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Abstract: In the present work, uncertainty quantification of a venturi tube simulation with the cavi-
tating flow is conducted based on Bayesian inference and point-collocation nonintrusive polynomial
chaos (PC-NIPC). A Zwart–Gerber–Belamri (ZGB) cavitation model and RNG k-ε turbulence model
are adopted to simulate the cavitating flow in the venturi tube using ANSYS Fluent, and the simula-
tion results, with void fractions and velocity profiles, are validated with experimental data. A grid
convergence index (GCI) based on the SLS-GCI method is investigated for the cavitation area, and the
uncertainty error (UG) is estimated as 1.12 × 10−5. First, for uncertainty quantification of the venturi
flow simulation, the ZGB cavitation model coefficients are calibrated with an experimental void
fraction as observation data, and posterior distributions of the four model coefficients are obtained
using MCMC. Second, based on the calibrated model coefficients, the forward problem with two
random inputs, an inlet velocity, and wall roughness, is conducted using PC-NIPC for the surrogate
model. The quantities of interest are set to the cavitation area and the profile of the velocity and void
fraction. It is confirmed that the wall roughness with a Sobol index of 0.72 has a more significant
effect on the uncertainty of the cavitating flow simulation than the inlet velocity of 0.52.

Keywords: uncertainty quantification (UQ); Bayesian inference; point-collocation nonintrusive
polynomial chaos (PC-NIPC); cavitation; Zwart–Gerber–Belamri (ZGB) cavitation model; in-service
testing

1. Introduction

Recently, uncertainty quantification (UQ) in computational fluid dynamics (CFD) has
become an important issue in the improvement of computational performance and the
reduction in computational cost in many engineering problems, such as hypersonic flow
simulation for aero vehicles [1], heat and fluid flow simulations in nuclear reactors [2], and
blood flow simulation in the vessels [3], etc.

Uncertainty quantification methodology can be divided into two types, depending
on the presence or absence of a feedback process of statistical random inputs—the for-
ward problem and the inverse problem [4]. The forward problem sets up the probability
distribution of random inputs, calculates the amount of propagation of the inputs to the
output, and calculates the quantities of interest (QoI) based on the selected UQ method.
However, in the reverse problem, Bayesian inference is applied to estimate the statistics of
random inputs, called a posterior distribution, using observation data with experimental
or synthetic data.

In the case of the forward problem, Shaefer et al. [5] adopted the point-collocation
nonintrusive polynomial chaos (PC-NIPC) method for aerodynamic flow simulation with
turbulence models. They [5] investigated the effect of sampling a number of random
inputs depending on the polynomial order and the probability distribution of aerodynamic
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performance according to the statistics of turbulence model coefficients. The model co-
efficients of the Spalart–Allmaras (SA) turbulence model and k-ω family models were
assumed to be uniform distributions with reasonable intervals, and the geometry of the
RAE 2822 airfoil and an axisymmetric bump were considered. The coefficients that con-
tribute most to uncertainty in the results were presented according to each model and the
adopted geometry.

Cheung et al. [4] proposed the methodology and process of Bayesian uncertainty quan-
tification for the calibration and prediction of the model coefficients and combined them
with a CFD simulation. They [4] investigated the effect of stochastic model classes with
no uncertainty, independent Gaussian uncertainty, and correlated Gaussian uncertainty.
The coefficients of the SA turbulence model were calibrated from the simulation of a flat
plate boundary layer and its experimental data. They used a deterministic boundary layer
solver directly instead of the surrogate model for the adaptive multilevel algorithm based
on Markov chains. Their results emphasized the importance of model inadequacy and
observation error in the uncertainty model, and the model class with correlated Gaussian
uncertainty offered the best probabilistic results.

OCED Nuclear Energy Agency (NEA) published a review report on the UQ method-
ologies and the applicability of proposed UQ in CFD for nuclear safety and the regulation
of equipment and components [6]. They divided the category of the possible application
of single-phase CFD for Nuclear Reactor Safety (NRS) into domains and proposed a de-
gree of maturity to each UQ method and proper choice depending on the subdomain. In
Chapter 10 of the report [6], one case of uncertainty quantification for mixing flow CFD
results was introduced. This forward problem adopted the nonintrusive generalized poly-
nomial chaos expansion (GPCE) method and estimated the uncertainty of the predicted
velocity, concentration, and turbulent quantities through comparison with experimental
data in the Paul Scherer Institute GEMIX facility.

In the present work, the venturi tube, which is one of the important components in the
field of in-service testing during reactor operation, is considered for Bayesian uncertainty
quantification combining the CFD method.

The venturi tube includes cavitating flow where the vapor bubble is formed due to the
phase change by a local pressure drop. In addition, the surface roughness may affect the
venturi tube’s inherent function and operability of the safety-related system. However, the
accurate prediction of the cavitating flow is still a challenging issue because of the model’s
inadequacy in CFD and the measurement difficulties in experiments. This implies that the
uncertainty of cavitating flow simulation inside a venturi tube installed at the in-service
testing-related systems should be investigated with respect to the adopted cavitation model
and operating conditions.

Barre et al. [7] conducted both the experiments and the numerical simulations on the
cavitating flow with attached sheet cavitation in a venturi geometry. They proposed a new
double optical probe measurement methodology and vapor detection algorithm to measure
the void fraction and velocity profiles in the venturi tube. For the computational simulation,
a barotropic approach and Yang and Shih k-ε turbulence model [8] were adopted. They
showed that the simulation results are in good agreement with experimental data in a
stable zone of cavitation but that there were some discrepancies in the flow velocity and
void fraction profiles in the rear part of the cavitation sheet. Additionally, the sensitivity
analysis of AMIN, the parameter which links the fluid density to the local pressure in the
barotropic model, is conducted for better prediction of cavitating flow features [7].

Rodio and Congedo [9] applied a nonintrusive stochastic chaos method to the CFD
solver to analyze the uncertainty affecting the prediction of cavitation flow in a venturi tube.
The Schnerr and Sauer cavitation model [10] and k-ε turbulence model were employed.
For uncertainty quantification, one model coefficient (η) and two flow conditions (inlet
pressure and velocity) were considered as random variables. They found that the inlet
boundary conditions are dominant contributors to the model uncertainty. In addition, a
simple algorithm to obtain the optimized parameter of epistemic uncertainty was proposed.
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Goel et al. [11] performed the model validation in a transport-based cryogenic cavi-
tation model for a simple 2D hydrofoil and studied the cavitation model parameter and
uncertainties with respect to temperature using surrogate-based global sensitivity analysis.
They found that the model parameter associated with the evaporation was more domi-
nant than the parameter of material uncertainty. The optimized model parameters of the
transport-based cavitation model were presented in the cryogenic cavitation flow.

Ge et al. [12–14] investigated the thermal effect on hydraulic cavitation dynamics
through experiments. They confirmed that the thermal effects showed a significant
role and inhibited the growth of the sheet cavity as the temperature increased. More-
over, it was found that the re-entrant jet triggered the detachment of the attached cavity
and unsteadiness.

In the current work, a CFD simulation for the venturi tube flow is combined with
the Bayesian inference methodology to quantify the uncertainty of simulation results.
First, the cavitation model coefficients are calibrated based on Bayesian inference with the
experimental data from observations. Next, using the calibrated model coefficients from
the previous section, the uncertainties of the simulation results are quantified using the
PC-NIPC method for the forward problem. In this case, two operating conditions of the
inlet velocity and the wall roughness at the venturi tube boundary are considered uncertain
parameters, and the QoI are the cavitation area and the profiles of void fraction and velocity.
In this regard, one of the present co-author [15,16] successfully predicted the location of
flow leakage caused by the cavitation erosion and found that the averaged vapor volume
fraction tended to increase as the surface roughness decreased in the multistage orifice.

This paper is organized as follows. Section 2 presents the governing equation for
the simulation of the cavitation flow in the venturi tube and the overall procedure of
Bayesian inference. The PC-NIPC model for the construction of the surrogate model is
explained briefly. Then, the procedure to calculate the likelihood function, including model
inadequacy and observation error, is presented. In Section 3, the venturi geometry and
operating conditions are described, and the deterministic solution is validated through
comparison with experimental data. To quantify the uncertainty of the grid resolution, the
grid convergence index (GCI) is analyzed with respect to coarse, medium, and fine meshes.
Section 4 presents the results of the Bayesian inference of ZGB model coefficients. In
Section 5, the two operating conditions of inlet velocity and wall roughness are considered,
and the uncertainty of the cavitation area is quantified for the forward problem.

2. Governing Equation and Numerical Methods
2.1. Cavitation and Turbulence Model

2D Reynolds-averaged Navier-Stokes equations are considered using the commercial
CFD code ANSYS FLUENT v.19.1 [17]. To predict the cavitation phenomenon, a mixture
multiphase model and Zwart–Gerber–Belamri (ZGB) cavitation model [18] are adopted.
The turbulence model and wall modeling in the present work are selected based on the
previous research of Barre et al. [7] and Rodio and Congedo [9]. The renormalization group
(RNG) k-ε model is adopted for the turbulence model. The near-wall region is modeled
by a standard wall function. The SIMPLE algorithm [19] is used for the pressure-velocity
coupling, and a second-order upwind scheme is used for spatial discretization. For a better
convergence rate, the pseudo-transient algorithm is adopted.

The governing equations of the ZGB model are as follows:

∂

∂t
( fvρ) +∇·

(
fvρ
→
Vv

)
= ∇·(Γ∇ fv) + Re − Rc (1)

Re = Fvap
3αnuc(1− αv)ρv

RB

√
2(Pv − P)

3ρl
(i f P ≤ Pv) (2)
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Rc = Fcond
3αvρv

RB

√
2(P− Pv)

3ρl
(i f P ≥ Pv) (3)

where fv is the vapor mass fraction and Γ is the diffusion coefficient. Re and Rc represent
the production and destruction terms in cavitation, respectively, with 4 model coefficients
as shown in Table 1. RB and αnuc are the bubble radius and nucleation site volume
fractions, respectively. Fvap and Fcond are evaporation and condensation coefficients which
are multiplied in the production and destruction terms.

Table 1. ZGB cavitation model coefficient [18].

RB αnuc Fvap Fcond

10−6 5 × 10−4 50 1 × 10−2

2.2. Grid Convergence Index (GCI)

A grid is generated to discretize the calculation domain in CFD. The number and
quality of the grid elements will affect the accuracy and the errors in the calculation results.
Therefore, an appropriate level of the grid should be considered, and GCI is used as a
method to quantify the uncertainty according to the grid qualities. The GCI is an indicator of
how the solution will converge with a further grid refinement by computing the percentage
error between the numerical solution and the asymptotic value. Roache [20] proposed a
GCI method based on Richardson’s extrapolation, but this method can be used only in the
case of monotonically increasing or decreasing solutions with grid refinement. To overcome
this disadvantage, Tanaka and Miyake [21] proposed the least square-based GCI (SLS-GCI)
that can be applied in general CFD situations. Their equations describing grid scales are
presented below.

r21 =
h2

h1
, r32 =

h3

h2
(h1 < h2 < h3) (4)

ε21 = f2 − f1, ε32 = f3 − f2 (5)

where hk is the representative grid size for the three different grids (coarse, medium, and
fine), r is the grids ratio, fk is the prediction result of each grid, and ε is the result difference.
The order of convergence (p), extrapolated value ( fc), and coefficients (α) can be calculated
as the solution of Equation (7) as follows:

f̃k = fc + α(hk)
p (6)

S = ∑3
k=1

{
fk −

[
fc − α(hk)

p]}2 (7)

The GCI and error of estimation can be calculated according to the order of convergence.

uG =
Fs
∣∣∣ f̃2 − f̃1

∣∣∣
rp

21 − 1
= Fs

∣∣∣ f̃c − f̃1

∣∣∣ (8)

ue =

√
1
3 ∑3

k=1

[
fk −

{
fc + αhp

k

}]
(9)

2.3. Bayesian Inference

Bayesian inference is a method to address the inverse problem, where the goal is to
back-propagate information about an observation to obtain insight into the uncertainty
input parameter. Bayesian inference can calibrate the uncertainty input parameters from
the observed data using Bayes’ theorem with prior knowledge [22].

p(θ|d) = p(d|θ)p(θ)
p(d)

(10)
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where θ are the uncertainty input parameters to be inferred and d is the observation data.
p(θ) is the prior distribution of the parameters that reflects the level of information existing
on the parameters θ before any measurement is carried out. p(d|θ) is the likelihood (or
likelihood function) that represents an estimate of a parameter, and it indicates which
parameters are most likely. p(d) is a normalizing factor, known as the evidence or marginal
likelihood. p(θ|d) is the posterior distribution of uncertainty for the input parameters.

In the present Bayesian inference, the coefficients of the ZGB cavitation model are
considered as uncertainty inputs and are calibrated using experimental observation data by
Barre et al. [7]. The overall procedure and framework for Bayesian inference are adopted
based on those proposed by Cheung et al. [4].

2.4. Point-Collocation Nonintrusive Polynomial Chaos (PC-NIPC)

Bayesian inference includes the process in which the statistical distribution of random
inputs is calculated iteratively with a likelihood function and observation data using the
specified sampling method. To apply this process in CFD fields, many simulations of
the deterministic solver are required to determine the acceptance of the sampling data.
When the computational time and cost of each deterministic simulation are considered,
the alternative can become the surrogate model or reduced-order statistics analysis. In the
present work, PC-NIPC is adopted for the construction of the surrogate model based on
the simulation results with sampled inputs [23].

NIPC expansions are functional approximations of a computational model through its
spectral representation on a suitably built basis of polynomial functions. The method is
to define the joint probability density function (PDF) fX from a random vector with inde-
pendent components X ∈ RM. The next step is to consider a finite variance computational
model as a map Y =M(X), Y ∈ R such that:

E
[
Y3
]
=
∫
DX

M2(X) fX(x)dx < ∞ (11)

Then, the polynomial chaos expansion ofM(X) is defined as follows:

M(X) ≈MPC(X) = ∑
α∈A

yαψα(X) (A ⊂ NM) (12)

where yα ∈ R are the corresponding coefficients, and A ⊂ NM is the set of selected
multi-indices of multivariate polynomials. In Equation (12), ψα(X) are the multivariate
polynomials that are assembled as the tensor product of their univariate counterparts, as
shown in Table 2.

Table 2. List of classic univariate polynomial families [5].

Type of Variable Distribution Orthogonal Polynomials Hilbertian Basis ψk(x)

Uniform
U(−1,1)

1(x)
2 Legendre Pk(x) Pk(x)/

√
1

2k+1

Gaussian
G(0,1)

1√
2π

e−x2/2 Hermite Hek (x) Hek (x)/
√

k!

Gamma
Γ(a,λ=1)

xae−x Laguerre La
k(x) La

k(x)/
√

Γ(k+a+1)
k!

Beta
B(a,b) 1(x) (1−x)a(1+x)b

B(a)B(b)
Jacobi Ja,b

k (x) Ja,b
k (x)/Ja,b,k

In the present study, the PC-NIPC method, which was proposed by Hosder et al. [23],
is adopted. For adoption of the PC-NIPC, the minimum sampling number of random
input variables is calculated by Equation (13), with the polynomial order (p), the number of
random input variables (n), and the oversampling rate (np). Hosder et al. [23] recommended
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that the oversampling rate should be more than 2 for a better approximation with the given
polynomial order.

P + 1 = np
(n + p)!

n!p!
(13)

2.5. Source of Uncertainty
2.5.1. Model Inadequacy

Cheung et al. [4] mentioned that not only is a description of the uncertainty related to
the model coefficients but also that a description of the uncertainty regarding the model
itself is important. Because the turbulent model coefficients are derived from the assump-
tion of relatively simple flows, such as isotropic turbulence and boundary layer flows,
there is a limit to accurately reflecting complex turbulence phenomena in real engineering
problems. This model inadequacy becomes a source of uncertainty that propagates through
the computational model and leads to errors in the predictions of the model.

In the current work, the model inadequacy of the cavitation model is considered.
Assuming d̃ as the true process with no error, the computational modelM(X) and the
model inadequacy η can be related as follows:

d̃ =M(X) + η (14)

Cheung et al. [4] suggested a three-model classification of model inadequacy (no
uncertainty, independent Gaussian uncertainty, and correlated Gaussian uncertainty). The
correlated Gaussian uncertainty showed the highest posterior plausibility among these
model classes [24].

η ∼ Gaussian
(
0, Kη

)
, Kη = σ2

η exp

[
−1

2

(
x− x′

l

)2
]

(15)

ση ∼ Uni f orm(0, 0.1) (16)

2.5.2. Observation Error

Observation error is one of the unavoidable uncertainties in experimental works.
When the parameter uncertainty is calibrated by experimental data corresponding to the
observation, modeling the observation error is an important process in Bayesian infer-
ence. However, since information on the error bars of the experimental data [7], which
are adopted as observations in this simulation, and the data behind these error bars
were not provided, the model was assumed to be an independent Gaussian model by
Cheung et al. [4]. The true process d̃, observation error e, and observation data d can be
related as follows:

d = d̃ + e (17)

e ∼ Gaussian(0, Ke), Ke = σ2
e I (18)

σe ∼ Uni f orm(0, 0.02) (19)

where Ke is a diagonal matrix with each diagonal component equal to the variance.
Observation errors are independent Gaussian random variables with zero mean and
standard deviation.

2.6. Likelihood Function

All stochastic models are combined into the likelihood function. From Equations (14)
and (17), observation data can be expressed by a conditional Gaussian distribution as follows:

d|σ, X ∼ Gaussian(M(X), K)) (20)
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where σ is the uncertainty parameter including σe and ση , and K is the covariance matrix that
is the sum of Kη + Ke. Finally, if all the inferred uncertainty parameters (σ, X) are applied
as inputs to find θ, the likelihood function and posterior distribution can be expressed
as follows:

P(d|θ) = 1
Z

1√
(2π)Ndet(K)

exp
(
−1

2
(d−M(X))TK−1(d−M(X))

)
(21)

Z =
∫

P(d|θ)P(θ)dθ (22)

P(θ|d) = 1
Z

1√
(2π)Ndet(K)

exp
(
−1

2
(d−M(X))TK−1(d−M(X))

)
P(θ) (23)

2.7. Markov Chain Monte Carlo (MCMC)

In practice, posterior distributions do not have a closed-form solution. One widely
used option to solve inverse problems relies upon the MCMC model [25]. The basic idea of
MCMC simulations is to construct a Markov chain that equals the posterior distribution
over the prior support DX. Markov chains can be uniquely defined by their transition
probability K

(
x(t+1)

∣∣∣x(t)) from the step x(t) of the chain at iteration t to the step x(t+1)

at the subsequent iteration t + 1. Then, the posterior is equal to the Markov chain if the
specified transition probability fulfills the detailed balance condition:

π
(

x(t)
∣∣∣y) K(x(t+1)

∣∣∣x(t)) = π
(

x(t+1)
∣∣∣y) K(x(t)

∣∣∣x(t+1)
)

(24)

One of the algorithms to fulfill this equation is the Metropolis–Hastings (MH) algo-
rithm [26] which is based on proposing and subsequently accepting or rejecting candidate
points. At iteration t from the current sample x(t), one then draws a candidate sample x(?)

from a proposal distribution p
(

x(?)
∣∣∣x(t)). Subsequently, the candidate is accepted with a

probability as follows:

α
(

x(?), x(t)
)
= min

1,
π
(

x(?)
∣∣∣Y)p

(
x(t)
∣∣∣x(?))

π
(
x(t)
∣∣Y)p

(
x(?)

∣∣x(t))
 (25)

However, most MCMC algorithms perform poorly when the target distribution shows
strong correlations between the parameters. A considerable amount of tuning is necessary
to improve the performance of these algorithms. The affine invariant ensemble (AIES)
algorithm [27] alleviates this problem by assuming solutions that are invariant with affine
transformations of the target distribution. The affine invariance property is achieved by
generating proposals according to a so-called stretch move. This refers to proposing a new
candidate by:

x(∗)i = x(t)i + Z
(

x(t)j − x(t)i

)
, where Z ∼ p(z) =


1√

z
(

2
√

a− 2√
a

) i f z
[

1
a , a
]

0 otherwise
(26)

This requires sampling from the distribution p(z) defined by the tuning parameter
a > 1. The candidate x(∗)i is then accepted as the new location of the i-th walker, with a
probability given as follows:

α
(

x(∗)i , x(t)i , z
)
= min

1, zM−1
π
(

x(∗)i

∣∣∣Y)
π
(

x(t)i

∣∣∣Y)
 (27)



Energies 2022, 15, 4204 8 of 18

3. Deterministic Simulation
3.1. Geometry and Operating Condition

The two-dimensional geometry is adopted from the experiment of Barre et al. [7]. The
height at the venturi throat is 43.7 mm, and the convergence and divergence angles are
4.3◦ and 4.0◦, respectively, as shown in Figure 1. The detailed geometric information is
presented in Table 3. The conditions of temperature, fluid density, and viscosity of water
and vapor are set as shown in Table 4. The velocity at the inlet is set to 10.8 m/s and the
pressure at the outlet to 38,450 Pa, shown in Table 5, the same as the experimental condition
of Barre et al. [7]. A no-slip boundary condition is applied to the solid wall. The saturated
pressure for the prediction of cavitation is given as 2339 Pa.
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Figure 1. The geometry of the venturi tube.

Table 3. Geometric parameters.

Sinlet(mm) Sthroat(mm) Soutlet(mm) Lx(mm) Convergence Angle
(◦)

Divergence Angle
(◦)

50.0 43.7 60.2 1512 4.3 4.0

Table 4. Fluid properties.

Water Property Vapor Property

ρl
(kg/m3)

µl
(kg/(m·s))

ρl
(kg/m3)

µl
(kg/m·s)

998.2 1.002 × 10−3 998.2 1.002 × 10−3

Table 5. Operating conditions.

Velocity Inlet Pressure Outlet Saturated Pressure

10.8 m/s 38,450 Pa 2339 Pa

From the grid test, which will be explained in Section 3.3, the medium mesh
(29,536 nodes) is selected for the present simulation. When it is considered that the mesh
size of Barre et al. [7] is 9,861 nodes, the adopted mesh in the present simulation is adequate
to simulate the steady sheet cavitation.

3.2. Validation of the Deterministic Simulation

Deterministic simulation is validated by the experimental data and numerical sim-
ulation result of Barre et al. [7]. Figure 2 shows the comparison of the void fraction and
longitudinal velocity (u-velocity) at the stations of X = 5.1 mm, 38.4 mm, and 73.9 mm
from the venturi throat. Barre et al. [7] presented two velocity profiles from the experiment;
one is the mean velocity (Vmean), and the other is the most probable velocity (Vmp). The
most probable velocity (Vmp) is calculated from the probability density function of the
measured velocity, which is one of the techniques to predict the velocity in a bubble flow.
They showed that mean velocity (Vmean) and the most probable velocity (Vmp) were not
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similar because of the unsteady behavior of a vapor bubble with high intermittency. The
two velocity profiles are presented for comparison with the simulation results.
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The void fraction of a vapor bubble at the wall decreases with an increase in the
distance from the venturi throat and is measured as about zero at the station of X = 73.9 mm.
The prediction of the void fraction shows good agreement with experimental data at the
stations of X = 5.1 mm and 73.9 mm. The thickness and distribution of a vapor bubble
show consistent behavior with reference [7] at both positions. However, the simulated void
fraction at X = 38.4 mm is similar to that of the numerical simulation by Barre et al. [7]. This
overprediction of the void fraction below y~4 mm in two simulation results seems to be due
to the limit of multiphase mixture modeling, and this trend is also shown in the simulation
results of Rodio and Congedo [9]. In contrast, the simulation result by Barre et al. [7]
showed a still large vapor region at the station of X = 73.9 mm; the present simulation is
able to predict the thickness and the distribution of a vapor bubble in a manner that agrees
with the experimental data.

The velocity profiles predicted by the present simulation show a large discrepancy at
the station of X = 5.1 mm and 38.4 mm, which is quite similar to the results by Rodio and
Congedo [9]. In the simulation by Barre et al. [7], a new extended wall function [28] was
adopted to model the turbulent boundary layer, and this model enhanced the prediction
of the boundary layer profile relative to the present result. When it is considered that
there is also a big difference between two experimental data points, Vmean and Vmp, the
prediction of the velocity inside the vapor is still a challenging problem. In the present
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simulation, one encouraging result is the accurate prediction of the recirculation zone in
the wake at the third station (X = 73.9 mm).

The contour of the void fraction and the longitudinal velocity are presented in Figure 3.
As shown in the void fraction contour, as the distance from the venturi throat increases, the
thickness of the cavity sheet increases. The length of the sheet, which is determined with
the threshold of 0.3 of void fraction, is predicted as 75.0 mm, with a 6.3% difference from
the measured value, 80 mm [7]. The velocity contour shows the recirculation zone in the
back region of the vapor sheet, which is consistent with the velocity profile at X = 73.9 mm
in Figure 2.
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3.3. Grid Convergence Index (GCI)

GCI based on the SLS-GCI method [21] is investigated using a coarse, medium, and
fine meshes presented in Table 6. The number of nodes in the medium and fine meshes
increases by 1.8 and 3.7 times, respectively, compared with the coarse mesh. To evaluate
the GCI, the cavitation area, which is calculated with the integration of the cell area with
the void fraction below 0.3, is selected as the QoI. The GCI results are summarized in
Table 7. The extrapolation values ( fc), which mean an estimate of the cavitation area at
zero grid spacing, error of estimation (Ue), which means the difference between numerical
and estimated results, and the uncertainty from the grid (UG) are presented in this table.
The cavitation area is extrapolated as 2.53 × 10−4 at zero grid spacing, and the error
and uncertainty between both results are 4.22 × 10−6 and 1.12 × 10−5, respectively. It is
judged that the grid test results are reasonable and that the selection of a medium mesh is
appropriate in the current work.
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Table 6. Grid test results.

Coarse Medium Fine

Number of nodes 16,027 29,536 59,492
Cavitation area(m2) 2.57 × 10−4 2.52 × 10−4 2.51 × 10−4

Table 7. Grid Convergence Index results.

fc Ue UG

2.53 × 10−4 4.22 × 10−6 1.12 × 10−5

4. Bayesian Inference of ZGB Model Coefficients

In this section, the Bayesian inference of ZGB model coefficients is conducted following
the procedure presented in Section 2.3. The first step for Bayesian inference is to determine
the random inputs and their prior distribution. In the present work, four coefficients of the
ZGB cavitation model are selected as the random inputs, as shown in Table 8. Additionally,
two more parameters of model inadequacy and observation error are considered. Because
of the lack of knowledge of the model coefficients, it is assumed that these have a uniform
distribution. Edeling et al. [29] mentioned that the prior interval of random inputs was
selected based on three factors: the spreads of coefficients proposed by the original model,
the ranges of these for which the solution was stable, and the avoidance of apparent
truncation of the posterior at the edge of the prior range. Since the range of the model
coefficients was not presented in the original literature, Zwart et al. [18], the range of each
coefficient is initially guessed as ±50% with respect to the original mean initial value.
However, since the posterior probability distribution through the calibration procedure is
not constrained to the initial prior intervals, the prior range is modified with a wider one
or is translated with proper values, as recommended by Edeling et al. [29]. The final ranges
of the prior distribution of the four model coefficients are shown in Table 8.

Table 8. The prior distribution interval of random parameters.

Parameter Lower Boundary Upper Boundary

RB~Uniform 2.0 × 10−7 1.0 × 10−6

αnuc~Uniform 0.00025 0.0006
Fvap~Uniform 25 55
Fcond~Uniform 0.005 0.015

ση~Uniform 0 0.3
σe~Uniform 0 0.05

The next step is to construct the surrogate model based on PC-NIPC [23] using the
sampling data of the random inputs. The calculated sampling number based on PC-NIPC
is 30 with a second-order polynomial, two chosen for the oversampling rate, and four
random variables.

P(d|θ) = 1
Z

1√
(2π)Ndet(K)

exp
(
−1

2
(d−M(X))TK−1(d−M(X))

)
(28)

K = Kη + Ke, Kη = σ2
η exp

[
−1

2

(
x− x′

l

)2
]

, Ke = σ2
e I (29)

where K is the covariance matrix of the summation Kη model inadequacy and Ke observa-
tion error [4]. Details regarding the prior distribution are shown in Table 8.

The void fraction profile in the experiment [7] is set to QoI with the assumed error of
±5% and then is adopted as the observation data for Bayesian inference.
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To obtain the sample of the posterior distribution, the AIES [27] algorithm is employed
with 500 parallel runs of 2000 steps. Each PDF of a parameter was approximated by a kernel
density estimation with half of the sample burn-in. After Bayesian inference based on the
mentioned procedures, the calibrated model coefficients can be obtained. The posterior
distributions of the calibrated coefficients are shown in Figure 4, and the posterior mean
values are presented in Table 9.
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Table 9. Posterior mean values of model coefficients.

ZGB
Coefficients RB αnuc Fvap Fcond

Nominal value 10−6 5 × 10−4 50 0.01
Posterior Mean 7.9 × 10−7 4.5 × 10−4 52 0.013

As shown in Figure 4, the calibrated coefficients are constrained inside the finial prior
interval, which means the prior range of the model coefficients is appropriate. The posterior
means of RB and αnuc are decreased from their nominal values, but the posterior means of
Fvap and Fcond are increased after Bayesian inference considering the profile of void fraction
as QoI. Since the peak of the void fraction at X = 73.9 mm is predicted to be 75% larger
than the original ZGB model coefficients, Bayesian inference adopting the experimental
data of the void fraction profile as observation data makes the calibrated model coefficients
predict smaller values. The coefficient, αnuc, in the ZGB model is related to the production
term, and the decrease in this coefficient induces smaller production in the governing
Equation (1). The coefficients of Fvap and Fcond are multiplied in production and destruction
terms, respectively. It should be noted that Fvap is calibrated as the value 52, larger than
the original value of 50, which is a small increase of 4%. In contrast, the coefficient Fcond
is increased by 30% from 0.01 to 0.013 and then induces an increase in the destruction
of cavities.
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The void fraction and velocity profiles with the calibrated model coefficients at the
station of X = 73.9 mm are presented with the experimental data [7] and the simulation
result with the original coefficients in Figure 5. The prediction of the void fraction is 75%
better than that of the original prediction, and the velocity profile is still able to correctly
predict the recirculation zone. At the other two stations (X = 5.1 and 38.4 mm), there is a
small difference, within 2%, in the void fraction and velocity profiles between both cases.
This means that the calibrated model coefficients have little effect on the flow properties
of the upstream part. If the velocity profile is adopted as observation data, the model
coefficients will be calibrated for a better prediction of the velocity profile. Figure 6 shows
the contours of the void fraction with the calibrated model coefficients. It is confirmed
that the cavitation area and the sheet length are smaller than the values predicted by the
original model.
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5. Uncertainty Quantification with Respect to Operating Conditions

In this section, the uncertainty with respect to the operating conditions in the venturi
tube is quantified based on the calibrated ZGB model coefficients. Overall procedures
of the corresponding forward problem are (1) the selection of random variables and the
determinations of the distributions and their ranges, (2) the definition of QoI, (3) the
sampling of random variables depending on the polynomial order and number of in-
puts, (4) construction of the PC-NIPC model [23], and (5) the calculation of the statistical
distribution of QoI and postprocessing.

The considered uncertain input variables are the inlet velocity and the roughness of
the wall, which are known as important parameters influencing the flow characteristics of
a venturi tube [30,31]. The inlet velocity is modeled as a Gaussian distribution with 10%
variation with respect to the given condition, 10.8 m/s. The wall roughness is assumed
to be uniform from 0.0001 m to 0.001 m, as shown in Figure 7. In the present work, a
wall roughness of zero, an ideally smooth wall, is not considered from the engineering
point of view. The QoI is set to the cavitation area for direct comparison with the previous
simulation result. The sampling number is determined from 12 to 112, considering the
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polynomial order from second to sixth orders and the oversampling rate from 2 to 4 for the
two input variables and one QoI. The Latin hypercube sampling methodology is adopted to
sample random variables, and the PC-NIPC model is constructed for the surrogate model
depending on the polynomial order. The leave-one-out (Loo) error, which is an indicator of
the proper polynomial order and sampling number, has a minimum of 2.13 × 10−2 at the
fourth polynomial order and an oversampling rate of 4. Figure 8 shows the histogram of
the cavitation area, which is the QoI in the present section, according to the variation of
operating conditions. The distribution of the cavitation area is similar to an exponential
distribution which peaks at areas close to the order of 10−6 m2. The mean of the cavitation
area (6.063 × 10−6 m2) is reduced by 42 times compared with the deterministic solution
(2.52 × 10−4 m2) for the fixed velocity and smooth wall.
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Additionally, the sensitivity of input variables is analyzed using the Sobol index.
The Sobol indices of the inlet velocity and wall roughness are calculated as 0.59 and 0.72,
respectively. This means that the roughness has much more effect on the cavitation area,
the QoI, than the inlet velocity.

Figure 9 shows the profile of the void fraction and the longitudinal velocities at the two
stations of X = 2.5 mm and 5.1 mm. The mean and median values of both are respectively
presented in black and orange lines, and the dashed line corresponds to the 95% confidence
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bound as a result of the uncertainty quantification. In the void fraction profile, there are
large 95% confidence bounds starting from 0 to 0.9. However, the velocity profiles show a
95% confidence interval within 10% of the mean value. This means that the wall roughness
has a very large effect on the ZGB cavitation model, and the cavitation behavior is affected
by the wall roughness. Further investigation of the uncertainty quantification between the
cavitation model and wall roughness seems to be necessary. The median area of the void
fraction at X = 5.1 mm is predicted to be as small as one-third of the mean value, which
means that the distribution of the cavitation area resembles the exponential function.
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The contours of the void fraction and longitudinal velocity are presented in Figure 10.
It is confirmed that the length of the cavitation sheet is shortened before X = 38.4 mm and
that a recirculation zone is shown near X = 38.4 mm.
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6. Conclusions

In the present work, Bayesian inference of the cavitation model coefficients is con-
ducted in the venturi tube flow, and the calibrated model coefficients are applied to
the venturi tube flows, which have the same geometry and flow condition as those in
Barre et al. [7].

To validate the deterministic solution, the profiles of the void fraction and longitudinal
velocity at three stations are compared with experimental data and simulation results by
Barre et al. [7]. The void fraction profiles agree well with the reference ones at the front
two stations and show better prediction than the simulation result by Barre et al. [7]. The
prediction of the turbulent boundary layer inside and outside cavitating zone fails, which
is consistent with Rodio and Congedo’s [9] simulation results, but the recirculation zone is
predicted correctly.

GCI analysis by the SLS-CGI method [21] is conducted with respect to the global param-
eters and cavitation area and shows 2.53 × 10−4 for the extrapolation value (fc), 4.22 × 10−6

for the estimation error (Ue), and 1.12 × 10−5 for the uncertainty error (UG). In addition,
it is confirmed that the adopted medium mesh with a value approximately equal to the
cavitation area of 2.52 × 10−4 is appropriate.

For Bayesian inference of ZGB model coefficients, four model coefficients are calibrated,
and the covariance matrix, which is proposed by Cheung et al. [4], including model
inadequacy and observation error, is considered. After initial guesses of the uniform prior
intervals of (±50%) of each model coefficient, the range of each is modified with the criteria
that the posterior range by Bayesian inference should be constrained inside the prior one.
Posterior means of RB and αnuc are decreased from their nominal values, but posterior
means of Fvap and Fcond are increased to decrease the void fraction at the third station
at X = 73.8 mm. The velocity profile at all stations shows little change after Bayesian
inference. However, there are still large discrepancies in the prediction of velocity and
void fraction after observation data are accounted for by Bayesian inference. This means
that the perturbation of cavitation model coefficients is not sufficient to remedy the model
deficiency. In future work, the other parameters, such as turbulence model inadequacy and
discretization error, should be considered simultaneously as uncertain inputs for Bayesian
inference [32,33].

Finally, the forward problem with respect to the operating conditions, including the
inlet velocity and the wall roughness, is conducted based on the PC-NIPC model with a
fourth-order polynomial and an oversampling rate of 4. Therefore, 60 cases are sampled
with the Latin hypercube sampling method. When the uncertainty of the wall roughness
is considered, in contrast with the previous general simulation with a smooth wall, the
cavitation area is decreased 42 times, and the variation of the void fraction is very large,
ranging from 0 to 0.9. The discrepancy between the mean and median value of the void
fraction is observed. Through the sensitivity analysis with the Sobol index, the wall
roughness (0.72) has more effect on the simulation result than the inlet velocity (0.59). This
means that the wall roughness in the venturi-type components of the in-service testing
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should be considered carefully to obtain consistent results with the experiment and quantify
the uncertainty of performance in the venturi tube.
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