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Abstract: The thermal-hydraulic behavior of supercritical water reactors with a parallel channel
configuration was examined through a non-linear instability analysis. This analysis was performed
under wide-ranging conditions and aspects, including different working supercritical fluids, varied
heat-flux and flow-rate conditions, and channel inclinations. The supercritical fluid (SCFs) dynamics
were captured using the density, enthalpy, and velocity analytical approximation functions. The
major findings show that both SCFs (water and carbon dioxide) experienced density wave oscillations
at a low pseudo-subcooling number. Static instability characteristics were observed for supercritical
water, at a relatively high subcooling number. Further, it was found that at different heat flux, the
hotter channel makes the overall system more unstable, whereas, at equal heat flux, parallel channels
perform similar to a single-channel system. However, the effect of the inclination angle was found to
be negligible owing to supercritical pressure conditions. Moreover, stable and unstable limit cycles
along with out-of-phase oscillation characteristics were observed in dynamic stability regions. The
present model was also compared with experimental and numerical data. Moreover, co-dimension
and numerical simulations were performed to confirm the observed non-linear characteristics. This
study helps to enhance the heat transfer characteristics during safe operation of heated channel
systems, such as nuclear reactors and solar thermal systems.

Keywords: supercritical fluid; non-linear stability analysis; nuclear reactor; Ledinegg instability;
Hopf bifurcation

1. Introduction

Over the last few decades, supercritical fluids (SCFs) have been considered as a
valuable option for working fluids in several energy systems due to their high thermal effi-
ciencies. It has been observed that close to the pseudo-critical temperature, SCFs’ properties
experience significant changes [1]. Numerous analyses have been performed to study the
impact of these drastic changes on the overall performance of the supercritical Brayton cy-
cle [1–3]. In comparison to other two-phase flow energy systems, boiling and phase-change
do not take the place. Since there is no clear understanding of the phase change effect
on dynamical system behavior, it becomes quintessential to doubt the existence of flow
instabilities in supercritical systems [4,5]. Flow instabilities are categorized into two parts:
density wave, pressure drop, and thermal oscillations, which are characterized mainly by
dynamic instability; and Ledinegg, which is commonly reported in static instability [6–8].
Several authors have adopted the two-phase stability analysis methodology to develop
single and parallel channel models to study the stability phenomena in supercritical sys-
tems; however, these reported investigations have only analyzed linear stability [4,9,10].
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Several authors have proposed a new dimensionless parameter and have compared it with
two-phase flow parameters [4,10,11].

In several thermal energy systems, parallel channel configurations have been widely
used to fulfill the system objective, where the channel-to-channel interaction, heat flux
distribution, and flow rate have been found to be critical parameters. These parameters
significantly influence the thermal-hydraulic behavior of the system. Numerous experi-
mental [12–14] and numerical [4,15–19] research has been carried out on the flow instability
in parallel channels under symmetric heating conditions. However, an absolute symmetric
heating condition does not exist in actual operation since most industrial equipment always
operates under dissymmetric heating conditions. Dissymmetric heating induces an uneven
flow distribution among the channels and further affects the flow instability of the parallel
channel system. A previous study indicated a considerable difference between the flow
instability under symmetric and dissymmetric heating conditions [20–22]. However, a
scarce amount of research has studied the flow instability in parallel channel systems under
the dissymmetric heating condition.

Parallel channel instability is observed in most heat exchangers and nuclear reactor
cores, in which the instability is significantly influenced by the channel-to-channel interac-
tions. However, these studies concluded that in-phase and out-of-phase oscillations are
expected for an identical two-channel system [4,5,23–26]. The different heat inputs be-
tween the channels and more channels in a system may cause complex channel-to-channel
interaction modes, leading to system instability.

Ting Xiong experimentally [12] and numerically [15] studied the flow instability char-
acteristics of a parallel channel system with SCF. In the experimental study, the combination
of the heat flux and flow rate varied and was divided into different phases. It has been
reported that the flow rate would experience more asymmetry at higher fluid temperatures,
making it difficult to demonstrate flow instability experimentally.

Zhang, L. [13] also conducted experimental studies on a forced circulation loop under
SCW with a parallel channel. Based on the oscillation characteristics, they reported that
two types (I and II) of dynamic instabilities occurred. They observed in-phase and out-of-
phase oscillations at low and high temperatures, respectively. Later, Xi [14,23] carried out
out-of-phase oscillation using the CFX code for a three-dimensional (3-D) study, which, in
comparison with experimental data, was able to better predict the flow instability than a
one-dimensional model. However, improvement of the 3-D physical models for enhanced
prediction of the period of oscillation has been recommended.

Su, Y. [18] adopted the time-domain method to theoretically study flow instability
characteristics in the parallel channels for supercritical water. They compared the obtained
characteristics with a two-phase flow system. They concluded that arc-shaped stability
characteristics are significantly affected by the pressure drop, mass flow rate, and volume
of supercritical water. Moreover, it has been reported that delayed properties and feedback
effects should be considered to demonstrate instability phenomena.

Jin Der Lee [21,27] developed a time-domain model for heated channels based on a
three-zone methodology. Earlier, only the polynomial approximation function for density
and enthalpy had been included; however, later, they also added the impact of vertical
seismic accelerations to investigate the non-linear transient characteristics of the supercriti-
cal water. Out-of-phase flow oscillations were observed in two channels, whereas three
channels under different heat flux were used to demonstrate the in-phase oscillation. They
only observed dynamic instability characteristics, whereas static and bifurcation analysis
was missing in these studies.

Jialun Liu [19,20] also used the time-domain method to study flow instabilities due
to dissymmetric heating conditions in two vertical upward channels. The impact of dis-
symmetric heating conditions was found to be dependent on the mass flow rate and inlet
fluid temperatures. Based on this dependency, they evaluated the different positive and
negative response characteristics of the system instability. The above-discussed literature
review and concepts of bifurcation theory show that linear stability cannot demonstrate
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the entire system dynamics as it only predicts tiny or small perturbation impacts on the
system dynamics. Thereby, this reveals the importance of non-linear studies in dynamical
systems [6–8,24–28], such as two-phase flow, boiling water reactors, advanced heavy water
reactors, heated channel systems, etc., for the normal and safe operation of such systems.

The present work exploits a previously developed methodology (nodalized reduced
ordered model) for a single channel [29] to a parallel channel system. An ROM was
developed to capture the non-linear characteristic of a parallel channel under different
supercritical fluid (water and carbon dioxide) flow conditions. Apart from the in-house
code, MATCONT software (bifurcation tool) was used [30], which works on a MATLAB
platform. In order to demonstrate realistic engineering applications, the system was studied
under different working conditions, such as an equal and un-equal heat flux distribution
and varied flow rate. The major findings are the several bifurcation characteristics obtained
along the stability boundary, depicting the system’s non-linear dynamical behavior. The
model was validated using numerical and experimental literature data. The present study
is instrumental in the design of the safe operation of nuclear reactors and solar thermal
systems, in a wide parametric range.

2. Modelling Methodology

The objective of the present work is fulfilled using a system with two parallel channels.
The physical schematic is shown in Figure 1, and the corresponding design and operating
parameters are shown in Table A1. This physical system is replicated in the mathematical
form using the 1-D Navier–Stokes equations [4–6,9,10]. These conservation equations
are further simplified using non-dimensional parameters [11,29] under some appropriate
assumptions as follows:

1. Homogenous flow is considered in both channels.
2. The inlet temperature remains constant.
3. The system pressure remains constant to use the thermodynamics property of the fluids.
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After using the above-mentioned assumptions and non-dimensional parameters, the
non-dimensional 1-D Navier–Stokes equation is as follows:

Mass balance equation:
∂ρ

∂t
+

∂ρw
∂z

= 0 (1)

Momentum balance equation:

∂ρw
∂t

+
∂ρw2

∂z
+

∂p
∂z

= − ρ

Fr
− [Λ + Kinδd(z) + Kexitδd(z− 1)]ρw2 (2)

Energy balance equation:

∂ρh
∂t

+
∂ρwh

∂z
= N′tpc fq(z) (3)

The equation of the state is:
ρ = ρ(h, P) (4)

Since the above-mentioned supercritical fluids’ properties experience drastic
changes [4,5,9–17], NIST steam table data (for steady-state solution) and appropriate ap-
proximation function for density, enthalpy, and velocity are used to capture the accurate
variation as follows:

ρi,j(t) =
1

1
ρi,j−1(t)

+ bi,j(t)
(
zi,j(t)− zi,j−1(t)

) (5)

hi,j(t) = hi,j−1(t) + ai,j(t)
(
zi,j(t)− zi,j−1(t)

)
(6)

wi,j(t) = wi,j−1(t) + Di,j Ntpc
(
zi,j(t)− zi,j−1(t)

)
(7)

where i = number of node; j = number of channels; ai,j, bi,j are phase variables; and Di,j is a
constant term (defined in Appendix A). These approximation functions are used in basic
PDEs (Equations (1)–(3)) and applied to the weighted residual function, which transforms
the PDEs to corresponding ordinary differential equations (ODEs). The detailed description
is as follows:

• First ODE for the phase variable ai,j from the energy balance equation:

The energy balance equation is multiplied by the weighted function Ψk and the
weighted residual method is applied on the ith a node of a channel with limits z = zi,j−1(t)
to z = zi,j(t) as: ∫ zi,j(t)

zi,j−1(t)

(
M hi,j(t)− R

)
Ψk(z) dz = 0 (8)

where M =
(

∂
∂t +

∂w
∂z

)
ρi,j(t) and R = N′tpc. The weighted function is chosen as a unit and

leads to the first ODE for the system as:

dai,j(t)
dt

= χi,j

(→
X, P

)
(9)

• Second ODE for the phase variable bi from the energy balance equation:

Similarly, for the second phase variable, the mass balance equation is used and inte-
grated over the ith node, and the equation is further simplified to obtain an ODE:

dbi,j(t)
dt

= Yi,j

(→
X, P

)
(10)

• Final ODEs for the inlet velocity of each channel:
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The momentum equation is integrated on each node to calculate all pressure drop
components along the channels as follows:

∫ zi(t)

zi−1(t)
∆Pi,jdz =

∫ zi(t)

zi−1(t)

(
∆Pacc + C

dwin(t)
dt

+ ∆Pf ri + ∆Pgrav

)
i,j

dz (11)

The inlet and outlet pressure drop of the parallel channels are as follows:

∆Pkin ,j =
(

Kin ρin w2
in

)
j

(12)

∆Pkexit ,j =
(

Kexit ρexit w2
exit

)
j

(13)

As discussed above, a previous single-channel methodology is adopted, and based
on node convergence, the channels are nodalized into six nodes [29]. All pressure drop
coefficients in each node are calculated (Equations (11)–(13)) and equated to the applied
external pressure drop:

i=6, j=2

∑
i=0,j=1

∆Pi,j + ∆Pkin
+ ∆Pkexit

= ∆Pj,ext (14)

The final ODEs for the w1in(t) and w2in(t) are obtained using two boundary
conditions for the parallel channel system as follows:

As the lower and upper plenum connect both channels, the applied pressure drop
across both channels is as follows:

∆P1,ext = ∆P2,ext . . . = ∆Pext (15)

The total mass flow rate in can be calculated as follows:

wtotal = w1,in + w2,in . . . + wN,in (16)

Using the above boundary conditions with Equations (14) and re-arranging the term
leads to the final ODE for the w1in(t) as follows:

dw1in(t)
dt

= fi,j(
→
X,
→
P) (17)

dw2,in(t)
dt

= −dw1,in(t)
dt

(18)

where χi,j(
→
X, P), Yi,j(

→
X, P), fi,j(

→
X, P),

(
∆Pacc, ∆Pgrav, ∆Pf ri

)
i,j

, and ∆Pexit are defined in

Appendix A. In the present analysis, a double channel is used; therefore, a total of 26
(2 equations from each node and 1 from momentum) coupled ODEs are used to examine
the non-linear stability characteristics in a parallel channel system under supercritical fluid
flow conditions.

3. Stability Analysis

Stability analysis predicts the dynamical system behavior when it experiences some
disturbances in its initial operating conditions. To obtain the stability boundary, developed
time-dependent coupled non-linear ODEs (Equations (9), (10), (17), and (18)) are linearized
around the steady state by neglecting high-order terms in Taylor series expansion. The Jaco-
bian matrix is created from these linearized equations, and the corresponding eigenvalues
are obtained:

J
→
x = λ

→
x (19)
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J
→
x − λ

→
x = 0 (20)

|J − λI| = 0 (21)

where I and λ represent the identity matrix and the eigenvalues of matrix J, respectively:

λ = λR + iλI (22)

After the application of a small perturbation, if all eigenvalues are λR ≤ 0, the system
is stable (decaying oscillations); however, if any λR > 0, the system displays unstable
(growing oscillations) characteristics. The separating boundary between stable and unstable
regions is known as a stability boundary, where all eigenvalues should be negative or
purely imaginary (zero real part). Hence, a constant amplitude periodic oscillation would
be observed.

The above-mentioned heated channel configuration is used in different energy systems,
mainly in solar thermal applications, nuclear reactors, heat exchangers, etc., where the
channel-to-channel interaction, varied heat flux (shading conditions), and flow rate affect
the overall heat transfer performance of the system. Therefore, to study these effects on
the non-linear dynamics of the system, two parallel heated channels are examined under
different conditions.

3.1. Case I: Channels under Different Fluid (Supercritical H20 and CO2) Flow Conditions

From the literature survey, it was observed that in several energy systems that are
designed for supercritical cycles, supercritical water and carbon dioxide are commonly
used as a working fluid. Both fluids work in different applications and operation conditions
(pressure and temperature range, etc.). Therefore, NIST thermo-physical properties, as
mentioned in Table 1, are used to capture the real fluid dynamics.

Table 1. The geometrical and operational parametric values that are assumed in the present study [9,29].

Property H2O CO2 Units

System pressure 25 8 MPa
P∗c 22.0640 7.3773 MPa
L∗H 4.2672 4.2672 m
D∗H 0.0034 0.0034 m
T∗pc 373.95 307.82 °C
ρ∗pc 317.03 459.49 kg/m3

h∗pc 2152.54 3414.48 kJ/kg
β∗pc 0.129 0.299 1/K

C∗p, pc 76.445 35.267 kJ/kg−K
w∗o 1 1 m/s

It can be evidently seen in Figure 2 that the obtained stability threshold is almost
identical for both working fluids at lower subcooling numbers. In contrast, at high subcool-
ing numbers, the dynamics change drastically. These static instability characteristics are
observed only for supercritical water systems.

The Ledinegg instability characteristics are observed for the parallel channel simi-
lar to the single channel. Detailed analysis of the interaction between dynamic instabil-
ity and static instability was reported in a previous study [29]. Co-dimension analysis
was performed in a reported work to capture high non-linear stability phenomena via
bifurcation analysis.



Energies 2022, 15, 3652 7 of 22
Energies 2022, 15, x FOR PEER REVIEW 7 of 22 
 

 

 

Figure 2. Stability threshold comparison at different working fluids for single and parallel channel 

systems. 

The Ledinegg instability characteristics are observed for the parallel channel similar 

to the single channel. Detailed analysis of the interaction between dynamic instability and 

static instability was reported in a previous study [29]. Co-dimension analysis was per-

formed in a reported work to capture high non-linear stability phenomena via bifurcation 

analysis. 

3.2. Case II: Channels under Equal and Unequal Heat Flux Conditions 

The thermodynamic performance is highly dependent on the applied or generated 

heat to achieve the overall stable performance or higher efficiency. The heat distribution 

should be equally distributed. However, due to some internal (air voids or defects) or 

external disturbances (shading), unequal heat distribution and thermal fatigue occurs, 

and affects the thermal efficiency, which may lead to physical degradation. Therefore, this 

section examines parallel channel systems under equal and unequal heat flux conditions. 

To fulfil this objective, a new coefficient heat flux distribution factor (ℎ𝑓𝑑) is introduced 

as follows: 

𝑁1𝑡𝑝𝑐 = ℎ𝑓𝑑  𝑁2𝑡𝑝𝑐 (23) 

The above-mentioned equation is used with the developed ODEs (Equations (9), (10), 

(17) and (18)) to obtain the stability characteristics, drawn at different ℎ𝑓𝑑 values in the 

system operating parameter (𝑁𝑡𝑝𝑐 − 𝑁𝑠𝑝𝑐) space as shown in Figure 3. 

Figure 2. Stability threshold comparison at different working fluids for single and parallel
channel systems.

3.2. Case II: Channels under Equal and Unequal Heat Flux Conditions

The thermodynamic performance is highly dependent on the applied or generated
heat to achieve the overall stable performance or higher efficiency. The heat distribution
should be equally distributed. However, due to some internal (air voids or defects) or
external disturbances (shading), unequal heat distribution and thermal fatigue occurs, and
affects the thermal efficiency, which may lead to physical degradation. Therefore, this
section examines parallel channel systems under equal and unequal heat flux conditions.
To fulfil this objective, a new coefficient heat flux distribution factor (h f d) is introduced
as follows:

N1tpc = h f d N2tpc (23)

The above-mentioned equation is used with the developed ODEs (Equations (9), (10),
(17) and (18)) to obtain the stability characteristics, drawn at different h f d values in the
system operating parameter (Ntpc − Nspc) space as shown in Figure 3.

It is observed from Figure 3 that under an applied equal heat flux condition on both
parallel channels, the obtained stability characteristics are almost similar to the single
heated channel system [28]. Under different heat flux conditions, the obtained stability
characteristics significantly influence the stability threshold as the hottest channel misbal-
ances the heat transfer characteristics and makes the system unstable. Therefore, it can be
observed form Figures 3 and 4 that the stability boundary is shifted on the left side, making
the system more unstable, as the heat flux ratio in both channels increases. Therefore, for a
detailed non-linear analysis, an unequal heat flux condition model is used.



Energies 2022, 15, 3652 8 of 22Energies 2022, 15, x FOR PEER REVIEW 8 of 22 
 

 

 
(a) 

 
(b) 

Figure 3. Stability threshold in the Ntpc − Nspc space at different hfd values. (a) Supercritical wa-

ter (H2O). (b) Supercritical carbon dioxide (CO2). 

It is observed from Figure 3 that under an applied equal heat flux condition on both par-

allel channels, the obtained stability characteristics are almost similar to the single heated 

channel system [28]. Under different heat flux conditions, the obtained stability characteristics 

significantly influence the stability threshold as the hottest channel misbalances the heat trans-

fer characteristics and makes the system unstable. Therefore, it can be observed form Figures 

3 and 4 that the stability boundary is shifted on the left side, making the system more unstable, 

Figure 3. Stability threshold in the Ntpc −Nspc space at different hfd values. (a) Supercritical water
(H2O). (b) Supercritical carbon dioxide (CO2).



Energies 2022, 15, 3652 9 of 22

Energies 2022, 15, x FOR PEER REVIEW 9 of 22 
 

 

as the heat flux ratio in both channels increases. Therefore, for a detailed non-linear analysis, 

an unequal heat flux condition model is used. 

 

Figure 4. Schematic view of the inclined parallel heated channel system under supercritical pressure 

conditions. 

3.3. Case III: Channels under Different Inclination Conditions 

Especially in solar energy applications, solar receivers or heated channels are primar-

ily used in tilted configurations to capture maximum incoming solar irradiance. There-

fore, this section is devoted to studying the inclination effect on the non-linear dynamics 

of parallel channels (Figure 4). The tilted angle, as the theta (𝛳) term (from the horizontal) 

in the gravitational pressure drop in the momentum equation (Equation (3)), is included 

as follows: 

𝜕𝜌𝑤

𝜕𝑡
+

𝜕𝜌𝑤2

𝜕𝑧
+

𝜕𝑝

𝜕𝑧
=  −

𝜌 𝑠𝑖𝑛𝛳

𝐹𝑟
− [𝛬 + 𝐾𝑖𝑛𝛿𝑑(𝑧)  + 𝐾𝑒𝑥𝑖𝑡𝛿𝑑(𝑧 − 1)]𝜌𝑤2 (24) 

It is observed from Figure 5 that at a lower pseudo subcooling number (lighter fluid), 

the stability threshold remains almost the same. However, at a higher pseudo subcooling 

number (heavier fluid), it is significantly affected. In the supercritical cycles, the system 

pressure and temperature are observed to be significantly high; therefore, below the 

pseudo-critical region, the fluid is too dense whereas above the pseudo-critical region 

without phase change, the fluid becomes lighter, and can be treated similarly to ideal gas. 

Therefore, the gravitational pressure drop contribution to the overall pressure drop is 

much higher at a low subcooling number, in comparison to a high subcooling number, as 

shown in Figure 5. 

Figure 4. Schematic view of the inclined parallel heated channel system under supercritical
pressure conditions.

3.3. Case III: Channels under Different Inclination Conditions

Especially in solar energy applications, solar receivers or heated channels are primarily
used in tilted configurations to capture maximum incoming solar irradiance. Therefore,
this section is devoted to studying the inclination effect on the non-linear dynamics of
parallel channels (Figure 4). The tilted angle, as the theta (θ) term (from the horizontal)
in the gravitational pressure drop in the momentum equation (Equation (3)), is included
as follows:

∂ρw
∂t

+
∂ρw2

∂z
+

∂p
∂z

= −ρ sinθ

Fr
− [Λ + Kinδd(z) + Kexitδd(z− 1)]ρw2 (24)

It is observed from Figure 5 that at a lower pseudo subcooling number (lighter fluid),
the stability threshold remains almost the same. However, at a higher pseudo subcooling
number (heavier fluid), it is significantly affected. In the supercritical cycles, the system
pressure and temperature are observed to be significantly high; therefore, below the pseudo-
critical region, the fluid is too dense whereas above the pseudo-critical region without
phase change, the fluid becomes lighter, and can be treated similarly to ideal gas. Therefore,
the gravitational pressure drop contribution to the overall pressure drop is much higher at a
low subcooling number, in comparison to a high subcooling number, as shown in Figure 5.
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3.4. Case IV: Different Flow Rates in a Channel

As aforementioned, due to some internal or external thermal incidents, the flow rate
could be restricted or unequal. This can affect the overall thermal hydraulic performance
of the system. This section examines the parallel channel system under different flow rate
conditions in the heated channels. Both channels are simulated under the same flow rate
conditions as the first condition whereas in the second condition, the flow rate is kept fixed
for one channel while it is varied in the second channel with respect to heat. In Figure 6, it
is evidently observed that the stability threshold is considerably affected as it shifts into the
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left-hand side (more unstable region) and makes the overall system more unstable. This
reduces the stable parametric zone, which is the safe operation zone.
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(a) Supercritical water (H2O). (b) Supercritical carbon dioxide (CO2).

After examining the parallel heated channels under different aspect and working
conditions, an unequal heat flux model is chosen to carry out detailed non-linear stability
analysis in a widespread parametric space.
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3.5. Validation and Comparison

The previously developed ROM is used to study the non-linear dynamics in parallel
channel systems. In the previous study, spatial or temporal convergence was studied [29];
therefore, based on the results, the same six node nodalization scheme is executed in the
parallel channel code. The present developed model is validated and compared with
experimental studies [12,13] and numerical studies [18,31]. In Figure 7, line data are plotted
at specific parametric values, whereas marker data are plotted without considering the
inlet and exit loss coefficients.
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Owing to the lack of experimental data, the present model is modified to establish
a comparison with existing data. It can be seen from Figure 7 that the stability boundary
observed in the present work follows the same trend observed in the literature data. It is
also observed that the range of operating parameters is almost similar.

3.6. Non-Linear Analysis

As per the bifurcation theory, system behavior can be qualitatively and quantitatively
changed, as some parameter values cross the critical threshold [7,32]. Therefore, linear
stability analysis, which is only limited to a small perturbation, shows only the local
behavior of the system. In case of any kind of internal or external perturbation of these
critical parameters, the linear stability is lost, and a family of limit cycles bifurcates from
this point. This is well known as a non-linear stability phenomenon. As mentioned above,
coupled non-linear phenomenon are linearized as higher-order terms and are neglected in
Taylor’s series expression. Therefore, some realistic characteristics are not captured through
linear stability analysis. Henceforth, in non-linear analysis, these terms are considered and
perturbed to correctly predict the system’s stability in a larger parametric space.

For this reason, detailed non-linear stability analysis is performed by execution co-
dimensional analysis in a large parametric space using MATCONT bifurcation compu-
tational tools [30]. These tools used the in-built ODEs solver (ODEs45) to numerically
simulate the developed ROM (Equations (9), (10), (17), and (18)).

Based on the eigenvalues’ nature, when the maximum critical pair of complex eigenval-
ues crossed the imaginary axis, it is termed Poincare–Andronov–Hopf or Hopf bifurcation.
This bifurcation is categorized as co-dimension-1 bifurcation. Therefore, it is detected by
changing only one free parameter at the moment. After detecting the Hopf bifurcation
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point and considering it as an initial solution, the non-linear stability threshold for both su-
percritical fluids is plotted in the Ntpc −Nspc parametric space (Figures 8 and 9) at unequal
flux h f d = 1.1.
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Figure 9. Stability threshold in the Ntpc −Nspc space for supercritical carbon dioxide at h f d = 1.1.

The Hopf bifurcation point associated with the dynamic instability characteristics
appears in the system when the periodic solutions exist [28,32–34]. Therefore, numerical
simulations are carried out on small and reasonably large perturbations around the Hopf
bifurcation boundary at different parametric locations to observe the periodic characteristics.
At the point on the stable side of the boundary, decaying oscillations with respect to time
are observed as shown in Figure 10a, which indicates that the system has returned to its
original equilibrium point. Whereas, on the unstable side, growing oscillations (shown in
Figure 10c) are observed, confirming that the system is unstable. At the Hopf bifurcation
point or stability boundary, the eigenvalues are purely imaginary; therefore, constant
amplitude oscillations are observed in the system, as shown in Figure 10b. Almost similar
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oscillations characteristics are observed along the Hopf bifurcation boundary. Hence, only
selected numerical simulations are presented to avoid repetition of the results.
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3.7. Generalized Hopf Bifurcation

Apart from the eigenvalues, non-linear mathematical coefficients are also calculated.
Herein, the first Lyapunov coefficient is one of the most critical parameters found in
Hopf bifurcation analysis since it distinguishes the nature of stable and unstable limit
cycles [7,32,34]. The first Lyapunov coefficient (FLC) is calculated, corresponding to
Figures 8 and 9, and plotted with the pseudo-subcooling number (Nspc) in Figures 11 and 12.
It is observed that the FLC value changes twice and thrice between positive to negative or
vice versa for the SCW and SC-CO2 system, respectively. The origin and disappearance of
these limit cycles are known as generalized Hopf (GH) bifurcation points, where the FLC
coefficient value is zero. Two and three generalized Hopf bifurcation points are observed
along with bifurcation stability in the (Ntpc − Nspc) plan, as shown in Figures 8 and 9. It
is observed that for different flow rate conditions, the GH point location is significantly
changed for these cases.
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3.8. Subcritical and Supercritical Hopf Bifurcation

As per the definition of the first Lyapunov coefficient, the nature if the limit cycles
changes with its sign. The stable and unstable limit cycles are observed around the unstable
(negative sign) and stable (positive sign) fixed points. Based on the trajectory behavior,
the stable limit cycle works as an attractor whereas the unstable limit cycle works as a
repeller. These non-linear dynamics are identified as supercritical and sub-critical Hopf
bifurcation, respectively. The detailed dynamics of this phenomenon can be found in
several studies [6,24–26,33,34].

As aforementioned, the bifurcation characteristic correspondingly changes its nature
multiple times between supercritical and subcritical Hopf bifurcation. Therefore, to confirm
this strange behavior, several numerical simulations are performed to demonstrate the
appearance of limit cycles at different parameter values under similar flow rate conditions.

As shown in Figure 12, growing oscillations are observed and settle into a large
constant amplitude, which confirms the existence of stable limit cycles on the unstable
side, before GH1 and between GH2 − GH3. On the other hand, decay oscillations are
observed initially between GH1 − GH2 for small perturbations, which move into growing
oscillations when the system quantitatively observes large perturbations. This confirms the
existence of unstable limit cycles on the stable side of the boundary, as shown in Figure 13.

Similarly, numerical simulation is performed at different parametric locations to
confirm both fluids’ other supercritical and subcritical Hopf regions in between other GH
points. However, to avoid repetition, other numerical simulations are not presented. It
should be noted that the supercritical region is identified as a safe bifurcation, whereas the
subcritical region is considered more dangerous for normal system operations.
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3.9. Bogdanov–Takens bifurcation

The Bogdanov–Takens (BT) bifurcation is categorized as co-dimension 2 bifurcation
that appears in any system with ≥2 dimensions. The present system has 2N dimensions
(ai.j, bi,j; i = 1..6, j = 1, 2). The BT point represents the set of two operating parameters at
which the linear stability boundary or Hopf bifurcation originates or terminates. Therefore,
the observed BT point confirms the interaction of dynamic (DWOs) and static (Ledinegg)
instability and vice versa along the stability boundary (Figure 8). For the equal flow-rate
condition, the first to second and second to the third region of the stability boundary
intersect by the BT point whereas for unequal flow rate conditions, a single BT point is
observed, showing that the Hopf bifurcation characteristics are transformed into a saddle
node (limit point) curve or vice versa.

In geometrical terms, BT bifurcation is a type where any autonomous ODEs have
at-least two zero eigenvalues. Therefore, the system exhibits two equilibria: non-saddle
and saddle. The Poincare–Andronov–Hopf bifurcation, which exists as a non-saddle
equilibrium, continues to generate a limit cycle unidirectional to the BT point. In the other
direction, the system becomes unstable. Detailed analysis of the Ledinegg instability region
can be found in a previously reported work [28].

3.10. Wall Heat Effect

In this section, the temperature distribution profile is studied to investigate the wall
heat effect, as shown in Figure 14. The linear temperature profile is considered without
any heat loss (100% heat transfer rate). The wall temperature depends on the material
properties and the wall heat transfer coefficient. Several authors conducted numerical
and experimental studies to observe the wall heat effect on the system stability [19–22,35]
and concluded that the wall heat effect plays a significant role in the system stability
characteristics. Similar dynamics are observed in Figure 15, where stability boundary maps
are obtained at different wall heat absorption rates.

Ttotal(q′′ ) = Twall + Tf uel (25)
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4. Conclusions

The present work captured the thermal-hydraulic dynamics of a parallel channel sys-
tem using a novel reduced order model (ROM) to convey different aspects of the non-linear
characteristics observed in several energy systems, where the overall performance of the
system depends on externalities. In this context, a parallel heated channel system was
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examined under different supercritical working fluids, different inclination conditions, var-
ied heat flux, and flow rate conditions to examine the non-linear instability characteristics
of the supercritical fluid flow system. The major observations and findings are detailed
as follows:

• Different working fluid conditions, namely, supercritical water and carbon diox-
ide, were considered. Thermodynamic properties show significant changes near the
pseudo-critical temperature; therefore, the NIST fluid properties and appropriate
approximation functions (density, enthalpy, and velocity) were used to capture the real
fluid dynamics. For both types of fluids, the stability characteristics were marginally
different, especially at the high pseudo subcooling number (Nspc). The Ledinegg insta-
bility region was observed in between the dynamic instability region. This interaction
was observed only for supercritical water through Bogdanov–Takens bifurcation (BT
point). In comparison, only Hopf bifurcation was observed for the supercritical carbon
dioxide. Similar stability characteristics were previously reported for a single heated
channel system.

• The heat flux distribution plays a crucial role, and in order to apply the unequal heat
condition on each channel, a heat distribution coefficient (h f d ) was introduced. It was
observed that as the heat flux ratio of both channels increased, the stability threshold
shifted towards making the overall system more unstable.

• The channels used in several energy systems are often oriented at an angle. Henceforth,
the effect of the inclination on the stability characteristics was analyzed. It was
observed that at a high subcooling number (heavy fluid), the major component of the
pressure drop is due to gravitational force, leading to the dominant inclination effect.

• The parallel channel system was also examined under different flow rate conditions in
respective channels at a fixed total mass flow rate where channel 1 counterbalances
the flow rate in channel 2. Here, out-of-phase oscillations were observed. Additionally,
when the flow rate was fixed in channel 1 and variable in channel 2, oscillation
characteristics were observed only in the latter channel.

The present parallel channel model was also validated and compared with the ex-
perimental and numerical data. Furthermore, an unequal heat flux model was exploited
to capture the non-linear stability dynamics of the parallel channel system. Herein, the
observed stability threshold represents the dynamic and static instabilities and several
bifurcation characteristics. In dynamic instability, Hopf bifurcation characteristics were
observed, which confirmed the existence of oscillatory behavior and the presence of limit
cycles. It was observed that the stable limit cycle acts as an attractor on the unstable side,
whereas the unstable limit cycle acts as a repeller on the stable side. This unstable limit cycle
is more dangerous for safe system operation. Henceforth, sub-critical and supercritical
Hopf bifurcations were confirmed through numerical simulation and by calculating the
first Lyapunov coefficient. In static instability, saddle node bifurcation was observed, which
is associated with the Ledinegg excursive phenomena. Additionally, the Bogdanov–Takens
bifurcation points were observed as an interaction of the saddle node with Hopf bifurcation.
A co-dimension analysis was performed in order to capture the bifurcation characteristics
along with several numerical simulations. The findings consist of different types of bifurca-
tion phenomena, representing various non-linear dynamics features. This analysis helps
to enhance the heat transfer characteristics in energy systems, such as nuclear reactors,
solar thermal systems, boilers, heat exchangers, etc., which are instrumental in their safety
and design.
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Nomenclature

A∗ Cross-section area (m2)

ai, bi, di Phase Variable
C∗p Specific heat at constant pressure kJ/(kg−K)

D∗h Hydraulic diameter (m)
f ∗ Friction factor
f ∗b Normalized distribution of heat flux
Fr
∗ Froude number

g∗ Acceleration due to gravity (m/s)
h∗ Enthalpy (kJ/kg)
Kin Localized pressure drop coefficient at the channel inlet
Kexit Localized pressure drop coefficient at the channel outlet
L∗H Channel length (m)
N f Frictional factor number
Nspc Sub-pseudo-critical number
N′tpc Pseudo-critical number

Ntpc Trans-pseudo-critical number
(

N′tpc
ρin

)
∆Pext External pressure drop
q′′ ∗ Heat flux (W/m2)
t∗ Time (s)
T Non-dimensional time
v∗ Specific volume (m3/kg)
w∗ Velocity (m/s)
z∗ Distance along the axis of flow channel (m)
βpc Thermal expansion number (K−1)
δ∗d Dirac delta function (m−1)

Λ Friction dimensionless group (Euler number)
Π∗h Heated perimeter (m)
θ Inclination angle
ρ∗ Density (kg/m3)
Subscripts
exit Outlet of the channel
In Inlet of the channel
i Number of node
Superscripts
v Steady-state value
* Dimensional quantity
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Abbreviations
acc Acceleration
DWOs Density wave oscillations
grav Gravitational
GH Generalized Hopf
fri Frictional
Odes Ordinary differential equations
PDEs Partial differential equations
SCFs Super-critical fluids
SC-CO2 Super-critical carbon dioxide
SCRs Super-critical reactors
SCW Super-critical water

Appendix A

In the present work, the complete study is performed in a dimensionless form. In
order to non-dimensionalize the set of conservation Equations (1)–(4), the pseudo-critical
temperature point is considered as a threshold value, as follows [14]:

Table A1. The list of non-dimensional parameters used in the present study.

ρ =
ρ∗

ρ∗pc
h =

βpc
Cp,pc

(
h∗ − h∗pc

)
Ntpc =

N′tpc
ρin

Nspc =
βpc

Cp,pc

(
h∗pc − h∗in

)
w = w∗

win
∗ N′tpc =

q′′o ∗Πh
∗L∗

ρ∗pcw∗o A∗
βpc

Cp,pc

z = z∗
L∗ p =

p∗

ρ∗pcw2
o
∗

Fr = w2
o
∗

g∗L∗ t = t∗wo
∗

L∗
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