO2 eq./kWh, micro-wind
with 40 g CO2 eq./kWh or PVs on a slanted roof with 220 g of CO2 eq./kWh [1]. However,
we must be aware that the carbon footprint is a global indicator, and, in natural habitats,
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more indicators have to be observed since environmental impacts on local and regional
scales are of great importance.

This paper presents a techno–environmental–economic approach to an electricity
generation system’s optimization. There are many techno–economic studies of stand-
alone energy systems available, but these are without environmental impact assessments,
which are becoming one of the most important decision criteria. The study was conducted
based on local RESs’ availability, an installed electricity generation system, current control
protocols and an MH load profile based on 1 year of measured operational data. A custom
computational model for a load assessment was developed and further integrated into
a TRNSYS energy system model. Prior to the integration, the computational model was
verified using experimental data. Additional electricity generation scenarios were defined
to reach the highest possible renewables penetration and try to lower the environmental
impacts. To obtain the optimal system topology, the technical, environmental and economic
(investment costs) parameters are discussed. With this approach, the decision criteria are
taken to a higher level, including the environmental profile as a very important factor.

An introduction to the current energy system’s topology in the MH and its micro-grid
are presented in Section 2, where the simulated scenarios are also described. Section 3
presents the available system operation data, the custom computational model development
and the pre-processing of the input data. The results are presented and discussed in
Section 4, while Section 5 addresses the environmental assessment and environmental
impacts. The paper ends with a discussion of the results in Section 6, and the main
conclusions are drawn in Section 7.

2. Micro-Grid System and Definition of the Simulated Scenarios

The Refugio de Lizara MH is in a natural park of the Spanish Pyrenees at an elevation
of 1540 m. It has a capacity of 78 people and free access to electricity, hot water and other
services [34]. The largest share of the electricity needed for the MH’s operation is generated
by two diesel generators (gen-sets) of 22.4 and 12.8 kWe that are used daily during peak
demands (breakfast, lunch and dinner) and a PV system with a nominal power of 3.7 kWp.
The energy system was recently modified and upgraded to make it more sustainable and
environmentally sounder. The installation of additional PVs, a control system and waste
heat recuperation was made as part of the LIFE SustainHuts project [31]. The increase in the
installed PV power from 0.5 kWp in the state of play at the beginning (SOBP) to 3.7 kWp in
the state of play at the end (SOPE) was realized to increase the RES penetration and lower
the environmental impacts. With no automated control system for the micro-grid in the
SOPB, manual control was required, which introduced errors into the energy management
and caused lower efficiency of the system, resulting in more operating hours for the gen-sets
and increased fuel consumption. The surplus electricity (from the gen-sets or PVs) is stored
in a lead–acid battery pack with a total capacity of 38.4 kWh, which provides the electricity
when the gen-sets or PVs are not in operation. Heat is generated with a propane gas heater
of 30 kW coupled to a boiler and a central heating system. A classic open chimney was
used with the SOPB in the main room and mixed wood was used as a fuel. In the SOPE,
waste heat recuperation from the flue gases was installed.

Table 1 presents the SOPB and SOPE with the technologies installed and the annual
diesel consumption data for electricity generation and liquefied petroleum gas (LPG)
and mixed wood consumption for the heat generation and the cooking. The annual
consumption of fossil fuels changes, depending on the weather, the number of visitors and
for other reasons. The annual average in previous years was just below 6000 L of diesel (for
electricity generation) and around 6600 kg of propane (for heating and cooking). The mixed
wood consumption was drastically increased from the SOPB (700 kg) to SOPE (5000 kg)
because, in the SOPE, the water was heated with recuperated heat instead of with LPG as
in the SOPB.
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Table 1. State of play of the Lizara hut at the beginning (SOPB) and after modifications (SOPE).

SOPB SOPE

Diesel generator (kWp) 22.4 + 12.8 22.4 + 12.8
PV (kWp) 0.53 3.7

Batteries (kWh) 38.4 38.4
Chimney Open chimney Heat recuperation

Micro-grid control Manual Manual
Diesel (L/year) 5774 4511
LPG (kg/year) 6568 3140

Mixed wood (kg/year) 700 5000

Figure 1 shows the basic scheme of the Lizara micro-grid for electricity generation.
The consumers of electricity define the specific nature of the electricity generation system.
The hut and all the devices connected to the base hut’s electricity system represent a
single-phase load; auxiliary devices and machines, mostly used in the kitchen, represent a
three-phase load and a separate grid. Since the three-phase loads cannot be avoided and
are only used occasionally, the optimization process introduced in this study will focus on
the single-phase load. Furthermore, typical electricity systems in MHs across Europe are
only single-phase, so the workflow presented in this paper could be applied to other MHs.
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A computational model approach was used with several different settings in the MH
to compare the various system configurations and operating scenarios. As the measured
data are available only for the SOPE, this was simulated first to validate the custom
computational model and to find the appropriate settings. The measured data showed that
the PV system provided approximately 2929 kWh of electrical energy, which is less than
800 kWh per installed kWp per year. Studies show that for the location of the Lizara hut,
approximately 1400 kWh could be produced annually with each kWp of the installed PV
system [35]. This led us to the conclusion that there is potential for the more optimized
energy management of the system that could provide better utilization of solar energy and
thus reduce the need for fossil fuels. Therefore, the same basic system configuration as
in the SOPE was further optimized with respect to the strategy of gen-set operation and
battery charging. Furthermore, to prove the benefits of the system upgrade, the SOPB was
also simulated. Finally, two theoretical configurations were considered: one with a doubled
capacity for the PV panels and batteries with respect to the SOPE, and the other with the
capacities of the PV panels and batteries sufficiently increased to enable fully renewable
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operation, i.e., the gen-set would no longer be needed. All the simulated configurations are
as follows:

(i) MEAS: system configuration after the upgrade, PV 3.7 kWp, batteries 38.4 kWh,
gen-sets 12.8 + 22.4 kW, measurement results of actual 1-year operation of the hut.

(ii) SOPE: system configuration after the upgrade, same as measured, used for validation
of the custom computational model.

(iii) SOPE+: system configuration after the upgrade, same as the SOPE and measured but
with modified battery charging strategy to increase the use of renewable energy.

(iv) SOPB: system configuration before the upgrade for comparison with current state, PV
0.5 kWp, batteries 38.4 kWh, gen-sets 12.8 + 22.4 kW.

(v) SOPEx2: hypothetical configuration with double PV and battery capacity compared
to the SOPE; improved battery charging strategy was employed as in the SOPE+.

(vi) RES: hypothetical configuration with sufficient PV and battery capacity for fully renew-
able operation; improved battery charging strategy was employed as in the SOPE+.

3. Computational Model and Input Data

To analyze the performance and the environmental profile of the micro-grid system,
the energy consumption (load) and the energy availability (renewable energy sources)
data are required. Unfortunately, in the case of MHs, these data are usually not available.
Therefore, it is necessary to develop appropriate models that describe both the load and
the weather conditions with sufficient accuracy to enable further modelling of the entire
system’s operation [36,37]. In this way, different system set-ups can be objectively compared
using the same input data and the same approach.

3.1. Input Data

The input data for a non-stationary simulation of an energy system’s performance
include the time series of both the generation and consumption sides of the system. To
compare the performance and the environmental impacts of the different system set-ups,
the generation-side and consumption-side data should be constant for all the observed
configurations. Actual power consumption data are available with a resolution of 1 h, but
the weather conditions or renewable resources are not known for the same period and at the
observed location. The operation of the Lizara MH was monitored for 1 year from 1 June
2018 to 31 May 2019. Monthly integrals of the energy consumption and energy generation
for the single-phase part of the system are presented in Figure 2. The difference between the
measured values is assumed to be covered by the photovoltaic system, although the actual
measured data are not available [38]. For comparison, the reported number of overnight
visitors is also shown in Figure 2 to correlate the energy consumption with the number of
visitors. Note that single-day visitors are not included in the presented data.
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Figure 2. Monthly energy consumption and production with diesel generator.
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The consumption data were analyzed on two time scales: one showed the variation in
the load over 365 days (Figure 3), while the other showed variations in the daily 24 h profile
(Figure 4). Note that the yearly data were shifted so that day 1 represents 1 January. In both
diagrams (Figures 3 and 4), the days from Monday to Friday and weekends (Saturday and
Sunday) are presented with different markers.
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There are distinct periods with different loads, where the warmer part of the year has
noticeably higher energy consumption than the rest of the year (Figure 3), with another
notable peak around New Year. During the weekend (the black dots in Figures 3 and 4),
the load is higher than during the rest of the week, with the difference being more obvious
during the colder part of the year. The energy consumption in a mountain hut is primarily
related to the number of visitors, which is typically higher during the summer season, as
well as during weekends and holidays. Therefore, a specific consumption profile needs to
be developed that suits the operational characteristics of the mountain hut.

The night-time load is relatively constant from midnight to 6 AM and seasonal varia-
tions are therefore not expected, while the daytime load is more variable, and the magnitude
is expected to be related to the seasons. A typical daily profile could be generated and
scaled to match the seasonal variations.

Wn(h, d) =
W(h, d)− Wbase

Whigh(d)− Wbase
(1)

First, the daily profiles were normalized with the assumption that there is a constant
base load throughout the year (average night-time load, Wbase) and a daily peak that is
unique for every day (Whigh(d), d represents the number of days in a year). The daily peak
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consumptions were calculated as the average of the three highest loads of each day in order
to avoid exceptionally high values. The normalized load (Wn(h,d), where h represents the
hours in a day and d the days in a year) can be calculated from the measured load (W(h,d)),
as presented in Equation (1).

The average normalized load as a daily profile is shown in Figure 5. Since the base
load is subtracted for normalization, the values are around 0 during the night-time and
increase towards 1 during the day. A simplified profile is also shown, which consists of five
typical regions defined by the time of day.

Wnorm(t) = anorm,k + bnorm,k · t (2)
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The simplified, normalized load (Wnorm(t)) is expressed as a set of linear functions
with coefficients anorm,k and bnorm,k, each covering a separate interval of the day, denoted
by index k (Equation (2)).

To scale the normalized profile, the maximum loads throughout the year were analyzed
(Figure 6), where the difference between the weekends and the rest of the week could be
seen. Hence, separate rules are needed to properly describe this phenomenon (Figure 7).
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Figure 6. Seasonal variation in the normalized maximum daily loads.
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Figure 7. Comparison of the actual and proposed simplified normalized maximum loads.

The Monday–Friday and Saturday–Sunday profiles can be simplified with a similar
approach to that used for the daily profiles in Equation (2).

Wpeak(d) = apeak,j + bpeak,j · d (3)

Separate intervals (denoted with index j) are identified, where the linear relations
between the daily peaks (Wpeak(d)) and the serial number of the day (d) can be deter-
mined (Equation (3)). Different intervals and coefficients are used for Monday–Friday and
Saturday–Sunday.

The described data analysis was performed with a custom-developed procedure and
algorithms in MS Excel. To calculate the load for hour h of day d:

• It is necessary to know whether the particular day is a working day or a weekend day.
• It is necessary to know to which of the intervals j shown in Figure 7 the particular day

belongs, so that appropriate coefficients apeak,j and bpeak,j are selected.
• It is necessary to know to which of the intervals k shown in Figure 5 the particular

hour belongs, so that appropriate coefficients anorm,k and bnorm,k are selected.
• Peak load of the day and normalized load of the hour are calculated according to

Equations (2) and (3), respectively.
• Finally, the load is calculated as

W(h, d) = Wbase + Wnorm(h) · Wpeak(d) (4)

This way, a complete set of loads for all 8760 h of a year is calculated and compared
with the measured year (Figure 8). Note that the use of weekend profiles depends on the
actual day of the week that the observed year starts with, but it is not expected to have a
significant influence on the integral parameters of the system’s performance. For a clearer
comparison, both duration curves (modelled and measured) are presented in Figure 9.
We can calculate that the average load and the standard deviation differ by only 3% and
1%, respectively.
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Figure 8. Comparison of the measured and simulated loads.
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3.2. Weather Conditions

The production of electricity using RESs is dependent on the current local weather
conditions, which can vary substantially with time and depend on the actual location.
Detailed information is only known for a limited number of observation points. There-
fore, appropriate interpolation and randomization models need to be used to model the
representative weather conditions for the observed location throughout the simulated
time frame. The weather simulation model that was used is based on algorithms devel-
oped by Knight et al. [39], Graham et al. [40], Degelman [41] and Gansler [42], and is a
part of the TESS library used in the TRNSYS 17 simulation tool [43]. The model builds
hourly profiles of the weather data based on monthly averages. These are acquired from
www.renewables.ninja (accessed on 10 December 2021) [44] using the MERRA-2 model [45]
with measured data from 2014 that were available at the time of the study. The generated
weather data for the observed location are shown in Figure 10 and were used as a reference
meteorological year for all the observed configurations. In this way, we ensured that the
configurations were comparable, even though they were not built on actual measurements
of the meteorological data at the exact location.
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Figure 10. Reference meteorological data used in the developed models.

3.3. Energy System Model

The energy system of the MH was modelled with TRNSYS 17 software [46] using
additional TESS libraries [43]. Since detailed and reliable performance data were not
available for the specific components of the system, the most suitable generic models
available in the software libraries were used. Previously introduced load and weather
models were used as the input data and boundary conditions.

The complete model is presented in Figure 11 and consists of the following compo-
nents: (i) inputs (weather data, load or power consumption and the generator’s operating

www.renewables.ninja
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schedule); (ii) power generation, storage and control (PV panels, gen-set, batteries and
regulator), (iii) additional models (generator’s output control with respect to the current
state of charge of the batteries and unit conversions) and (iv) outputs (data file with hourly
values of selected performance data for further analyses and on-screen display of the
integral operating parameters).
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Figure 11. System configuration in TRNSYS software environment for the simulations.

4. Energy Balance of the Modelled Configurations

The simulations produce time series of hourly data for numerous system performance
parameters. Figure 12 shows the power being produced and the charge on the batteries for
1 week (168 h) for the SOPE. During the night, the charge on the batteries drops significantly
as there is no electricity generation; however, the base load is always present.
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Figure 12. Power production and charge on the batteries for the SOPE for 1 week.

During the day, the charge increases, but the increase is notably smaller on days with
small insolation. The generator provides a higher output when the charge on the batteries
is low and a lower output when solar power is available and the charge on the batteries
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is higher. The inputs for the simulations are modelled values of the load (Figure 8) and
meteorological data (Figure 10). Therefore, it is not possible to compare the simulation
results and the measured values on an hourly basis. On the other hand, it is possible to
compare the integral values during longer periods (e.g., months). Figure 13 shows the
notable similarity of the monthly generator outputs for the SOPE simulated (calculated)
and the measured values.
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Figure 13. Measured and calculated monthly generator output for the SOPE.

We will only use selected integral parameters for further comparisons of the actual
measured data and the different simulated configurations. The results are summarized
in Table 2. The total consumption is all the electrical energy consumed by the MH in one
year. The generator output represents the electrical energy provided by the gen-set for
single-phase loads and the total fuel consumption is the quantity of diesel fuel for the
generator attributed to the production of single-phase electricity. The available solar energy
is the electrical energy that could be produced with photovoltaic panels if an appropriate
load or free battery capacity is available. Due to the different dynamics of the load and the
electricity generation, as well as the limited battery storage capacity, some of the available
energy is not actually generated and so is labelled as excess energy. The renewables
penetration is the fraction of produced solar energy in the total produced energy (solar and
gen-set). Note that the total energy production exceeds the total consumption mainly due
to energy loss during the charging and discharging of the batteries.

4.1. Custom Computational Model Validation with Experimental Data of the SOPE

Experimental data are only available for one of the observed configurations, marked
with MEAS in Table 2. The system configuration is the same as in the SOPE, i.e., the system
with an upgraded photovoltaic power supply. The integral parameters presented in Table 2
show that both the calculated (SOPE) total consumption and the generator output are in
good agreement with the experimental values (MEAS). This confirms that the model is set
up appropriately and can be used for the simulation of other configurations. A considerable
amount of excess energy can be seen in the SOPE. This is the energy that cannot be either
used or stored at the time when it is available. Figure 12 shows that the gen-set starts every
morning to provide power, both for the hut and for charging the batteries. During the day,
when solar power is available and its potential exceeds the consumption, the batteries are
unable to store the excess energy, which is therefore not produced. This type of operation
is also reported by the hut’s keepers, where the gen-set’s operation is regulated manually.
Obviously, most of the energy stored in the batteries is produced by the gen-set instead of
the photovoltaics. The high state of charge of the batteries provides an energy backup, but
since the Lizara hut has two gen-sets, with one being redundant for normal operation, the
batteries are not needed as an emergency backup. Therefore, the capacity could be utilized
over a wider range.
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Table 2. Comparison of the measured and calculated results for different configurations.

Description Unit SOPB MEAS * SOPE SOPE+ SOPEx2 RES

total consumption kWh 8105 7842 8105 8105 8105 8105
generator output kWh 8284 4913 5064 3348 638 0

total fuel consumption,
single phase L 3408 2021 2083 1378 262 0

nominal photovoltaic
power kW 0.5 3.7 3.7 3.7 7.4 11.1

available solar energy kWh 791 - 5852 5852 11,704 17,556
battery capacity kWh 38.4 38.4 38.4 38.4 76.8 192.0

excess energy kWh 0 - 1734 59 2996 7941
renewable penetration % 8.7 - 44.9 63.4 93.2 100.0

* MEAS: represents the only configuration with real experimentally obtained data with the SOPE.

It was found that this ineffectiveness in renewable energy production could be miti-
gated with a better charging strategy for the batteries using the gen-set. The results of the
SOPE (Figure 14) reveal that the batteries’ fractional state of charge remains very high at
all times. The batteries are not used in their complete operating range, which provides an
opportunity to improve the system’s performance.
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Figure 14. Daily low and high limits of the fractional state of charge of the batteries in the SOPE.

4.2. Improved Battery Charging Strategy in the SOPE+

With the current settings of the gen-set operation and the battery charging, the batteries
are always fully charged when the gen-set is in operation and is suppling power to the load.
If, at the same time, excess solar energy is available, it cannot be stored in the batteries.
Thus, if the gen-set is not allowed to charge the batteries over a certain limit, the excess
solar energy could be stored for later use. Figure 15 shows that limiting the charging
of the batteries with the gen-set could free up capacity that could be used to store the
excess solar energy. In this way, the gen-set’s operating time, as well as the fossil fuel
consumption, decrease significantly and there is almost no excess energy (see Table 2 for
SOPE+). In addition, the renewables penetration increases by 18.5%. Attention should be
paid to the state of charge at the end of the generator’s scheduled operation, because the
stored electricity must be sufficient to cover the night-time requirements for consumption.
Fortunately, the night-time load is relatively constant and predictable, as already shown in
Figure 5.
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Figure 15. Daily low and high limits of the fractional state of the charge of the batteries in the SOPE+.

The employed regulation strategy results in a relatively low state of charge for the
battery during the summer season, which might cause issues with the degradation of the
battery. The average level of charge could be increased by additional charging with the
gen-set, although this is not necessary from an energy balance point of view. To keep the
batteries in good condition, a further improvement of the system’s regulation is possible,
where an appropriate state of charge is maintained with the gen-set for the batteries.

4.3. The Simulation Results for the SOPB

To show the benefits of increasing the capacity of the PV panels, a simulation was also
run with the configuration before the modifications, the SOPB. There are no experimental
data for the SOPB, and we must use the TRANSYS model to calculate the energy balance.
The results show that the gen-set must provide most of the electricity. In fact, less than 9%
of all the generated electricity is provided by renewable sources. In addition, the generator
produces much more electricity than the micro-grid system consumes, mostly due to the
battery charging and the discharging inefficiency (Table 2).

4.4. Increased Power of the PV and Batteries’ Capacity to Increase Renewable Penetration

To reach the highest RES penetration, the power of the PV system and the capacity
of the batteries must be increased. Two energy system configurations were simulated
to approach (SOPEx2 with 93.2% renewable penetration) or to reach 100% renewables
penetration in the RES case.

In the SOPEx2, the capacity of the PV system and batteries was doubled according to
the SOPE, which is feasible, although undoubtedly an expensive approach. The renewables
penetration increases considerably in SOPEx2, but the gen-set is still occasionally needed
to bridge certain periods when neither solar nor stored energy is available.

For the MH system, it was found that fully renewable operation is possible if the PV
system is increased by 200% and the capacity of the batteries by 400% compared to the
SOPE. With this, it would be possible to store enough energy for longer periods of overcast
weather, when solar energy is not available. Due to the considerably oversized PV capacity,
the amount of energy that cannot be utilized is comparable to the total electrical energy
consumed by the MH (Table 2). In this case, it might be reasonable to use this electricity for
heating (powering electrical heaters) and thus reduce the consumption of LPG and mixed
wood. With this approach, we could make the MH a fully stand-alone, RES-based, even
sustainable, and near-zero-emission MH. Environmental impacts would still be present,
if not so much because of the operational phase of the MH; they are present because of
the manufacturing phase of the PV system, batteries, control units, etc., which uses some
critical or rare materials, energy and processes that impact the environment and represent a
burden. In the next section, an environmental assessment of all the observed configurations
will be described and the best option regarding environmental impacts will be addressed.
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5. Environmental Assessment

To evaluate the environmental performance of all the simulated configurations, the
lifecycle assessment (LCA) methodology was used. LCA includes four phases: goal and
scope, lifecycle inventory analysis (LCI), lifecycle impact assessment (LCIA) and interpreta-
tion of the results. It is conducted according to the ISO standards 14,040, 14,044 [47,48], and
the International Reference Life Cycle Data System (ILCD) guidelines [49]. The topology of
the energy system and the energy generation for all the configurations of the MH defined
in the phase of modelling served as inputs for the LCA models.

5.1. Goal, Scope and Functional Unit

The functional unit is the electricity and the heat consumption (load) for the reference
year (1 June 2018 to 31 May 2019) of the MH Lizara. The scope of the LCA study is from
gate to gate, observing only the operational phase of MH Lizara. The manufacturing phase
of the installed technologies (PV system, biomass boiler, LPG boiler, gen-set) is included,
as well as the energy carriers (diesel, mixed wood, LPG), but the basic infrastructure of
the MH and all the installed devices and facilities not connected to the energy generation
system are excluded from the LCA.

In contrast to the energy balance modelling of different energy configurations, where
the focus was only on the single-phase electricity generation system, the environmental
assessment was performed for the complete energy distribution of the MH: for the single-
and three-phase electricity generation systems, as well as the heat generation system with
LPG and mixed wood. In addition, the transport of the energy carriers was included for
all the observed configurations. With this approach, we can evaluate the environmental
performance improvements of the MH operation phase due to the single-phase electricity
generation optimization (from SOPE to SOPE+) and the upgrade (from SOPB to SOPE
and further to SOPEx2 and RES). We can also evaluate the decrease in the environmental
impacts due to (i) the PV installation or (ii) the heating system upgrade (heat recuperation
chimney) in the SOPB configuration.

5.2. Life Cycle Inventory Analysis
5.2.1. Manufacturing and Operational Phase

The lifecycle inventory (LCI) analysis is based on the data from measurements, the
basic defined topology of the energy system and the results of simulations for the observed
configurations. The values of electricity generated with the gen-set or the PV system for
all five configurations are presented in Table 3, where the heat generated with the LPG
boiler and the heat recuperated in the chimney using mixed logs are also listed. In the last
column of Table 3, the processes used from the generic databases Ecoinvent 3.6 and GaBi
Professional are listed [50,51]. These databases are the most suitable regarding the real
power, type and installation specifics of the devices.

5.2.2. Transport Phase

The transport of fuels is the only one included in LCA models. Diesel and mixed
logs (wood) are transported from Sabiñanigo, which is 73.3 km from MH Lizara, and the
LPG is transported from Santurce, which is 296 km from MH Lizara. The LCI data for the
transport phase in all five studied configurations are presented in Table 4 with the masses
of the fuels to be transported and the product of distance and mass, which serves as the
input for the LCA model. The process used for the transport phase is EU-28: Transport,
van (up to 7.5 t total cap., 3.3 t payload) [50].

5.3. Lifecycle Impact Assessment Methodology

One of the major goals of the SustainHuts project is to assess and address the environ-
mental impacts of MHs during their operating phase before (SOPB) and after (SOPE) the
energy system’s adaptation [34]. Since the target emissions (CO2, SOX, NOX and particles)
defined in the project do not address all impact areas, the Centrum voor Milieukunde
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Leiden (CML) 2001 LCIA method was also used in this study to assess the environmental
impacts in more detail (Table 5).

Table 3. Lifecycle inventory data for all the modelled stand-alone energy configurations for 1 year of
the hut’s operation.

SOPB SOPE SOPE+ SOPEx2 RES Process from Generic
Database

Electricity
(kWh)

PV slanted roof 791 4118 5793 8708 9615

ES: el. Prod., photovoltaic,
3 kWp slanted-roof

installation, single-Si, panel,
mounted, Ecoinvent 3.5

Diesel, 1-phase 8284 5064 3348 638 0 GLO: diesel, burned in
diesel-electric generating set,

18.5 kW, Ecoinvent 3.5
Diesel, 3-phase 6439 6439 6439 6439 6439

Heat (kWh)

LPG boiler 73,292 35,040 35,040 35,040 35,040 EU-28: gas low-temperature
boiler < 20 kW (use), Sphera

Mixed log
chimney 350 38,252 38,252 38,252 38,252 RoW: heat production, mixed

logs, 30 kW, Ecoinvent 3.5

Table 4. Lifecycle inventory data for the transport of energy carriers to the hut for 1 year of the
hut’s operation.

Unit SOPB SOPE SOPE+ SOPEx2 RES

Diesel, 1-phase kg 2761.4 1687.7 1116.2 212.6 0.0
Diesel, 3-phase kg 4907.7 3834.0 3262.5 2358.9 2146.3
Factor, diesel km·kg 613,455 771,241 687,459 554,991 523,824

LPG kg 6568 3140 3140 3140 3140
Factor, LPG km·kg 1,944,128 929,440 929,440 929,440 929,440
Factor, total km·kg 2,557,583 1,700,681 1,616,899 1,484,431 1,453,264

Table 5. CML2001 environmental impact indicators [52].

Abbr. Name Indicator Units

Air/
Climate

GWP Global Warming Potential Greenhouse gas
emissions kg CO2-eq.

AP Acidification Potential Air pollution kg SO2-eq.

POCP Photochemical Ozone
Creation Potential Air pollution kg Ethene-eq.

ODP Ozone-Layer Depletion Potential Air pollution kg R11-eq.
HTP Human Toxicity Potential Toxicity kg 1,4-DCB-eq.

Water
FAETP Freshwater Aquatic

Ecotoxicity Potential Water pollution kg 1,4-DCB-eq.

MAETP Marine Aquatic
Ecotoxicity Potential Water pollution kg 1,4-DCB-eq.

EP Eutrophication Potential Water pollution kg PO4-eq.

Soil TETP Terrestrial Ecotoxicity Potential Soil degradation
and contamination kg 1,4-DCB-eq.

Resources
ADP elem. Abiotic depletion

potential, elements Resource depletion kg Sb-eq.

ADP fossil Abiotic depletion potential, fossil Resource depletion MJ

5.4. Interpretation of the Results

To perform a critical interpretation of the environmental impacts, all the configurations
were assessed using the same LCA base model (Figure 16) with the different boundary
conditions presented in Tables 3 and 4. The environmental impacts of five configurations
were assessed and compared for 1 year of the hut’s operation. Observing only the target
emissions and not the environmental impact indicators, we can see a gradual decrease in
emissions from the SOPB at the beginning to an RES at the end. In contrast to CO2, SOX
and NOX in the case of particles (ppm2.5), there is a slight increase by 14% from the SOPB
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to the SOPE. After this, the emission of particles decreases towards the RES (by 18% from
SOPE to RES).
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In Table 6 a comparison of the environmental impact indicators for all the configura-
tions is presented. In addition to the values, a color chart (green–orange–red) is used in
each impact category to provide an additional visual effect for high (red) and low (green)
relative values.

Table 6. Comparison of environmental impact indicator values for all the observed configurations in
the Lizara hut.
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In the group of indicators affecting the air/climate, we can observe a positive trend
from the SOPB to the RES that has a 100% renewable penetration. The global warming
potential (GWP), acidification (AP) and ozone depletion (ODP) are reduced to 53%, 57%
and 51%, respectively, in comparison to the SOPB, which is mostly fossil-fuel-based. In
the case of POCP and HTP, the largest increase in values is from the SOPB to the SOPE; in
the SOPE+, SOPEx2 and RES, the values are reduced. The reason for this is the additional
installation of the PV system from 0.5 to 3.7 kWp and the installed heat recuperation
chimney, which reduced the consumption of LPG by 52% from the SOPB to the SOPE,
but increased the mixed wood consumption by 614%, according to the SOPB. The heat
recuperation chimney is connected to the heat distribution system and can replace the
LPG. The extra installed PV system has additional environmental impacts because of the
PV manufacturing phase (in HTP, FATEP, MAETP and TETP indicator) and not due to its
operation. In addition, the wood in the Lizara hut is combusted in an open fireplace that
has characteristically very incomplete combustion, with lots of non-desirable emissions to
the environment. This is why the reduction in LPG use from the SOPB to the SOPE by 52%
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and the reduction in the total diesel consumption by 22% do not decrease the POCP and
HTP indicators, which are very much dependent on combustion.

The next group of indicators, which are connected to water pollution—Freshwater
Aquatic Ecotoxicity (FAETP) and Marine Aquatic Ecotoxicity (MAETP)—show the same
pattern of a large increase due to the uncontrolled wood combustion and the additional
PV system being installed. At the same time, the Eutrophication (EP) is reduced to 67%
in the RES in comparison to the SOPB. In the case of the EP indicator, the decrease in
LPG and diesel consumption has a larger effect than the large increase in mixed wood use
(combustion). In the Terrestrial Ecotoxicity (TETP), after a large increase from the SOPB to
the SOPE due to a huge increase in wood use and the additional PV system installed, there is
a slight decrease to the RES. In the case of the use of resources that is quantified with abiotic
depletion (ADP elements and ADP fossil), there is a logical decrease in the ADP fossil that
is linked with the reduced fossil fuel use (diesel, LPG and diesel for transport) from the
SOPB to the RES. In the ADP elements, there is a visible increase in the indicator from the
SOPB to the RES that is attributed to the additional PV system installed, i.e., 11.1 kWp in
RES, and an increase in wood use. To perform a proper interpretation of the environmental
impacts, the use of mass emissions is insufficient. The decrease in CO2 emissions (Table 7)
has the same pattern as the GWP (Table 8). The same goes for the SOX emissions that can
be linked to the AP indicator. The NOX and ppm2.5 emissions cannot otherwise be directly
linked to the specific CML2001 indicator, but the particles (ppm2.5) increase from the SOPB
to the SOPE indicates that the impact of the wood combustion process should be evaluated
in more detail, as with the CML2001 LCIA methodology. Moreover, instead of an open-fire
chimney, better-controlled combustion systems should be used to avoid a large increase in
the FAETP, MAETP, HTP and TETP environmental indicators.

Table 7. Target emissions of the SustainHuts project in all the observed configurations in the
Lizara hut.
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SOPE 2.11 × 104 64 24.8 91 198 85 31.3 114

SOPE+ 1.97 × 104 60 22.3 82 173 75 28.3 103
SOPEx2 1.74 × 104 53 18.6 68 134 58 23.6 86

RES 1.69 × 104 51 17.8 65 125 54 22.5 82

Table 8. The reduction/increase in the environmental impact indicators according to the SOPB.
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SOPB 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SOPE 66% 87% 154% 84% 160% 148% 136% 95% 221% 133% 62%

SOPE+ 61% 77% 144% 73% 159% 154% 137% 86% 217% 141% 58%
SOPEx2 54% 61% 127% 55% 157% 165% 140% 70% 211% 157% 52%

RES 53% 57% 123% 51% 158% 170% 142% 67% 209% 164% 51%

6. Discussion

To have 100% renewables penetration in the Lizara hut, the size of the PV system must
be 11.1 kWh, with a battery capacity that is five times larger than in the SOPE and SOPE+.
With such an over-sized system to meet the required load, higher costs are foreseen. A
calculation of the investment costs (Table 9) shows that the investment in the improved
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charging strategy in the SOPE+ is 10% larger than the investment for the “basic” SOPE.
However, a 90% higher investment is required to double the size of the PV and batteries
in the SOPEx2 and an investment as much as 270% higher is needed to achieve fully
renewable operation in the RES. The input data for the calculation were taken from the
actual investment in the SOPE and scaled according to the size of the installed equipment
for other configurations.

Table 9. Investment costs in all the modelled configurations according to the SOPE investment costs
and the size of the modelled configurations [38].

SOPE SOPE+ SOPEx2 RES

PV panels with regulator 5373.6 € 5373.6 € 12,311.1 € 18,466.6 €
Lead–acid batteries 9011.4 € 9011.4 € 18,022.7 € 45,056.8 €

Inverter unit 4975.2 € 4975.2 € 5475.2 € 6475.2 €
Improved charging strategy * - 3000.0 € 3000.0 € 3000.0 €

Thermo-chimney with heat exchanger 5970.1 € 5970.1 € 5970.1 € 5970.1 €
Labor costs 968.0 € 968.0 € 1490.0 € 2215.0 €

TOTAL 26,298.3 € 29,298.3 € 46,269.1 € 81,183.7 €
* estimated cost.

To include the savings in costs for diesel, diesel for transport and LPG, we must
introduce the price of diesel, LPG and wood. These are 0.85 €/liter for diesel, 1.62 €/kg for
LPG and 0.02 €/kg for mixed wood for the Lizara hut owners, who have a special contract
with the Federación Aragonesa de Montañismo (FAM) [53]. The calculated savings for
1 year would be 6541.1 €, 7112.6 €, 8016.2 € and 8228.8 € in the SOPE, SOPE+, SOPEx2 and
RES, respectively. Using a simple payback methodology, this means 4 years of payback in
the SOPE, 4.1 years in SOPE+, 5.8 years in SOPEx2 and 9.9 years in RES.

There is no single way to choose the optimal configuration if we combine technical,
environmental and economic approaches. We should combine the technical feasibility,
investment costs and payback time with the environmental impact indicators. The most
effective solution in the Lizara hut that needs very little technical upgrade, has a significant
reduction in environmental impacts (Table 8) and only prolongs the payback time from
4 years to 4.1 years is the SOPE+ case, which includes the improved charging strategy in
addition to the SOPE. Looking for higher renewables penetration (Table 2) in the SOPEx2
(63.4%) or 100% in the case of the RES is much more expensive, with longer payback times
and larger investments.

7. Conclusions

The workflow of combining energy system optimization and environmental and eco-
nomic evaluations using a simple payback methodology was introduced in the case of the
Lizara mountain hut. Five technically feasible configurations with increasing renewables
penetration were modelled to obtain the required power and capacity of the basic com-
ponents for electricity generation and storage. A lifecycle model was set up to evaluate
the impacts of energy generation (electricity and heat) for 1 year of operation. In addition,
the calculation of the investment costs for each configuration was made, fuel savings were
evaluated, and a simple payback methodology used for the evaluation.

The results show that the recent upgrade of the energy system improved the renew-
ables penetration from 8.7% to almost 44.9%. In addition, the optimization of the charging
strategy, which was one of the main goals of the paper, improved the renewables penetra-
tion further to 63.4%, which was a large improvement that required a small investment.
Higher renewables penetration results in lower environmental impacts. Global warming
potential is decreased by 39% in the case of a system upgrade, including the improved
charging strategy (SOPE+), compared to the state of play at the beginning (SOPB). The
same pattern is noted for acidification, abiotic depletion, ozone depletion and eutrophi-
cation, which are consistently decreasing with system modifications, approaching 100%
renewables penetration. The environmental indicators (FAETP, MAETP, HTP, TETP) that
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are influenced by the incomplete combustion process in the open fireplace, however, show a
considerable increase for all the configurations, apart from the state of play at the beginning.

Reaching 100% renewables penetration is possible with a 3.1-times-higher investment
compared the basic investment strategy realized in the SOPE, and the payback time is
almost 10 years. Since the lifetime of the average MH is expected to be in the range of
50 years or more, all the calculated payback times are acceptable, but maintenance of the
energy system should be included for longer operating periods. MHs are specific micro-
grid energy systems, where environmental and technical assessments should always direct
the investment. After all, we are dealing with very sensitive environments in the high
mountains that should be preserved, and so cost should not be the most important issue.
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