
Citation: Kandilogiannakis, G.;

Mastorocostas, P.; Voulodimos, A.

ReNFuzz-LF: A Recurrent

Neurofuzzy System for Short-Term

Load Forecasting. Energies 2022, 15,

3637. https://doi.org/10.3390/

en15103637

Academic Editor: Artur Blaszczuk

Received: 13 April 2022

Accepted: 13 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

ReNFuzz-LF: A Recurrent Neurofuzzy System for Short-Term
Load Forecasting
George Kandilogiannakis 1, Paris Mastorocostas 1,* and Athanasios Voulodimos 2

1 Department of Informatics and Computer Engineering, Egaleo Park Campus, University of West Attica,
12243 Athens, Greece; gkandilogiannakis@uniwa.gr

2 School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens,
Greece; thanosv@mail.ntua.gr

* Correspondence: mast@uniwa.gr; Tel.: +302-105-385-750

Abstract: A neurofuzzy system is proposed for short-term electric load forecasting. The fuzzy rule
base of ReNFuzz-LF consists of rules with dynamic consequent parts that are small-scale recurrent
neural networks with one hidden layer, whose neurons have local output feedback. The particular
representation maintains the local learning nature of the typical static fuzzy model, since the dynamic
consequent parts of the fuzzy rules can be considered as subsystems operating at the subspaces
defined by the fuzzy premise parts, and they are interconnected through the defuzzification part.
The Greek power system is examined, and hourly based predictions are extracted for the whole year.
The recurrent nature of the forecaster leads to the use of a minimal set of inputs, since the temporal
relations of the electric load time-series are identified without any prior knowledge of the appropriate
past load values being necessary. An extensive simulation analysis is conducted, and the forecaster’s
performance is evaluated using appropriate metrics (APE, RMSE, forecast error duration curve).
ReNFuzz-LF performs efficiently, attaining an average percentage error of 1.35% and an average
yearly absolute error of 86.3 MW. Finally, the performance of the proposed forecaster is compared
to a series of Computational Intelligence based models, such that the learning characteristics of
ReNFuzz-LF are highlighted.

Keywords: electric load forecasting; neurofuzzy model; recurrent neural network; internal feedback

1. Introduction

Accurate short-term electric load forecasting (STLF) is a challenge to power engineers
operating modern Energy Management Systems (EMS). Reliable load forecasts with lead
times from a few hours to a week constitute crucial information for an effective operation
of EMS with regard to unit commitment, hydro-thermal coordination and interchange
evaluation. The highly competitive power market, especially in the present turbulent times,
requires accurate forecasts in power demand.

During the last thirty years, Computational Intelligence has become a signifi-
cant tool in electric load forecasting. The first attempts with feedforward artificial
neural networks in the 1990s [1–3] were followed by the introduction of static fuzzy
and neurofuzzy systems [4–7]. Support vector machines and support vector regres-
sion have provided quite efficient forecasters [8–10], while evolutionary computation-
based approaches [11–13] and mixed schemes have contributed as well [14,15]. Pres-
tigious systems, such as the Adaptive Neuro Fuzzy Inference System (ANFIS) [16],
have been employed to STLF [17–19] and have contributed to a variety of power
systems’ problems [20,21].

The revolution in Computational Intelligence that occurred with the emergence of
Deep Learning made an impact in various fields, such as system identification and pre-
diction, pattern recognition, signal and image processing [22–25]. Such an important
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breakthrough definitely left its footprint in energy management, wind prediction and
power systems [26–29]. In the field of STLF, in particular, all the well-known deep models
(LSTM, recurrent neural networks, CNN) have been applied to this challenging problem,
and significant contributions have been made [30–37]. Taking advantage of the available
computational resources, these Deep Learning Models have managed to model the electric
load time-series effectively.

A key issue on prediction problems is the selection of the input variables and the
reduction or transformation of the input vector. In the case of STLF, the potential influential
inputs are past load values, temperatures and climate variables, rendering this process
crucial. Therefore, any approach that would reduce the burden or alleviate the problem is
worth examining.

In view of the above, ReNFuzz-LF (Recurrent Fuzzy model for Load Forecasting) is
proposed for short-term electric load forecasting of the Greek power system. The fuzzy rule
base comprises rules with dynamic consequent parts that are small-scale recurrent neural
networks with one hidden layer, whose neurons have local output feedback. ReNFuzz-
LF aims at learning the dynamics of electric load time-series throughout the whole year.
The training method applied is Simulated Annealing Dynamic Resilient Propagation (SA-
DRPROP), an algorithm designed specifically for recurrent structures, which addresses the
inherent disadvantages of standard gradient-based methods. ReNFuzz-LF has a reduced
structural complexity compared to other computational intelligence-based approaches
and is able to operate with a single input, thus avoiding the use of a feature selection
preprocessing stage.

The rest of the paper is organized as follows: In Section 2 the architecture of ReNFuzz-
LF is described, and its particular features are discussed. The learning method is detailed in
Section 3. Section 4 hosts the experimental analysis. Two neurofuzzy models are examined;
the former results from uniform partition of the input space, while the fuzzy rule base of
the latter is formed by applying the fuzzy C-means clustering algorithm. A comparative
analysis with respectable Computational Intelligence-based approaches is also conducted.
From these tests, it becomes evident that ReNFuzz-LF is a promising electric load forecaster,
since it exhibits efficient performance, similar or superior to those of its competing rivals,
while its structural complexity is significantly reduced. This forecasting efficiency can be
attributed to the ability of local feedback connections to identify the temporal relations of
the time-series. The concluding remarks are given in Section 5.

2. The Architecture of ReNFuzz-LF

In a classic Takagi–Sugeno–Kang fuzzy model [38], the fuzzy rule base consists of rules
that contain fuzzy sets in the premise part, while the consequent parts are linear functions of
their inputs. In general, these parts can be any continuous and derivable nonlinear function.
ReNFuzz-LF contains fuzzy rules whose consequent parts are small-scale recurrent neural
networks. Such a scheme was introduced in [39] for telecommunications data forecasting,
and its fuzzy rules for a system of m inputs and a single output are written in the form:

IF x1(k) is A1 AND . . . AND xm(k) is Am THEN g(x(k) ) (1)

where xl = [x1, . . . , xm]
T is the input vector, k represents the sample index and Aj corre-

sponds to the fuzzy set of the j-th input of the particular rule.
The proposed neurofuzzy forecaster has the following structural features:

• The fuzzy rules have static premise parts, which comprise m-dimensional hyper-cells,
composed of single-dimension Gaussian membership functions along each input axis:

µl(k) = fµ(x(k); ml , σl) l = 1, . . . , R (2)

µA l
i
(xi(k)) = exp

{
−1

2
· (xi(k)−mli)

2

σ2
li

}
(3)
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where R is the number of rules, and µl(n) is the firing strength of the l-th rule. The tuning
parameters of the premise parts are the mean value and the standard deviation of the
membership functions; hence, the premise parameter vectors are ml = [ml1, . . . , mlm]

T

and σl = [σl1, . . . , σlm]
T . The selection of Gaussian membership functions is dictated by:

(a) the intention to keep the model complexity to a minimum; therefore, the Gaussian
and the symmetrical triangular types are eligible, having only two parameters; and (b)
the fact that the fuzzy models compared to ReNFuzz-LF in Section 4 employ Gaussian
membership functions. The use of common membership functions will facilitate the
comparative analysis.

• The firing strength is calculated as the algebraic product of the Gaussian
membership functions.

• The consequent parts of the fuzzy rules are three-layer recurrent neural networks
in the form of m–H–1. Such a configuration is shown in Figure 1. The network has
internal recurrence, since the outputs of the nodes in the hidden layer are fed back
with unit delays (local output unit feedback). There exist no feedback connections of
the fuzzy rules’ outputs or external feedback from the network’s output.
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The consequent part of the l-th fuzzy rule operates as follows:

sli(k) = f
((

w(1)
li

)T
· x(k) + w(2)

li · sli(k− 1) + w(3)
li

)
=

f

(
m
∑

j=1

[
w(1)

lij · xj(k)
]
+ w(2)

li · sli(k− 1) + w(3)
li

) (4)

gl(k) = f

(
H

∑
j=1

[
w(4)

l j · sl j(k)
]
+ w(5)

l

)
(5)

where:

â The hyperbolic tangent is chosen to be the activation function of the neurons,
f (z) = ez−e−z

ez+e−z , over other common activation functions, such as sigmoid or
rectified linear unit (RELU). As mentioned in [40], the hyperbolic tangent
performs better than the logistic sigmoid. In modern deep neural networks,
the RELU function is preferred due to the fact that it overcomes the vanishing



Energies 2022, 15, 3637 4 of 18

gradients problem ([40]) that occurs in multilayered networks. In the present
case, the consequent parts of the fuzzy rules are too shallow for such a
problem to occur. Moreover, the competing rivals of ReNFuzz-LF in Section 4
use the hyperbolic tangent as activation function.

â sli(k) is the output of the i-th hidden neuron of the l-th rule for the k-th sample.
â gl(k) is the output of the l-th fuzzy rule.

â w(1)
lij , w(2)

li and w(3)
li are the synaptic weights and bias terms, respectively, at the

hidden layer of the consequent parts.
â w(4)

l j and w(5)
l are the synaptic weights and bias terms, respectively, at the

output layer of the consequent parts.

• The defuzzification part is static. The output of ReNFuzz-LF is calculated using the
weighted average method:

y(k) =

R
∑

j=1
µj(k) · gj(k)

R
∑

j=1
µj(k)

(6)

The block diagram of ReNFuzz-LF is hosted in Figure 2.
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The aforementioned architecture falls to a greater category of recurrent neurofuzzy
models [41,42], where feedback connections exist at the consequent parts of the fuzzy rules.
Among a series of models with external output feedback [43], dynamic premise parts [44]
or cascaded recurrent modules [45], ReNFuzz-LF has the advantage of preserving the
local-learning character of the classic TSK model. These dynamic consequent parts can be
considered as subsystems that are fuzzily interconnected through the defuzzification part.
Since the networks are locally recurrent, there is no temporal relation between the rules.
At each rule, the fuzzy hypercell of the premise part sets the operating region, while the
recurrent consequent part aims to identify, within each region, the temporal dependencies
of the internal states of the electric load time-series. The recurrent networks cooperate
intrinsically, since the regions are defined in a fuzzy way and overlap each other. Thus, at
each data point, usually more than one rules contribute to input–output mapping, leading
to enhanced identification capabilities.

The advantages of local output feedback to recurrent neural networks are highlighted
in [46,47], where this kind of internal feedback exhibited improved modeling performance
in comparison to external feedback or local synapse feedback. Moreover, the neurofuzzy
system proposed in [48] was the first approach to introduce internal feedback at the
consequent parts of fuzzy rules. However, these parts are highly complex, since they
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constitute neural networks with Finite Impulse Response and Infinite Impulse Response
synapses at the hidden layer, as well as at the output layer. As shown in [39], a simple
recurrent structure to the consequent part of the fuzzy rules can perform efficiently with a
significantly lower computational burden. In this perspective, ReNFuzz-LF can be regarded
as a low-complexity recurrent fuzzy neural model, especially when it is compared to Deep
Learning counterparts.

3. The Learning Process

The learning process consists of two parts: structure and parameter identification.
Structure identification concerns the selection of the input vector and the determination
of the fuzzy rule base. In the case of the Greek Power System, a single input is selected;
therefore, a feature selection step is avoided. As far as the fuzzy rule base is concerned,
two types of partitions are examined: grid partition and partition based on a clustering
algorithm. In the grid partition, the membership functions of the fuzzy sets are uniformly
distributed along the input axis, based on a predetermined overlapping coefficient. The size
of the rule base is attempted to be kept low, providing economical models. The parameters
of the membership functions are extracted automatically: the mean values depend on the
number of fuzzy sets and the range of the input space, while the standard deviations are
common to all fuzzy sets and depend on the overlapping coefficient.

Partition based on a clustering algorithm provides the most appropriate fuzzy sets in
terms of minimum distances between the data samples that belong to each cluster, thus
producing fuzzy rules that each one of them is focused on a part of the data set. The
algorithm employed is the fuzzy C-means (FCM), which was defined by Dunn [49] and
developed by Bezdek in [50,51]. It belongs to a broad class of geometrical fuzzy clustering
algorithms as reported in [52]. For a given number of clusters, R, the cluster centers of a
multidimensional data set are calculated by the following formula:

mli =

N
∑

k=1
uli(k) · xi(k)

N
∑

k=1
uli(k)

(7)

where N is the number of samples, and ul(k) = [uli(k), . . . , ulm(k)]
T denotes the member-

ship degree that x(k) belongs to the l-th cluster:

uli(k) =

 R

∑
k=1


m
∑

i=1
(mli − xi(k))

2

m
∑

i=1
(mli)

2




1− 1
c

(8)

c is a scale parameter within [0, 1].
The cluster centers correspond to the mean values of the Gaussian membership func-

tions. The standard deviations are derived according to [53]:

σli =

c ·
N
∑

k=1
uli(k) · (mli − xi(k))

2

N
∑

k=1
uli(k)

(9)

A key issue in the model building stage when a clustering algorithm is involved, is
the selection of the number of clusters, which is the number of fuzzy rules. Since the
correct partition is not known a priori, internal validation methods should be applied. As
reported in the review work on cluster validity indices in [54], the Davies–Bouldin index [55]
constitutes a well-known efficient internal validation method. The DB index depends on the
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separation of the clusters and the compactness of each cluster; therefore, it favors clusterings
with high separation values and reduced scattering of the points that belong to a cluster.
The lower the values of the DB index, the better the resulting clustering.

In both the aforementioned cases of partition, once the fuzzy sets are determined, the
premise part parameters remain fixed. Thus, the weights of the neural consequent parts are
calculated in the sequel.

The tuning algorithm for the synaptic weights should take into consideration the
recurrent nature of the consequent parts of the fuzzy rules; therefore, it should be
able to handle the time dependencies that the feedback loop at each hidden neuron
creates. In this perspective, the Simulated Annealing Dynamic Resilient Propagation
(SA-DRPROP, [56]) is employed. SA-DRPROP efficiently deals with the problem of
trapping to local minima, which is common to gradient-based learning methods. The
introduction of Simulated Annealing, however, aims to perform a search for the optimal
weights at a broader weight space. The training method is an iterative algorithm based
on SARPROP [57], which was designed for static neural networks and is fully adapted
to the architecture of ReNFuzz-LF.

Let wi be one of the consequent synaptic weights in Equations (4) and (5). For the
present and previous iterations of SA-DRPORP, t and t-1, respectively, let ∂+E(t)

∂wi
, ∂+E(t−1)

∂wi
be the partial derivatives of an error function E with respect to the adaptive weight wi. At
each iteration, each weight is updated using its own step size. Moreover, the step size is
adjusted according to the sign of the respective derivative at the current and the previous
iterations. Therefore, the size of the gradient is not taken into consideration, a common
practice to gradient-based methods, and only the temporal behavior of the gradient matters.
Using pseudo-code, the algorithm is summarized as follows (Algorithm 1):

Algorithm 1. SA-DRPROP

1: (a) Initialize the step sizes of the consequent weights wi: ∆(1)
i = ∆0

2: Repeat
3: (b) For each weight wi, compute the SA-DRPROP error gradient:
4: ∂+E(t)

∂wi
− a1 · SA · wi

1+w2
i

5:
(c) For each weight wi, update its step size:
(c.1) If ∂+E(t)

∂wi
· ∂+E(t−1)

∂wi
> 0

6: Then, ∆(t)
i = min

{
η+ · ∆(t−1)

i , ∆max

}
7: (c.2) Else, if ∂+E(t)

∂wi
· ∂+E(t−1)

∂wi
< 0

8: Then,
9: If (∆(t)

i < a2 · SA2)

10: Then ∆(t)
i = max

{
η− · ∆(t−1)

i · r · SA2, ∆min

}
11: Else, ∆(t)

i = max
{

η− · ∆(t−1)
i , ∆min

}
12: (c.3) Else, ∆(t)

i = ∆(t−1)
i

13: Update wi: wi(t) = wi(t− 1)− sign
(

∂+E(t)
∂wi

)
· ∆(t)

i
14: Until convergence

Initially, the step size takes a moderate value, ∆0, and at each iteration it is updated
according to the sign of the error gradient. At the initial stages of the training process, when
the error keeps reducing, step c1 leads to an increase in the step size by n+ ∈ [1.05, 1.3],
in order to accelerate learning. At later stages, c2 becomes effective, and the step size is
decreased by an attenuation factor n− ∈ [0.5, 0.9] in order to avoid oscillations. Moreover,
all the step sizes are bounded by ∆max such that minima will not be missed, and by ∆min to
ensure that learning will not be stalled.

In SA-DRPROP, the notion of simulated annealing is implemented at steps (b) and (c2).
At step (b), a weight decay term is added to the error gradient. Therefore, in the beginning
of the learning process, weights with lower values are favored. As training proceeds, this
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decay term diminishes, thus allowing the increase in bigger weights and facilitating the
exploration of areas of the error surface that were previously unavailable.

At step (c2), noise is added to the weight update value when the sign of the error
gradient is changed, and the magnitude of the update value is less than threshold, which
is proportional to the square of the SA term (a2 · SA2). Therefore, the adaptation process
is moderately affected, since the modification of the weight update by noise takes place
only when the weight is threatened to fall to a local minimum, thus allowing the weight to
overcome this minimum.

Parameter r affects the noise level and takes random values within [0, 1], SA = 2−k·Temp

(Temp is the temperature), a1 is set to a small number (e.g., 0.01) and a2 is set around 0.5.
The derivatives ∂+E(t)

∂wi
are the standard partial derivatives for those consequent weights

that are not involved in the recurrent loop, and are derived by use of the classic chain rule:

∂E

∂w(4)
l j

=
2
N
·

N

∑
k=1

[y(k)− ŷ(k)] ·
µl(k) · f ′ (k, l) · xl j(k)

R
∑

i=1
µi(k)

 (10)

∂E

∂w(5)
l

=
2
N
·

N

∑
k=1

[y(k)− ŷ(k)] ·
µl(k) · f ′ (k, l)

R
∑

i=1
µi(k)

 (11)

where f ′ (k, l) is the derivative of gl(k), with respect to its arguments, and ŷ(k) is the actual
load value.

For the weights of the hidden layer’s recurrent neurons, the use of ordered derivatives
is necessary in order to unfold in time the neuron’s operation [58]. Moreover, Lagrange
multipliers are introduced, which facilitate the calculation of the error gradients [59].

Let wl be one of the consequent synaptic weights of the l-th fuzzy rule in Equations (4)
and (5). The ordered derivative of E with respect to wl is provided by the following formula:

∂+E
∂wl

=
N
∑

k=1

∂E
∂y(k) ·

∂+y(k)
∂wl

=
N
∑

k=1

∂E
∂y(k) ·

∂y(k)
∂gl(k)

· ∂+gl(k)
∂wl

=

2
N ·

N
∑

k=1

[y(k)− ŷ(k)] · µl(k)
R
∑

i=1
µi(k)
· ∂+gl(k)

∂wl


(12)

Applying Lagrange multipliers to Equation (12) in order to facilitate calculation of
∂+gl(k)

∂wl
, the error gradients are extracted as follows:

∂+E

∂w(1)
lij

=
N

∑
k=1

λli(k) · f ′ (k, l, i) · xj(k) (13)

∂+E

∂w(2)
li

=
N

∑
k=1

λli(k) · f ′ (k, l, i) · sli(k− 1) (14)

∂+E

∂w(3)
li

=
N

∑
k=1

λli(k) · f ′ (k, l, i) (15)

λli(k) = λli(k + 1) · f ′ (k + 1, l, i) · w(2)
li +

2
N
·

N

∑
k=1

[y(k)− ŷ(k)] ·
µl(k) · f ′ (k, l) · w(4)

li
R
∑

i=1
µi(k)

 (16)

λli(N) =
2
N
·

N

∑
k=1

[y(N)− ŷ(N)] ·
µl(N) · f ′ (N, l) · w(4)

li
R
∑

i=1
µi(N)

 (17)



Energies 2022, 15, 3637 8 of 18

Equation (16) is a backward difference equation: first, the boundary conditions in
Equation (17) for k = N are calculated, and then, the Lagrange multipliers are extracted in
a backward manner for k = N − 1, . . . , 1.

4. Experimental Results
4.1. Problem Statement—Data Preprocessing

ReNFuzz-LF is applied to the problem of forecasting the next day’s hourly loads of
the Greek Interconnected Power System. In particular, a single fuzzy model is generated to
perform hourly based load forecasting of the whole year, including weekends and holidays.

One of the most important tasks in building an efficient electric load forecaster is
the feature selection step, where the most relevant input variables that highly affect the
forecaster’s output are extracted. This is a cumbersome activity due to the complicated
nature of the process. Selecting a wrong input set may lead to models with poor forecasting
performance. Unfortunately, there is no systematic procedure that can be followed in all
circumstances. In certain cases, input selection is heuristically performed or based on the
expertise provided by the system operators. However, several statistical methods such
as auto-correlation and cross-correlation have been successfully applied in the literature.
Furthermore, well-known concepts of the linear regression theory can also be employed.
As mentioned in Section 1, in general the input candidates can be divided into three major
groups: electric load variables, temperature variables and climate variables. A large variety
of these variables are reported in the literature, including their daily means and lagged
hourly values up to 3 weeks back [35].

The suggested modeling approach does not face this issue at all, single ReNFuzz-LF
is a single-input forecaster. Therefore, having as a single input the actual load at hour h
of day d−1, L̂d−1,h (MW), ReNFuzz-LF predicts the load at the same hour of day d, thus
performing the mapping:

Ld,h = f
(

L̂d−1,h
)

(18)

where d = 1,...,365 is the day index and h = 1,...,24 is the hour index. A hat (ˆ) above a
variable indicates the actual quantity. The intrinsic dependence on past loads is attempted
to be modeled through the feedback loops at the consequent parts of the fuzzy rules. The
effect of temperature or climate variables has not been studied in this work since our goal
is to keep the input vector and the model’s complexity to a minimum.

The scope of the identification process is to develop and train a neurofuzzy model that
is capable of performing the input–output matching of the available data to an acceptable
level of accuracy. The average percentage error with respect to the daily peak (APE) is
selected as an error measure to evaluate the model’s forecasting performance. The APE is
defined as follows:

APE =
1
N

N

∑
d=1

[
1

24
·

24

∑
h=1

∣∣Ld,h − L̂d,h
∣∣

Lmax,d

]
· 100% (19)

where N is the number of days in the data set and L̂max,d is the maximum actual load of
day d.

The data set contains 35,064 data and is split to training and testing data sets, with
a ratio of 75/25%, respectively. The training data set is used during the identification
process. It contains 26,280 samples, which are historical data from three consecutive
years (2013–2015). The evaluation set, used for testing the forecasting capabilities of
ReNFuzz-LF, contains 8784 samples of electric load values for 2016 (a leap year, containing
366 days). The data are publicly available at the website of the Greek Independent Power
Transmission Operator [60]. There were some missing or irregular values; therefore, a data
preprocessing phase took place for data cleaning, data integration and data normalization.
In particular, a data file of 25 columns (one for the data and twenty-four for the hourly
loads) and 1461 lines (three regular years and one leap year) was created.
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Missing values were filled by the average of the value at the same hour of most
previous date and the next one. In the case of consecutive missing values, they were filled
by cubic spline interpolation. Irregular values were substituted in the same way.

Data were normalized within [−0.8, 0.8], such that load values fall within the operat-
ing region of the neurons at the consequent parts of the fuzzy rules. Moreover, the data file
was enriched with metadata (day of the week, season of the year), such that further tests
and evaluation based on various data selection criteria could take place.

4.2. ReNFuzz-LF’s Structural and Parameter Characteristics

The number of hidden neurons for the consequent part of the fuzzy rules is set to 2,
leading to a 1–2–1 recurrent neural network. Structures with hidden layers containing up
to eight neurons were examined in order to combine accurate predictions with moderate
complexity of the forecaster, thus facilitating its implementation and reducing training time.
Bigger networks slightly improved the forecasting performance for the testing data set,
while hidden layers of more than six neurons led to overfitting.

In the case of grid partition, fuzzy rules bases varying from 3 to 12 rules were examined,
and the resulting rule base contains six rules, leading to a model of 66 parameters, as shown
in Table 1. Overlapping coefficients between consecutive fuzzy sets is set to 0.35, in order
to have an efficient coverage of the input space by more than one rule, while avoiding the
mixing of rules to a great extent.

Table 1. Premise and consequent parameters (weights) of ReNFuzz-LF.

Parameter Number

m R

σ R

w(1) R · H

w(2) R · H

w(3) R · H

w(4) R · H

w(5) R

Premise 2 · R
Consequent R · (4 · H + 1)

Total R · (4 · H + 3)

In order to perform partition by means of FCM, the Davies–Bouldin index, shown
in Figure 3, was examined. It is evident that the first minimum is attained for three
clusters and that the index starts taking lower values after the seventh cluster. However,
compared to a three-rule model, the forecasters with bigger fuzzy rule bases do not
provide ameliorated performances with regard to the testing data; on the contrary,
models with more than seven rules suffer from overfitting. Therefore, since one of the
primary goals is a reduced computational cost, a ReNFuzz-LF with fuzzy rules and
33 parameters is selected, a reduction by 50% with respect to grid partition, which
underlines the benefit from searching the input space for appropriate clusters. This
partition is depicted in Figure 4.

Once the fuzzy sets are defined, the premise parameters are set and are not adaptable,
both in grid partition and in partition by FCM. Thus, only the consequent parameters (82%
of the total number of parameters) are updated by the iterative algorithm SA-DRPROP.
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Training lasts for 1000 epochs. The error measure selected for the extraction of the
error gradient is Root Mean Squared Error (RMSE), which is also a performance metric:

RMSE =

√√√√ 1
N

N

∑
k=1

[y(k)− ŷ(k)] 2 (20)
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The RMSE measures, in a quadratic manner, the discrepancy between the actual data
series and the one produced by ReNFuzz-LF. Hence, it will serve as an evaluation criterion
complementary to APE.

The learning parameters of SA-DRPROP are shown in Table 2.

Table 2. Learning parameters of SA-DRPROP.

Temp n+ n− ∆min ∆max ∆0 a1 a2

1.2 1.05 0.5 0.0001 0.5 0.01 0.01 0.4
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4.3. Results and Discussion

The performance of ReNFuzz-LF for short-term electric load forecasting is evaluated
in the sequel. Table 3 summarizes the yearly forecast APE and RMSE for the two
forecasters with different partitions. APE values below a threshold of 2% correspond to
reliable load prediction. Although a single model is used for the whole year, seasonal
forecasting results for the best model (which will be used in the sequel) are shown in
Table 4 in order to investigate whether ReNFuzz-LF is capable of identifying the seasonal
electric load profiles.

Table 3. Yearly APE and RMSE.

Grid Partition
(6 Rules)

APE Training RMSE Training
(Denormalized) APE Testing RMSE Testing

(Denormalized)

1.24% 121 1.41% 137

FCM Partition
(3 rules)

APE training RMSE training
(Denormalized) APE testing RMSE testing

(Denormalized)

1.19% 113 1.35% 122

Table 4. Seasonal APE and RMSE for FCM ReNFuzz-LF.

Season APE Training RMSE Training
(Denormalized) APE Testing RMSE Testing

(Denormalized)

Winter 1.05% 113 1.10% 112

Spring 1.60% 143 1.97% 162

Summer 0.93% 88 1.08% 100

Autumn 1.18% 103 1.21% 104

The average yearly absolute error for the testing data set is 86.3 MW, and the respective
standard deviation is 86.8 MW, which means that the forecast error is less than 173 MW for
most of the 8784 h (366 days of 2016). The forecast error duration curve is shown in Table 5.
It represents the percentage of hours of the year in which the forecast error is greater than
the MW value given in the first row. It can be easily observed that for 68% of the time the
forecast error is less than 100 MW. Additionally, only 0.45% of the time does the forecast
error exceed 500 MW.

Table 5. Forecast error duration curve for FCM ReNFuzz-LF.

Electric Load >100 MW >200 MW >400 MW >500 MW

Hours 2787 794 91 40

Time 31.80% 9.04% 1.04% 0.45%

The performance of the forecast model is further examined through a series of graphs
regarding all seasons. In particular, in Figures 5–8, the times series of the actual and the
predicted loads for weekdays and Sundays are depicted.
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Figure 8. Presentation of autumn days. The blue solid line is the actual electric load, and the red
dotted line is ReNFuzz-LF’s output: (a) working day; (b) Sunday.

According to the graphs, the following comments are in order:

• The working days of the four seasons bear similarity with respect to the appearances
of morning and evening peaks, as well the first minimum load. As far as the load
evolution during the day is concerned, autumn working day is smoother from 10 a.m.
to 4 p.m.

• Sundays exhibit different patterns compared to their respective working days. More-
over, they differ considerably from season to season. It is evident that spring and
autumn Sundays follow the respective seasonal pattern only during late evening and
around midnight.

• Despite the differences in seasonal behavior and in the type of days, ReNFuzz-LF
succeeds in tracking the actual time-series at all times. Maximum and minimum
extremes are identified, and the transition from working days to weekend days is
effectively modeled, as can be clearly seen in Figure 9, where a winter week is shown.
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Figure 9. A winter week. Blue solid line: actual electric load. Red dotted line: ReNFuzz-LF’s output.

Holidays are an interesting type of day, such as Christmas. In Greece, a special
summer holiday is August 15th (Assumption day). The electric load curves for these
two holidays are given in Figure 10. It is concluded that ReNFuzz-LF identifies the
Christmas load curve efficiently, since it is similar to winter Sundays. However, it fails
to track load evolution of Assumption Day, at least until 6 p.m. The load curve of this
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day is highly irregular: for the first 18 h, there is no morning peak, and load is reducing,
leading to a minimum below 3000 MW around 3 p.m. (lunch time). This behavior can be
attributed to the fact that during this particular day, the vast majority of Greek people
are on holiday and do not stay at home. They spend the morning at the beach and do
not return to their summer houses or to hotels until late evening. Moreover, around
Assumption day, no industrial activity takes place, due to August holidays. It can be
seen that the evening and night parts of the time-series regain their “normal” nature,
and the forecaster performs accurate predictions accordingly.
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The suggested neurofuzzy recurrent model is now compared with three Computa-
tional Intelligence-based models reported in the literature, namely, ANFIS [16], LSTM
forecaster [30,35] and the DFNN neurofuzzy model [48]. ANFIS is the most well-known
neurofuzzy system, LSTM is a popular and effective Deep Learning model, while DFNN
constitutes a system that shares the same underlying philosophy with ReNFuzz-LF but
is more complex. Comparison of the forecasters is attempted in terms of forecasting
accuracy and the number of total parameters. For fair comparison, all models are evalu-
ated using the same data sets. Four setups of the LSTM scheme are examined: networks
with one and two layers, each layer comprising 25 and 50 units. As far as the other
hyperparameters are concerned, they are summarized in Table 6, where the structural
and learning parameters of DFNN are also given. The same FCM partition applied
to ReNFuzz-LF is used for DFNN. With regard to ANFIS, since the network is static,
the input vector is two-dimensional, [Ld−1,h, Ld−1,h−1]. Several fuzzy rule bases were
investigated, and the one chosen contains 81 rules (nine fuzzy sets per input). The results
are shown in Table 7.

It is concluded from the results that all four models attained low APE values; there-
fore, they effectively perform electric load predictions. ReNFuzz-LF and DFNN exhibit
a similar performance, leading to the conclusion that the fuzzy blending of locally recur-
rent small-scale neural networks can efficiently identify the temporal relations of electric
load time-series. As far as LSTM models are concerned, those with 25 units exhibit the
worst performance, and it takes two 50-unit layers for the performance to be competitive
to ReNFuzz-LF’s. In terms of model size and structural complexity, the superiority of
the neurofuzzy approach is evident. ReNFuzzy-LF and DFNN require only a fraction of
parameters that LSTM models do, while ANFIS has eight times more parameters than the
proposed forecaster. Additionally, ReNFuzz-LF is quite more economical than DFNN, both
in terms of parameter set and algorithmic complexity.
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Table 6. Parameters of competing forecasters.

DFNN Structural Parameters

Ou Oy1 Oy2 Oy3 H Membership function Activation function

1 2 2 1 2 Gaussian tanh

Learning parameters

n+ n− ∆min ∆0 ξ

1.05 0.5 0.0001 0.01 0.85

ANFIS Learning parameters

Initial Step size Step size increase rate Step size decrease rate

0.01 1.1 0.9

Membership function: Gaussian

LSTM Hyperparameters

Activation function Bias Dropout Batch size Optimizer learning rate

tanh Yes 0.2 24 Adam 0.001

Table 7. Comparative results.

Model APE (Testing) No. of Parameters

ReNFuzz-LF 1.35% 33

DFNN 1.36% 48

ANFIS 1.48% 279

LSTM-1 1.73% 2726

LSTM-2 2.06% 7826

LSTM-3 1.51% 10451

LSTM-4 1.23% 30651

Summarizing, apart from the significantly low APE that ReNFuzz-LF attained
and the reduced model complexity, the proposed forecasting approach displays some
additional advantages:

• The usual selection process with regard to past load values is skipped. No dimensional-
ity reduction is necessary, which adds additional cost to the preprocessing phase. The
internal dependencies of the time-series are identified through the recurrent processing
that the consequent parts of the fuzzy rules perform.

• The model does not make use of climate data, such as temperature of humidity.
• No seasonal models or models dependent on the nature of the day (weekday, weekend,

holiday) are necessary. With the exemption of August 15th, ReNFuzz-LF succeeded in
predicting the electric load of irregular days quite accurately.

5. Conclusions

A dynamic neurofuzzy model for short-term electric load forecasting has been pro-
posed. ReNFuzz-LF is a fuzzy system with rules that have nonlinear dynamic consequent
parts, constituting small-scale recurrent neural networks with local output feedback. Train-
ing of the consequent parameters is performed via SA-DRPROP. The forecaster has been
tested on load time-series from the Greek power system, exhibiting an efficient prediction,
compared to a series of Computational Intelligence models. Moreover, ReNFuzz-LF has a
moderate model structure since the existence of internal feedback connections are capable
of capturing the dynamics of the time-series. As far as future work is concerned, structure



Energies 2022, 15, 3637 16 of 18

learning and parameter tuning by use of evolutionary computation methods are two steps
toward a fully automated model building process.
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Nomenclature

µA l
i

membership function of the i-th input axis for the l-th fuzzy rule
mli mean of a Gaussian membership function of the i-th input axis for the l-th fuzzy rule
σli standard deviation of a Gaussian membership function of the i-th input axis for the

l-th fuzzy rule
H number of hidden neurons
RMSE root mean squared error
APE average percentage error
n number of samples
FIR finite impulse response
IIR infinite impulse response
L̂max,d maximum electric actual load of day d
L̂d−1,h actual electric load at hour h of day d-1
sli the output of the i-th hidden neuron of the l-th fuzzy rule
gl the output of the l-th fuzzy rule
w(1), w(2) synaptic weights at the hidden layer of the fuzzy rules
w(3) bias terms at the hidden layer of the fuzzy rules
w(4) synaptic weights at the output layer of the fuzzy rules
w(5) bias terms at the output layer of the fuzzy rules
ul membership degree that a sample belongs to the l-th cluster (FCM)
c scale parameter (FCM)
∂+E
∂wi

ordered partial derivative of an error measure with respect to a consequent weight
λli Lagrange multiplier
ŷ(k) actual electric load value
n+ increase factor for step size
n− attenuation factor for step size
r scale parameter for noise (SA-DRPROP)
Temp temperature (SA-DRPROP)
a1, a2 Scale coefficients for SA term (SA-DRPROP)
∆min minimum step size
∆max maximum step size
∆0 initial step size
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