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Abstract: This paper proposes a distributed robust multi-energy dynamic optimal power flow
(DR-DOPF) model to overcome the uncertainty of new energy outputs and to reduce water spillage
in hydropower plants. The proposed model uses an ambiguity set based on the Wasserstein metric to
address the uncertainty of wind and solar power forecasting errors, rendering the model data-driven.
With increasing sample size, the conservativeness of the ambiguity set was found to decrease. By
deducing the worst-case expectation in the objective function and the distributed robust chance
constraints, the exact equivalent form of the worst-case expectation and approximate equivalent
form of the distributed robust chance constraints were obtained. The test results of the IEEE-118
and IEEE-300 node systems indicate that the proposed model could reduce water spillage by more
than 85% and comprehensive operation cost by approximately 12%. With an increasing number
of samples, the model could reduce conservativeness on the premise of satisfying the reliability of
safety constraints.

Keywords: multi-energy system; water spillage; distributed robust optimization; Wasserstein;
dynamic optimal power flow

1. Introduction

Renewable energy sources, such as hydropower, wind, and solar power, have at-
tracted considerable attention worldwide. Still, the problem of renewable energy power
consumption must be solved urgently. The problem of water, wind, and light spillage is
very serious, among which water spillage is highly prevalent. Therefore, solving the water
spillage problem has become a critical research topic [1]. In addition to poor consump-
tion, the uncertainty of new energy outputs is also an important factor. On the one hand,
when dealing with such uncertainty, the traditional dispatching method gives priority to
hydropower regulation, which makes for a large regulation burden. On the other hand, the
traditional dispatching method is based on the dispatcher’s experience in allocating the
power imbalance among hydropower plants. Due to the lack of reasonable and accurate
planning, this method is prone to improper dispatching, which increases the risk of water
spillage. Hence, to solve the water spillage problem, the uncertainty in wind and solar
power output must be urgently addressed, and a multi-energy optimal power flow model
is needed to fully utilize the characteristics of complementarity and coordination between
power plants.

The optimal power flow (OPF) problem has been of concern since it was proposed, and
new methods have been proposed in recent years. An enhanced quasi-reflection jellyfish
optimization algorithm was proposed in [2] to solve the OPF problem, which performed
well and showed resilience in the simulation. An algorithm of social network search
optimizers was used for optimal power system operation in [3], and the study in this paper
proved that the algorithm has significant stability. An improved heap-based optimization
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algorithm was proposed in [4] to address the OPF problem, and its effectiveness and
robustness was demonstrated. A multi-objective quasi-reflected jellyfish search optimizer
was proposed in [5] to solve the multi-dimensional OPF issue with diverse objectives.
The above methods showed good performance in solving OPF problems; however, the
uncertainty of new energy outputs was not considered in those models. Therefore, a new
OPF model considering the uncertainty of wind and solar power output is needed to reduce
water spillage in hydropower plants.

Many advancements have been made in uncertainty research, and effective methods,
such as stochastic optimization (SO) [6,7] and robust optimization (RO) [8–10], have been
proposed. SO assumes that the considered random variable follows a certain probability
distribution, and the original problem is transformed into a deterministic problem through
formula deduction [11]. SO requires complete knowledge of the probability distribution
information of uncertain parameters, which is usually difficult to obtain in practice. In this
case, assuming that the random variable follows a certain probability distribution appears
to be too optimistic, which may lead to incorrect decisions. In contrast to SO, RO only needs
a sample set of uncertain variables and does not require knowledge of a specific probability
distribution. RO limits all possible scenarios of the considered random variables to an
uncertain set and then transforms the original problem into a deterministic optimization
problem under extreme scenarios. RO can ensure that the constraints are met in the case of
absolute risk aversion, but the optimization results are often highly conservative, because
this approach ignores the distribution information of uncertain variables.

Distributed robust optimization (DRO) [12] combines the advantages of SO and RO
methods. DRO assumes that the real distribution is located within an ambiguity set. DRO
does not require knowledge of the specific probability distribution and can effectively over-
come the conservativeness of RO. At present, the moment-based ambiguity set is the most
widely used option [13–15], i.e., the first- and second-order moments of the probability dis-
tribution are used to describe the uncertain set. However, when considering only moment
information, the distribution of samples cannot be described in detail, and much probability
information is omitted, especially when the number of samples is large. Therefore, this
model cannot converge to the real distribution when the sample size approaches infinity.

To overcome this defect, an ambiguity set based on the Wasserstein metric [16,17] was
developed. The Wasserstein ambiguity set is a data-driven set. With increasing sample
size, the ambiguity set decreases and finally converges to the real distribution. Through
research, scholars have made achievements in this area. A distributed robust chance-
constrained approximate OPF based on the Wasserstein metric was proposed in [18]. This
method employed the distributed robust optimization method of the Wasserstein metric to
solve the OPF problem for the first time and used a decoupled linear power flow model
to approximate the classical power flow equation. A distributed robust approximation
framework of unit commitment based on the Wasserstein metric was developed in [19]. This
method obtained an upper approximation of the original problem through mathematical
deduction and transformed the original model into a mixed integer linear programming
problem. A data-driven distributed robust chance-constrained real-time scheduling model
was established in [20], which transformed the original problem into a linear programming
problem by linearly reconstructing the secondary generation cost and distributed robust
chance constraints. A two-stage distributed robust optimization method was proposed
in [21] to address the uncertainty in wind power output in an integrated electric–gas
thermal energy system. The above methods have been applied to solve problems of power
systems, but research on multi-energy dynamic optimal power flow considering the water
spillage of cascade hydropower stations under distributed robust opportunity constraints
is lacking.

Accordingly, a distributed robust multi-source dynamic optimal power flow model is
proposed in this paper considering abandoned water under the Wasserstein metric. The
main contributions are as follows:
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(1) Cascade hydropower stations coupled in time and space are introduced into the
distributed robust dynamic OPF. The model uses the ambiguity set with the Wasserstein
metric to address the uncertainty of wind and solar output. The water spillage cost of
hydropower plants is also considered to solve the problem of a large amount of water
spillage caused by wind and solar power output uncertainty.

(2) An exact equivalent form of the extreme distribution term in the objective function is
obtained via dual reformulation and mathematical deduction. The equivalent form is an affine
function of the control variable. The form is concise and the scale remains unchanged with
increasing numbers of samples, so this form achieves satisfactory computational performance.

(3) An initial equivalent form is obtained by transforming the distributed robust chance
constraint. Although the initial equivalent form is accurate, the number of constraints and
variables rapidly increases with an increasing number of samples, resulting in a significant
decline in operation efficiency. Therefore, an approximate equivalent model is proposed
to overcome the defects. Finally, the original problem is transformed into a mixed-integer
linear programming problem, which can be solved efficiently with a commercial solver.

2. Dynamic Optimal Power Flow with Distributed Robust Chance Constraints Based
on Wasserstein Metric
2.1. Wasserstein Metric and Ambiguity Set

The ambiguity set based on the Wasserstein metric is constructed as follows:
According to a sampling set of historical data, the empirical distribution can be

obtained as P̂N = 1
N ∑N

n=1 δω̂i , where δω̂i is the Dirac measure of ω̂i and P̂N can be used
as an estimate of the real distribution P. To determine the deviation degree between the
constant P̂N and the real distribution of P, the Wasserstein metric is defined as follows:

Let P1 and P2 be two arbitrary probability distributions. Then, the Wasserstein metric
W : M(Ξ)×M(Ξ)→ R+ is defined as [16]:

W(P1,P2) = inf
Π

{∫
Ξ2
‖ω1 −ω2‖Π(dω1, dω2)

}
(1)

where M(Ξ) denotes the set of all probability distributions whose support set is Ξ, Π
denotes the joint distribution of ω1 and ω2, ‖·‖ denotes any norm on Rm, and ‖ω1 −ω2‖
denotes the cost of moving an object of unit mass from distribution P1 to P2. Because of its
tractability, the L1-norm was adopted, and the ambiguity set is defined as:

PN = {P ∈ M(Ξ) |W (P̂N ,P2 ) < δ (N )} (2)

The above equation defines a Wasserstein ball with empirical distribution P̂N as the center
and δ(N) as the radius, which can be calculated by using the following expression (3) [18]:

δ(N) = C

√
1
N

ln
(

1
1− β

)
(3)

where 1− β is the confidence level and C is a constant, which can be obtained by solving
the following optimization problem:

C = 2 inf
η>0

√
1

2η

{
1 + ln

[
1
N ∑N

k=1 exp
(

η‖ω̂i − µ̂‖2
1

)]}
(4)

where µ̂ denotes the sample mean value. This equation is a unimodal function of scalar η,
which can be solved via the golden section or binary search method.

The ambiguity set based on the Wasserstein metric exhibits the following character-
istics: It is a data-driven ambiguity set; with an increasing number of historical samples,
the set decreases. When the sample size follows N → ∞ , the radius of the Wasserstein ball
converges to 0 and the corresponding ambiguity set converges to the real distribution.



Energies 2022, 15, 3886 4 of 18

2.2. Power Flow Equation and Its Reformulation

The power flow equation and line power constraints are as follows:
Pi = Vi ∑j∈i Vj

(
Gijcosθij + Bsinθij

)
Qi = Vi ∑j∈i Vj

(
Gijsinθij − Bcosθij

)
Pl

i,j = −V2
i gij + ViVj

(
gijcosθij + bijsinθij

) (5)

To deal with fluctuations in wind and solar output, automatic generation control
(AGC) is the most widely used scheme in real-world applications. This scheme ensures a
real-time power balance of the system by distributing unbalanced wind and photovoltaic
power and assigning the unbalanced power to each AGC unit in the form of an affine
function. According to the scheme, the actual generating power of each generator unit is:

P̃g
i,t = −α

g
i,te

Tωt + Pg
i,t

P̃h
i,t = −αh

i,te
Tωt + Ph

i,t
P̃w

i,t = ωi,t + Pw
i,t

Q̃i,t = Qi,t + σωi,t

(6)

where ωt denotes the vector of the combined forecasting errors of wind and solar power,
and α

g
i,t and αh

i,t are the participation factors of thermal power units and hydropower units,
respectively, satisfying ∑i∈G α

g
i,t + ∑i∈H αh

i,t = 1, vector e = [1, 1, · · · , 1], and parameter
σ = sin ϕ/ cos ϕ, where cos ϕ is the power factor. As the power flow equation (Equation (5))
is nonlinear and cannot be addressed under distributed robust chance constraints, a de-
coupled linear power flow model [22] was adopted in this paper. According to this model,
expressions of the true values of the voltage phase angle, node voltage, and line power can
be obtained, as expressed in Equation (7) (the detailed process can be found in [18,22]):

θ̃it = −
(
eTωt

)
Aθ

i:

(
α

g
t + αh

t

)
+ Bθ

i:ωt + θi,t

Ṽit = −
(
eTωt

)
Av

i:

(
α

g
t + αh

t

)
+ Bv

i:ωt + Vi,t

P̃l
k,t = −

(
eTωt

)
Al

i:

(
α

g
t + αh

t

)
+ Bl

i:ωt + Pl
k,t

(7)

where Aθ , Bθ , Av, Bv, Al , and Bl denote the constant coefficient matrices determined by
the network parameters, Aθ

i: denotes the vector composed of the elements in the ith row of
matrix Aθ , and the other parameters are similar.

2.3. Constraints on Safe Operation and Cascade Hydropower Plants

The safe operation constraint of the power system adopts the following form of
distributed robust chance constraints (DRCC):

inf
P∈PN

P
{

Vi ≤ Ṽi,t ≤ Vi

}
≥ 1− ρv (8)

inf
P∈PN

P
{

Rg
i ≤ −α

g
i,te

Tωt ≤ Rg
i

}
≥ 1− ρr (9)

inf
P∈PN

P
{

Rh
i ≤ −αh

i,te
Tωt ≤ Rh

i

}
≥ 1− ρr (10)

inf
P∈PN

P
{

Pg
i ≤ Pg

i,t − α
g
i,te

Tωt ≤ Pg
i

}
≥ 1− ρp (11)

inf
P∈PN

P
{

Ph
i ≤ Ph

i,t − αh
i,te

Tωt ≤ Ph
i

}
≥ 1− ρp (12)

inf
P∈PN

P
{

Pl
i ≤ P̃l

i,t ≤ Pl
i

}
≥ 1− ρl (13)



Energies 2022, 15, 3886 5 of 18

The above expressions indicate that the probability that the variable matches at least
1− ρ satisfies the corresponding constraints, of which Equation (8) expresses the upper
and lower bound constraints of all node voltages, Equations (9) and (10) are the reserve
capacity constraints of the generator set, and Equations (11)–(13) are the upper and lower
bound constraints of the generator set output and line power.

The constraints of cascade hydropower plants are expressed as follows:

rh
i,t = rh

i−1,t − (qi,t − si,t + ji,t)∆t + q̃Ini∆t

rh
i0 = rini

i , rh
i,T = r f in

i , rh
i ≤ rh

i,t ≤ rh
i,t

qi,t = ∑M
m=1 qi,m,t + q

i,m
qi,mui,m,t ≤ qi,m,t ≤ qi,m
qi,mui,m,t ≤ qi,m,t ≤ qi,m,tui,m−1,t

Pi,t = ∑M
m=1 ki,mqi,m,t + Ph

i

(14)

where rh
i,t, qi,t, si,t, q̃Ini, and ji,t denote the storage capacity, power generation flow, water

spillage flow, inflow, and natural inflow of reservoir i during period t, respectively, and
rini

i and r f in
i denote the initial and termination storage capacity, respectively. To improve

the solution efficiency, the reservoir flow and generation power constraints are approxi-
mated with piecewise linear functions, where qi,m,t denotes the flow of the mth segment of
hydropower unit i during period t, ki,m and qi,m denote the generation power coefficient
and upper limit of flow of the mth segment, respectively, qi,t and Ph

i,t denote the generation
flow and generation power of hydropower unit i during period t, respectively, and ui,m,t
is a 0–1 variable. When the flow of hydropower station i during period t exceeds the
second segment, the variable is 1; otherwise, it is 0. In addition, there are upper and lower
bound constraints and reserve capacity constraints of hydropower stations, which can
be expressed in the form of distributed robust opportunity constraints among the safe
operation constraints of power systems (Equations (10) and (12)).

2.4. Objective Function and Distributed Robust Optimization Framework

The objective function of this model is to minimize the sum of the actual power
generation cost, reserve cost, water spillage cost, and regulation cost of each AGC unit
under extreme distribution:

min [∑i∈G ∑t∈T (FGi (Pg
i,t ) + FRi,t ) + FS ] + sup

P∈PN

EP (∑i∈G ∑t∈T α
g
i,td

g
i |e

Tωt | ) (15)

of which:
FRit = cg

i Rg
i,t + cg

i Rg
i + ch

i Rh
i,t + ch

i Rh
i (16)

FS = cs ∑
i∈H

∑
t∈T

si,t (17)

where FGi (Pg
i,t ), FRi,t, and FS denote the power generation cost, reserve cost, and water

spillage cost, respectively. Parameters cg
i , ch

i , and cs denote the cost coefficient of thermal
power, hydropower reserve capacity, and water spillage cost, respectively. Furthermore,
dg

i is the adjustment cost coefficient of the thermal power unit in response to wind and
solar forecasting errors. Power generation cost FGi (Pg

i,t ) is a nondecreasing quadratic
function, which can be approximated with a piecewise linear function to improve calcu-
lation efficiency, i.e., FGi (Pg

i,t ) can be replaced by decision variables with the following
constraints [23]:

Φi,t ≥ kn
i Pg

i,t + bn
i (18)

where kn
i and bn

i , respectively, denote the slope and intercept of the nth segment in the
piecewise linear approximation of thermal power unit i, which can be determined via the
piecewise interpolation method [24]. This objective function can improve not only the
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economy but also the feasibility of decisions, as the decisions under this objective function
need less adjustment in practice.

The problems involved in this model can be expressed in the following distributed
robust optimization framework:

min
x

cTx + sup
P∈PN

EP{F(x, ω)} (19a)

s.t. hi(x) = 0, (19b)

gj(x) ≥ 0, (19c)

sup
P∈PN

P
{

aT
k (x)ω + bk(x) ≤ 0

}
≥ 1− ρ (19d)

Optimization problem (19) cannot be solved directly, because the objective function
and constraints contain random variables. It must be reformulated and transformed into a
deterministic problem with only control variables.

3. Model Reformulation
3.1. Reformulation of The Objective Function

The objective function contains the worst-case expectation. Note that eTωt is a
scalar and appears as a whole in the objective function. Therefore, ξ = eTωt is prefer-
able, and its supporting set is

[
ξ, ξ
]
. Let

(
ξ̂1, ξ̂2, · · · , ξ̂N

)
correspond to the sample data

(ω̂1, ω̂2, · · · , ωN); then, the worst-case expectation is transformed as follows:

sup
P∈PN

EP
{

∑i∈G ∑t∈T α
g
i,td

g
i |ξ|

}
(20)

According to [16], Equation (20) can be transformed into the following equation by
using a strong duality:

inf
κ≥0

κδ + 1
N ∑N

i=1 sup
ξ≤ξ≤ξ

[
∑i∈G ∑t∈T α

g
i,td

g
i |ξ| − κ‖ξ − ξ̂i‖

] (21)

Because problem (21) is an affine function with respect to variable ξ in the interval[
ξ, ξ̂i

]
and

[
ξ̂i, ξ

]
, the optimal solution must be obtained at the vertices of the feasible region,

i.e., ξ, ξ̂i, or ξ. Therefore, the worst-case expectation is equivalent to the following problem:

sup
P∈PN

EP
{

∑i∈G ∑t∈T α
g
i,td

g
i |ξ|

}
=



inf
κ≥0

κδ + 1
N ΣN

i=1ηi

s.t. ηi ≥ ∑i∈G ∑t∈T α
g
i,td

g
i ξ − κ

(
ξ − ξ̂i

)
, ∀i ≤ N

ηi ≥ ∑i∈G ∑
t∈T

α
g
i,td

g
i ξ + κ

(
ξ − ξ̂i

)
, ∀i ≤ N

ηi ≥ ∑i∈G ∑t∈T α
g
i,td

g
i ξ̂i, ∀i ≤ N

(22)

Lemma 1. The optimal value of problem (22) is equal to Equation (23):

sup
P∈PN

EP
{

∑i∈G ∑t∈T α
g
i,td

g
i |ξ|

}
= b ∑i∈G ∑t∈T α

g
i,td

g
i (23)

where b = min
{

max
{

ξ,−ξ
}

, δ + ∑N
i=1
∣∣ξ̂k
∣∣} and δ is the Wasserstein radius. The proof is given

in the Appendix A.



Energies 2022, 15, 3886 7 of 18

Compared with the complex form of the worst-case expectation (Equation (22)),
Equation (23) is concise and is only decided by the control variable α in affine form.
Therefore, the number of variables and constraints will not increase with an increased
number of samples.

3.2. Reformulation of The Distributed Robust Chance

Equations (8)–(13) express the joint distributed robust chance constraint (DRCC).
According to [20,25], if the function in the distributed robust chance constraint is affine
with respect to both control variable x and random variable ω, i.e., the function exhibits
the form of Equation (19d), where aT

k (x) is an affine function of x; then, the DRCC can be
transformed into a set as follows:

Z =

x

∣∣∣∣∣∣∣∣
δλk − ρβk +

1
N ∑N

i=1 zk
i ≤ 0

aT
k (x)ω̂i + bk(x) + βk − zk

i ≤ 0
‖ak(x)‖∗ ≤ λk
λk, βk, zk

i ≥ 0

 (24)

Model (24) is an approximate equivalent form of the DRCC with high accuracy, but
the number of inequalities and variables in the model can rapidly increase with the number
of samples, resulting in a significant decrease in the calculation efficiency of this method
when the sample size is large. To overcome this defect, the second equation in Model (24)
is substituted into the first one, and the first equation is retained to obtain the approximate
set Z1 of set Z. As the L1-norm is used when constructing the ambiguity set, the dual
norm ‖·‖∗ takes the infinite norm L∞, and the final approximate set Z1 is expressed in (25).
Compared with set Z, the number of inequalities and variables contained in set Z1 does
not increase with the sample size; therefore, it has better computational performance when
dealing with a large sample size.

Z1 =

x

∣∣∣∣∣∣∣∣
δλk − ρβk +

1
N ∑N

i=1 zk
i ≤ 0

aT
k (x)

1
N ∑N

i=1 ω̂i + bk(x) ≤ (ρ− 1)βk − δλk
−λk ≤ ak(x) ≤ λk
λk, βk, zk

i ≥ 0

 (25)

As such, the difficult part of the original problem is transformed into an easy-to-
manage form. The original problem is transformed into a mixed-integer linear program-
ming problem, which can be efficiently solved with a commercial solver.

4. Calculation Results and Discussion

This section presents case studies on modified IEEE-118 and 300 node systems. The
118-node system was used to verify the effectiveness of the proposed DR-DOPF method.
The test of the 300-bus system focused on the characteristics of the DR-DOPF method by
comparing it to other methods to address the uncertainty. The number of periods of all
models was set to 24, and the parameters of wind and solar output data were retrieved
from https://www.tennet.eu/, accessed on 24 July 2019. The parameters of hydropower
stations came from three stations on the Yellow River in China: the Bapanxia, Yanguoxia,
and Daxia Hydropower Stations. All the programs were run on a PC with an Intel Core i5
CPU and 8 GB RAM by calling CPLEX with MATLAB 2021a.

4.1. IEEE-118 Node System
4.1.1. Effectiveness Verification

The modified IEEE118 node system includes 16 thermal power plants, three cascade
hydropower plants, three wind power plants with a capacity of 200 MW, and two solar
power plants with a capacity of 150 MW. The specific parameters of wind and solar
power plants are shown in Table 1. To verify the effectiveness of DR-DOPF in reducing
the comprehensive power generation cost and water spillage, the scenario displayed in

https://www.tennet.eu/
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Figure 1 is selected from the sample. Under this scenario, the real output of the sum of
wind and solar power considerably exceeds the forecasted output in periods 5–9 and 15–19.

Table 1. Parameters of wind and solar power.

Number of Plants Connection Nodes Capacity Power Factor

Wind farm 3 28, 59, 83 200 MW 0.95
Solar

power plant 3 36, 74, 97 150 MW 0.95
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Figure 1. Output of wind and solar power.

For convenience of expression, the traditional dynamic optimal power flow without
considering water spillage is abbreviated as TN-DOPF. The TN-DOPF model does not
consider the uncertainty of wind and solar output, and the objective function does not in-
clude the cost of water spillage. Regarding the DR-DOPF model, the confidence level of the
Wasserstein ambiguity set is set to 0.95, and the risk factor is set to ρv = ρr = ρp = ρl = 0.05.

The result calculated is the day-ahead generation scheduling. To obtain the operation
curve and water spillage of hydropower plants in real-time dispatching, the two models
are treated as follows.

Regarding the DR-DOPF model, the solution of the real-time output value is given by
Equation (6). Specifically, at the real-time dispatching stage, the real output of wind and
solar power and the forecasting errors are already known, and the participation factors α

g
i,t,

αh
i,t and the unit planned output Pg

i,t, Ph
i,t are calculated. Hence, the real output of each plant

can be directly determined according to Equation (6). Actually, this method dynamically
distributes the unbalanced power to each unit according to the participation factor. The
flowchart of the DR-DOPF model is shown in Figure 2.

Regarding TN-DOPF, because this model does not involve a participation factor, the
actual output cannot be directly determined, but this issue can be addressed according to the
actual dispatching situation. To embody the principle by which the dispatcher prioritizes
hydropower adjustment in practical operation, it is assumed that 90% of the wind and solar
power forecast error is balanced by the hydropower plants and the remaining 10% by the
thermal plants, and the power imbalance is assumed to be evenly distributed between the
three hydropower plants.
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Figure 2. Flowchart of DR-DOPF model.

Figure 3 shows the optimal output of the day-ahead scheduling and the real-time
output of the power plant under the DR-DOPF model when the sample size is 100. The real-
time output of hydropower and thermal power is lower than that based on the generation
plan, because the real output of wind and solar power exceeds the predicted value and the
output curve of thermal power is relatively smooth in the previous generation plan but
fluctuates in the real-time output curve, especially during periods 5–10 and 15–19. During
these two periods, the actual output of wind and solar power is significantly higher than
expected, which indicates that the thermal power unit under the DR-DOPF model greatly
participates in system power regulation. Although this suggests that the thermal units
will produce higher regulation cost, compared to the regulation mode mainly relying on
hydropower, the joint optimal regulation mode of hydropower and thermal power can
produce higher economic benefits. This point is discussed in detail later.
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Figure 3. Output of various power plants. (a) Day-ahead scheduling; (b) output of real-time dispatch.

Figure 4 displays the day-ahead and real-time output of hydropower plant 1 under
the DR-DOPF and TN-DOPF models; the other two hydropower plants are similar and are
not described here. Figure 4a,c reveal that neither model produces water spillage in the
day-ahead scheduling. However, at the real-time stage, both models produce water spillage
(Figure 4b,d), which is considerably smaller for DR-DOPF than TN-DOPF. The reason is
that when dealing with forecasting errors of wind and solar power output, the hydropower
plants under these two models must bear a certain amount of the power imbalance. Because
the real value of the wind power output during periods 5–9 and 15–19 greatly exceeds
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the predicted value, under real-time dispatching, to maintain the system power balance,
hydropower plant 1 must greatly reduce the power generation based on the previous
power generation plan, resulting in water spillage. In addition, Figure 5 shows that the
adjusting power of hydropower plant 1 is lower under the DR-DOPF model than under
the TN-DOPF model, especially during periods 5–9 and 15–19; consequently, the water
spillage amount under the DR-DOPF model is much smaller.
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Figure 4. Operation diagram of hydropower plant 1. (a) Day-ahead scheduling of TN-DOPF; (b) real-
time output of TN-DOPF; (c) day-ahead scheduling of DR-DOPF; (d) real-time output of DR-DOPF.
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Figure 5. Adjusting power of hydropower plant 1 under two models.

Figure 6 displays the total unbalanced power and adjusting power of thermal power
and hydropower under the two models. It can be seen that the adjusting thermal power
under DR-DOPF is larger than that of TN-DOPF because it is determined by the partic-
ipation factors calculated by the day-ahead scheduling. The day-ahead plan considers
the uncertainty of wind and solar output, and the objective function contains the water
spillage cost. To minimize the water spillage cost, this inevitably requires that the decisions
made according to the participation factors can optimally assign the unbalanced power
and fully utilize the regulation capacity of the thermal power units. Hence, the regulation
burden of the hydropower units can be reduced, and consequently, the water spillage can
be decreased. The NDOPF model is modeled on the actual dispatching situation, in which
dispatchers tend to prioritize the hydropower plant-adjusting power, and thermal power
units participate in regulation to a lesser degree. In this case, power regulation mainly
depends on hydropower. Due to the high regulation burden of the hydropower units and
the unreasonable distribution of regulation, when the real value of wind and solar power
output greatly exceeds the expectation, water spillage easily occurs.
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Figure 6. Total adjusting power of thermal power and hydropower with (a) TN-DOPF model and
(b) DR-DOPF model.

Under the TN-DOPF model, the proportion of thermal power participating in regu-
lation is low, which can reduce the regulation cost of thermal power units; however, this
phenomenon results in large water spillage. Although the water spillage is not reflected in
the cost function of TN-DOPF, it cannot be ignored. To fairly compare the comprehensive
cost of TN-DOPF and DR-DOPF, the water spillage of TN-DOPF is converted into the water
spillage cost according to Equation (17) and added to its objective function value to obtain
the comprehensive cost.

Table 2 presents the comprehensive generation cost and total water spillage according
to the two methods. Compared with the TN-DOPF model, the total water spillage of
DR-DOPF decreases considerably, with a decrease ratio of more than 86%, and the compre-
hensive cost decreases by more than 12%, which indicates that this model can effectively
reduce the total water spillage and comprehensive generation cost. This analysis confirms
the previous conclusion that the joint optimal regulation of hydropower and thermal power
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can produce higher comprehensive economic benefits compared to regulation mainly
relying on hydropower.

Table 2. Comparison of TN-DOPF and DR-DOPF results.

Model
Comprehensive Cost Total Water Spillage

Value (×105 USD) Reduction Ratio Value (×105 m3) Reduction Ratio

NDR-DOPF 2.830 – 69.746 –
DR-DOPF 2.473 12.6% 9.275 86.7%

Table 3 summarizes the test results of DR-DOPF for various sample sizes. The Wasser-
stein radius exhibits a negative correlation with sample size, because when more sample
data are used, more sufficient information can be obtained about the real probability dis-
tribution. Therefore, impossible distributions can be excluded from the Wasserstein ball,
resulting in a narrower radius range, less conservativeness of the ambiguity set, and a
lower comprehensive cost and water spillage. It can be seen that when the sample size
increases from 20 to 5000, the comprehensive power generation cost of the system reduces
from 2.613 × 105 USD to 2.409 × 105 USD, a reduction of 7.8%; and total water spillage
reduces from 9.458 × 105 m3 to 9.201 × 105 m3, a reduction of 2.7%. This result verifies that
with the increase in the sample size, the conservatism of the model lessens and the economy
of the model improves. In addition, it should be noted that the number of constraints
and variables of DR-DOPF do not increase with the sample size, and the operation time
basically remains stable from 28–30 s, which indicates that the DR-DOPF model achieves
good computational performance.

Table 3. Test results of DR-DOPF under various sample numbers.

Sample Size δ(N) Number of
Constraints

Number of
Variables CPU Time (s) Comprehensive

Cost (×105 USD)
Total Water

Spillage (×105 m3)

20 9.731 7341 34,806 29.2 2.613 9.458
50 3.406 7341 34,806 28.6 2.518 9.326

200 1.557 7341 34,806 28.3 2.448 9.238
1000 0.348 7341 34,806 29.7 2.418 9.217
2000 0.102 7341 34,806 29.1 2.409 9.201

4.1.2. Comparisons with RO and SO

In this part, the characteristics of the DR-DOPF method and RO and SO are evaluated.
The RO model requires that safety constraints (8–13) must be satisfied in any case. The SO
method assumes that samples obey a normal distribution [26,27]. In this case, constraints
(8–13) can be transformed into second-order cone constraints [28]. The calculation results
obtained using these methods are displayed in Figure 7.

Figure 7 shows that the RO method has the largest water spillage and comprehen-
sive cost, and the SO method has the smallest. Regardless of the sample size, the water
spillage and comprehensive cost of DR-DOPF always vary between RO and SO because
RO completely ignores the distribution information of samples and is too conservative,
and SP assumes that the sample follows a certain distribution, which is too aggressive,
while DR-DOPF completely depends on the obtained samples. When limited samples
are used, the corresponding Wasserstein radius is large. The extreme distribution in the
ambiguity set deviates considerably from the real distribution, so the calculation result is
relatively conservative, and is closer to RO at this stage. When the sample size increases,
the ambiguity set shrinks, and the extreme distribution is closer to the real distribution.
Therefore, the conservatism of the calculation result decreases, and the result is closer to SP.
In summary, the order of conservatism from high to low is RO > DR-DOPF (20) > DR-DOPF
(50) > DR-DOPF (200) > DR-DOPF (1000) > DR-DOPF (2000) > SO.
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Figure 7. Test results under DR-DOPF, RO, and SO methods.

4.2. IEEE-300 Node System

The modified IEEE-300 system includes 30 thermal power plants, among which the
parameters of cascade hydropower stations, wind farms, and photovoltaic power plants
are the same as those of the 118-node system, and the scenario shown in Figure 1 is still
selected as the scenario of wind and solar output. The wind farms are connected on bus
77, 186, and 235 respectively, and the solar power plants are connected on bus 49, 123, and
284, respectively. DR-DOPF, RO, and SO results are obtained on the same sample set. In
addition, the Monte Carlo simulation method is applied, involving 104 samples, to evaluate
the performance beyond the sample, i.e., the minimum reliability of all security constraints.

4.2.1. Effectiveness Verification

Similar to the method of node 118, in this part, we first compare the test results of
DR-DOPF and TN-DOPF models to verify the effectiveness of the proposed DR-DOPF
model in reducing the comprehensive power generation cost and water spillage. The
results are shown in Table 4.

Table 4. Comparison of TN-DOPF and DR-DOPF results.

Model
Comprehensive Cost (USD) Total Water Spillage (m3)

Value (×105 USD) Reduction Ratio Value (×105 m3) Reduction Ratio

TN-DOPF 6.035 – 53.154 –
DR-DOPF 5.341 11.5% 6.219 88.3%

Table 4 presents the test results of TN-DOPF and DR-DOPF when the sample size is
100. Compared with TN-DOPF, the total water spillage of DR-DOPF decreases considerably,
with a decrease ratio of more than 88%, and the comprehensive cost decreases by approxi-
mately 12%. The results of the IEEE-300 node system indicate that the proposed DR-DOPF
model can reduce the comprehensive generation cost and water spillage effectively. This
conclusion is similar to that for the 118-node system.

4.2.2. Comparisons with RO and SP

Table 5 summarizes the comparison test results of the DR-DOPF model with RO and
SO methods using various sample sizes, where the confidence level of the Wasserstein
ambiguity set is set to 0.95, the risk factor is set to ρv = ρr = ρp = ρl = 0.05, and the
processing method of RO and SO is the same as that of the IEEE118 node.
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Table 5. Comparison of the DR-DOPF, RO, and SP results.

Model Sample Size Comprehensive
Cost (×106 USD)

Total Water
Spillage (×105 m3) CPU Time (s) Reliability (%)

DR-DOPF

20 5.468 6.338 47.2 99.98
50 5.379 6.247 48.6 99.56

200 5.323 6.195 47.7 99.18
1000 5.291 6.162 46.2 98.86
2000 5.276 6.147 48.5 98.52

RO 2000 5.540 6.416 18.3 100

SO 2000 5.198 6.039 27.9 93.14

As can be seen from Table 5, the results of the IEEE-300 node system are similar to
those of the IEEE-118 system. Specifically, RO has the highest comprehensive generation
cost and total water spillage, SO has the lowest, and the value of DR-DOPF is always
between RO and SO and decreases with the sample size. In terms of the calculation
time, DR-DOPF requires the longest time, followed by SO, and RO requires the shortest
time. When the sample size increases, the calculation time of DR-DOPF basically remains
unchanged because the number of constraints and variables do not change with the number
of samples; therefore, the computational burden basically remains constant.

Table 5 also compares the reliability levels of the safety constraints of the three methods.
RO exhibits the highest reliability of 100%, but obtaining high reliability has drawbacks;
notably, the comprehensive cost and total water spillage of RO are the highest in all cases.
In other words, the RO model is the most conservative. SO attains the lowest reliability
and does not satisfy 95% of the minimum reliability requirements of the safety constraints.
This occurs because SO assumes that the sample follows a certain distribution (normal
distribution). However, the real distribution of the prediction error may not follow a normal
distribution [29,30], which results in an over-aggressive strategy; therefore, it does not
satisfy the minimum reliability requirements. The reliability of DR-DOPF lies between RO
and SO, which can satisfy the minimum requirements of reliability. With an increasing
number of samples, the reliability of the DR-DOPF model gradually decreases. This
occurs because with increased samples, the Wasserstein ambiguity set decreases, which
reduces the conservativeness of the DR-DOPF model and the comprehensive cost and
reliability. Notably, on the premise of meeting the minimum reliability requirements of the
safety constraints, with increasing sample size, the DR-DOPF model sacrifices reliability
in exchange for higher economic benefits. It is easy to calculate that when the sample size
is 2000, the comprehensive cost of DR-DOPF is only 1.5% higher and the water spillage
is only 1.8% more compared to SO, which shows that when the sample is large enough,
the DR-DOPF model can ensure reliability based on small economic loss. Compared with
the over-conservatism of RO and the over-aggressiveness of SO, DR-DOPF can balance
economy and conservatism well. The above analysis once again confirms the previous
conclusion on the conservativeness ranking; i.e., in the IEEE-300 system, conservativeness
is still ranked from high to low as: RO > DR-DOPF (20) > DR-DOPF (50) > DR-DOPF (200)
> DR-DOPF (1000) > DR-DOPF (2000) > SO.

In addition, we also study the influence of the confidence level of the Wasserstein
ambiguity set on the results. The sampling number is N = 1000, and the results of DR-
DOPF at different confidence levels and of SO and RO are obtained. The results are
displayed in Figure 8.
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Figure 8 shows that the comprehensive cost increases with the confidence level, be-
cause when the confidence level increases, to ensure that the ambiguity set contains the
real distribution with a higher probability, the Wasserstein radius must become larger.
Therefore, the extreme distribution contained in the ambiguity set deviates from the real
distribution, and the corresponding result becomes more conservative; consequently, the
comprehensive generation cost increases. Hence, controlling the confidence level can limit
the conservativeness of the results and ensure a balance between conservativeness and
economy in the model.

5. Conclusions

In this study, a robust multi-energy dynamic distribution optimal power flow model
is proposed. The model uses the ambiguity set with the Wasserstein metric to address the
uncertainty of wind and solar output, and also considers water spillage. The Wasserstein
ambiguity set is data-driven and does not require an assumption of the distribution in-
formation in advance. Regarding the worst-case expectation in the objective function, its
exact equivalent form is obtained through reformulation. The equivalent form is highly
concise, and its scale does not change with an increasing number of samples; therefore,
it exhibits excellent computational performance. Further, the distributed robust chance
constraints are transformed into tractable reformulations. By the above means, a tractable
DR-DOPF model is proposed. By minimizing the comprehensive power generation cost,
the DR-DOPF model provides the factor coefficients of each power plant participating in
the regulation process during real-time dispatching. The test results of IEEE-300 and other
systems indicate that, if the power system operates according to the day-ahead scheduling
and regulates based on participation factors given by the DR-DOPF model, the comprehen-
sive operation cost and water spillage of hydropower stations can be effectively reduced.
In addition, with an increased sample size, the DR-DOPF model can reduce conservatism
and improve economy based on satisfying the reliability of safety constraints.
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Appendix A

Proof of Lemma 1. The optimization variables in problem (22) are κ and η, and the control
variable α is equivalent to a parameter here. Let ψ = ∑i∈G ∑t∈T αi,tdi, and problem (22) can
be rewritten as:

inf
κ≥0

κδ +
1
N

N

∑
i=1

ηi (A1a)

s.t. ηi ≥ ψξ − κ
(
ξ − ξ̂i

)
, ∀i ≤ N (A1b)

ηi ≥ −ψξ + κ
(

ξ − ξ̂i

)
, ∀i ≤ N (A1c)

ηi ≥ ψ
∣∣ξ̂i
∣∣, ∀i ≤ N (A1d)

Because κ is a scalar, the discussion of κ is simple. Specifically, the optimal solution of
problem (A1) can be obtained either in κ > ψ or 0 ≤ κ ≤ ψ. First, the optimal solution of
the problem must not be obtained at κ > ψ. The proof is as follows:

For κ ≥ ψ, the right side of Equation (A1b) is equal to:

ψξ − κ
(
ξ − ξ̂i

)
= (ψ− κ)

(
ξ − ξ̂i

)
+ ψξ̂i ≤ ψξ̂i ≤ ψ

∣∣ξ̂i
∣∣ (A2)

The right side of Equation (A1c) minus ψ
∣∣ξ̂i
∣∣ equals the following:

− ψξ + κ (ξ − ξ̂i )− ψ
∣∣ξ̂i
∣∣ = { (κ − ψ)ξ − (κ + ψ)ξ̂i < 0, ξ̂i ≥ 0

(κ − ψ) (ξ − ξ̂i ) < 0, ξ̂i < 0
(A3)

Therefore, the right side of Equation (A1c) is also less than ψ
∣∣ξ̂i
∣∣.

Hence, constraints (A1b–d) can be combined, which is equivalent to constraint (A1d).
To minimize the objective function, ηi must take its minimum value ψ

∣∣ξ̂i
∣∣. After further

analysis, for κ ≥ ψ, the first term κδ in the objective function increases with κ, while the
second term 1

N ∑N
i=1 ηi =

1
N ∑N

i=1 ψ
∣∣ξ̂i
∣∣ and remains unchanged. Hence, the total objective

function value increases with κ. Thus, when κ > ψ, the objective function is greater than
when κ = ψ. In other words, the original problem cannot yield the optimal solution for
κ > ψ. Accordingly, the optimal solution must be obtained on the complement of κ > ψ,
namely, 0 ≤ κ ≤ ψ.

Because problem (A1) is a linear programming problem about κ and η, the optimal
solution must be at the vertices, i.e., κ = 0 or κ = ψ. This is analyzed in the two cases below.

For κ = 0, problem (A1) is simplified as:

inf
η

{
1
N ∑N

i=1 ηi

∣∣∣ηi ≥ ψξ, ηi ≥ −ψξ, ηi ≥ ψ
∣∣ξ̂i
∣∣} = max

{
ψξ,−ψξ

}
(A4)

For κ = ψ, problem (A1) is simplified as:

inf
η

{
ψδ + 1

N ∑N
i=1 ηi

∣∣ηi ≥ ψξ̂i, ηi ≥ −ψξ̂i, ηi ≥ ψ
∣∣ξ̂i
∣∣} = ψ

(
δ + 1

N ∑N
i=1
∣∣ξ̂i
∣∣) (A5)

Therefore, the optimal value of the original problem is the smaller value of the above
two cases, namely:
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min
{

max
{

ψξ,−ψξ
}

, ψ
(

δ + 1
N ∑N

i=1
∣∣ξ̂k
∣∣)} = min

{
max

{
ξ,−ξ

}
, δ + 1

N ∑N
i=1
∣∣ξ̂k
∣∣}·ψ = bψ (A6)

As such, the complete proof is provided. �

Appendix B

Table A1. Parameters of hydropower stations.

Hydropower
Station

Connection
Node rini

i (×104 m3) rfin
i (×104 m3) rh

i (×104 m3) rh
i (×104 m3) Ph

i (MW) Ph
i (MW)

H1 78 4500 4500 4000 4900 45.90 232.56
H2 34 21,600 21,600 21,000 22,000 90.44 445.74
H3 92 8600 8600 5500 9000 58.80 318.30

H1: Bapanxia Hydropower Station; H2: Yanguoxia Hydropower Station; H3: Daxia Hydropower Station.

Table A2. Parameters of hydropower stations.

Hydropower
Station ki,1(MW·s/m3) ki,2 (MW·s/m3) ki,3 (MW·s/m3) ki,4 (MW·s/m3) qi,m (m3/s) qi,m (m3/s) qi(m3/s)

H2 0.145 0.161 0.145 0.161 300 305 1520
H1 0.315 0.331 0.315 0.331 280 275 1380
H3 0.188 0.204 0.188 0.204 300 331 1624

Table A3. Parameters of wind and solar output data.

Time Pw (MW) Ps (MW) P̃w (MW) P̃
s

(MW) Time Pw (MW) Ps (MW) P̃
w

(MW) P̃
s

(MW)

1 310.2 0 269.3 0 13 176.1 129.6 202.1 191.8
2 271.3 0 231.4 0 14 145.4 123.8 135.5 145.1
3 263.3 0 263.7 0 15 154 101.5 264.8 179.6
4 214.8 0 258.4 0 16 141.1 85.7 303.9 171.4
5 190.7 0 357.8 0 17 158.6 58.8 370 105
6 171.4 0 403 0 18 168.7 24.3 345.1 45.2
7 192.7 5.1 451.7 10.2 19 229.8 4.9 344.7 9.8
8 203.6 14.8 413.2 5 20 314.9 0 318.4 0
9 190.6 34.4 362.1 54.8 21 315.2 0 285.6 0

10 165 75.3 178.9 66.3 22 370.8 0 335.3 0
11 176.1 90.3 130.4 102.7 23 390 0 400.7 0
12 179.8 120.6 166 144.5 24 406.1 0 374.6 0

Pw: Forecasting wind power; Ps: Forecasting solar power; P̃w: Real wind power; P̃s: Real solar power.
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