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Abstract: This review aims to provide an up-to-date, comprehensive, and systematic summary of
fault detection and diagnosis (FDD) in building systems. The latter was performed through a defined
systematic methodology with the final selection of 221 studies. This review provides insights into four
topics: (1) glossary framework of the FDD processes; (2) a classification scheme using energy system
terminologies as the starting point; (3) the data, code, and performance evaluation metrics used in the
reviewed literature; and (4) future research outlooks. FDD is a known and well-developed field in
the aerospace, energy, and automotive sector. Nevertheless, this study found that FDD for building
systems is still at an early stage worldwide. This was evident through the ongoing development
of algorithms for detecting and diagnosing faults in building systems and the inconsistent use of
the terminologies and definitions. In addition, there was an apparent lack of data statements in the
reviewed articles, which compromised the reproducibility, and thus the practical development in this
field. Furthermore, as data drove the research activity, the found dataset repositories and open code
are also presented in this review. Finally, all data and documentation presented in this review are
open and available in a GitHub repository.

Keywords: fault detection and diagnosis (FDD); systematic review; building systems; heating,
ventilation, and air conditioning (HVAC); model-based methods; data-based methods; data repositories

1. Introduction

Buildings are responsible for 36% of the global energy use and 39% of CO2 emissions
in the world [1]. Due to buildings’ significant share of energy use and options for onsite
energy production, buildings are key in mitigating the European Union (EU) targets for
energy efficiency and renewable energy [2]. However, the actual buildings’ energy use is
usually much higher than their design. This mismatch can arise due to discrepancies in the
design inputs [3], operational conditions [4], or faults occurring in building systems.

As heating, ventilation, and air conditioning (HVAC) units are measured to account
for up to 50% of the total energy use in the buildings [5], this system is a foremost lead.
Poor design, installation mistakes, and faults that arise due to equipment wear can increase
energy use significantly and degrade the indoor environment [6], especially when faults
go undetected for several years. Actually, in the United States of America, typical faults
in buildings are estimated to account for 103 to 500 TWh of additional yearly energy
use [7]. To tackle this problem, fault detection and diagnosis (FDD) in building systems can
be employed to reduce building operation and maintenance costs by effectively finding,
identifying, and providing insight into how to treat these faults [8].

There is an immense existing body of literature on FDD in building systems produced
since the late 1980s [9], and several articles have investigated the state of the art through the
years [10–14]. Nevertheless, one of the first collected works on FDD in building systems
was carried out by international experts under the umbrella of the International Energy
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Agency’s Energy in Buildings and Communities Programme (IEA-EBC) in 1998, the IEA-
EBC Annex 25. Here, real-time simulation of HVAC systems for building optimization,
fault detection, and diagnostics was investigated [15,16]. This work was continued in
IEA-EBC Annex 34 in 2006 in “Computer-aided Fault detection and Diagnosis” [17,18]. The
recent progress in the IEA-EBC Annex on FDD is the Annex 81 subtask C2, “Automated
Fault Detection, Diagnostics, and Recommissioning Applications” [19].

1.1. Current Reviews on FDD in Building Systems

Highly acknowledged extensive reviews of FDD in building systems by Katipamula
et al. 2005a and 2005b are still highly relevant [10,11]. These were found to be the fun-
daments for all later reviews. In a recently updated review, Woohyun and Katipamula
categorized the FDD methods according to the modeling approach (gray or black box) [14].
The following reviews on FDD had their specific scope and aims. Mirnaghi et al. reviewed
data-mining methods [13], while Gourabpasi and Nik-Bakht focused on data-driven meth-
ods [20]. Zhao et al. focused on the strengths and weaknesses of the algorithms and
discussed future challenges [21]. Ahmad et al. carried out an extensive review of com-
putational intelligence techniques for FDD methods for HVAC, and suggested grouping
them into five key modeling approaches: metaheuristic, artificial neural networks (ANNs),
pattern-recognition-based methods, multiagent systems, and fuzzy logic [12]. Li et al.
categorized the reviewed articles as feature engineering (FEng) and fault-relevant features
(FF), with a focus on discussing the features of faults in the reviewed articles [22].

Building system-specific reviews were also performed for air-handling units (AHUs)
and heat pumps (HP). Yu et al. investigated typical faults in AHUs and proposed desirable
characteristics for FDD algorithms: quick detection and diagnosis, isolatability, robustness,
novelty identifiability, classification error, adaptability, explanation facility, modeling re-
quirement, storage and computation, and multiple fault identifiability [23]. Rogers et al.
reviewed FDD methods for residential air-conditioning systems [24]. Bellanco et al. studied
the fault behavior of HPs and methods for the measurement, detection, and diagnosis of
faults, including virtual sensors [25].

Table 1 presents the key features of the above-described reviews for the collection of
building systems.

Table 1. Reviews on fault detection and diagnosis in building systems. Times cited are from Google
Scholar and were collected in April 2022.

Review Article Keywords Scope Times Cited

Srinivas Katipamula and Michael
R. Brambley

“Review article: Methods for Fault
detection, Diagnosis, and
Prognostics for Building

Systems—A Review, Part I”,
2005 [10]

Not found

One of the first reviews on FDD in
building systems. It focuses on
generic FDD and prognostics,

providing a framework for
categorizing methods, describing

them, and identifying their primary
strengths and weaknesses.

Total: 1061
Annual: 62

Woohyun Kim and Srinivas
Katipamula

“A review of fault detection and
diagnostics methods for building

systems”, 2018 [14]

Not found

Update on publications since
reviews I and II. Categorizes

automated fault detection and
diagnosis methods into two main
groups and discusses applicability

for each building system.

Total: 229
Annual: 57

Yang Zhao, Tingting Li, Xuejun
Zhang, and Chaobo Zhang

“Artificial intelligence-based fault
detection and diagnosis methods

for building energy systems:
Advantages, challenges and the

future”, 2018 [21]

Fault detection; fault
diagnosis; building energy

systems; artificial intelligence;
big data

Reviews a large quantity of FDD
articles and divides them into two

classes: data-driven-based and
knowledge-driven-based.

Discusses the algorithms in detail
and suggests research tasks for

the future.

Total: 172
Annual: 43
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Table 1. Cont.

Review Article Keywords Scope Times Cited

Srinivas Katipamula and Michael
R. Brambley

“Review article: Methods for Fault
detection, Diagnosis, and
Prognostics for Building

Systems—A Review, Part II”,
2005 [11]

Not found

Continuation of the first review. It
focuses on research and

applications specific to the fields of
HVAC&R, provides a brief

discussion on the current state of
diagnostics in buildings, and

discusses the future of automated
diagnostics in buildings.

Total: 567
Annual: 33

Maryam Sadat Mirnaghi and
Fariborz Haghighat

“Fault detection and diagnosis of
large-scale HVAC systems in
buildings using data-driven
methods: A comprehensive

review”, 2020 [13]

Large-scale HVAC system;
fault detection and diagnosis;

data-driven model;
supervised data-mining
method; unsupervised
data-mining method

Reviews the existing literature and
identify research gaps in mainly

data-driven FDD methods.

Total: 59
Annual: 29

Muhammad Waseem Ahmad,
Monjur Mourshed, Baris Yuce,

and Yacine Rezgui
“Computational intelligence

techniques for HVAC systems: A
review”, 2016 [12]

Heating, ventilation and air
conditioning (HVAC);

optimization;
computational intelligence;

energy conservation;
energy efficiency;

buildings

Presents a comprehensive and
critical review of the theory and

applications of CI techniques for the
prediction, optimization, control,
and diagnosis of HVAC systems.

Classifies and thoroughly discusses
each method’s applicability for

HVAC systems.

Total: 153 Annual: 25

Zixiao Shi and William O’Brien
“Development and

implementation of automated
fault detection and diagnostics for
building systems: A review” [26]

Not found

Reviews different methods for
feature generation, fault detection,

and fault diagnosis. Proposes ways
to improve their current limitations

from other research disciplines.
Discusses potential research topics

for further development and
applicability.

Total: 49
Annual: 16

Guannan Li, Yunpeng Hu,
Jiangyan Liu, Xi Fang, and

Jing Kang
“Review on Fault Detection and

Diagnosis Feature
Engineering in Building Heating,

Ventilation,
Air Conditioning and

Refrigeration Systems”, 2021 [22]

Building energy system; data
analytics; feature engineering

(FE) *; fault detection and
diagnosis (FDD); fault-related

feature (FF); heating
ventilation air conditioning

and refrigeration (HVAC&R)

Introduces feature engineering and
fault-relevant features in a step

toward FDD methods.
The main focus is on the feature of
faults in a large volume of articles.

Total: 6
Annual: 6

Arash Hosseini Gourabpasi and
Mazdak Nik-Bakht

“Knowledge Discovery by
Analyzing the State of the Art of
Data-Driven Fault Detection and
Diagnostics of Building HVAC”,

2021 [20]

Data mining; AFDD; HVAC;
machine learning; association

rule mining; FP-Growth

Uses the ASHRAE standard to
classify data-driven methods.

Focuses on knowledge discovery
and discusses investigated faults

and the applied algorithms.

Total: 0
Annual: 0

* Feature engineering (FE) is abbreviated in this article as FEng.

1.2. Shortcomings

With the exponential increase in articles and the development of algorithms in recent
years, there seems to be an inconsistent use of terminologies and definitions related to
FDD for building systems. Nevertheless, it is natural that changes occur along with the
developments in research areas. However, if a common understanding of terminologies and
definitions is not reached, there is a risk that the field will begin using different glossaries,
thereby potentially hindering its growth.

The existing reviews regarding FDD in building systems have mainly focused on
describing the specific FDD algorithms and their characteristics in detail [10,12,14,21]. Two
reviews described the application and applicability of FDD in building systems [11,26].
Furthermore, two reviews primarily described the data-driven approaches and discussed
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research gaps [13,20]. In addition, all the previously mentioned review articles in Table 1
discussed the future directions and applicability of FDD. Moreover, dissertations have also
contributed to the field of FDD. Behravan [27] provided a framework for demand-controlled
ventilation (DCV) and thermal-control strategies. The dissertation focused on an in-depth
assessment of the involved components’ functionality and effective parameters, especially
in the case of component failures. Furthermore, Shi [28] also developed a framework
to holistically detect, identify, and evaluate building faults for stakeholders to facilitate
decision making. Najafi [29] focused on a framework to optimize the architecture of sensor
networks from a diagnostics perspective. Despite the substantial research efforts, there is
still a lack of an overview of the different data requirements and necessary inputs to move
further toward actual building implementation.

The most advanced FDD algorithms employ machine learning (ML) approaches, such
as supervised or unsupervised learning. The flexibility of these algorithms to learn from
patterns and trends in the collected building data has great potential for applicability in
complex and real-world applications [21]. Despite that, these algorithms are dependent on
system-specific data, since building systems are unique. This requires tailored modeling
and increases the engineering time and cost, especially for buildings and programming
competencies. Supervised learning provides a numeric value or a qualitative variable, such
as a class or a tag, consequently needing labeled data with ground truth for the faulty data.
Unsupervised learning creates a categorical output, and thus is not dependent on labeled
data, but needs a dataset to validate the model. These datasets are expensive to develop,
require expert personnel, and have an available controlled environment to be developed. In
addition to this, availability of open datasets was found to be limited. With the increase in
accessible data and the popularity of data analytics and big data, sharing data has become
especially interesting in all research and industry sectors [30–32].

Based on the observations described above, three shortcomings were identified in
the field of FDD in building systems at present: (1) a lack of a uniform glossary for FDD,
especially for building systems; (2) a need for an up-to-date overview of the FDD algorithms
for building systems, along with the different data requirements and necessary inputs to
move further toward actual building implementation; and (3) a shortage of open-source
FDD repositories for data and code.

This article investigated approximately 220 articles from the very early time of FDD to
the present. As mentioned earlier, terminologies and FDD definitions in building systems
were inconsistent. Hence, the first step was to collect the current work on FDD and
streamline the terminology definitions for the FDD framework.

Further, this article aimed to provide an FDD encyclopedia for building systems
consisting of the used algorithms and components, which could help tackle the second
shortcoming in the list above. To tackle the third shortcoming, a data-sharing community
may mitigate this. Therefore, we identified the data used in each article, and have provided
a table in which they can be found.

1.3. Contribution and Structure of the Review

This review provides an up-to-date comprehensive and systematic summary of FDD
in building systems. The review was designed to provide insights into the following topics:

• Glossary framework—a systematic and scientifically designed review of the existing
terminology and definitions in the field of FD and FDD in building systems to provide
a clear explanation of the applied terms, their context, and examples of use.

• Coherent classification framework—using the Energy System Terminology (EST)
group developed by Andersen et al. [33]. Further, a novel classification of the ex-
isting body of literature on FDD frameworks in building systems is introduced.

• Applied data and FDD codes—a cornerstone in FDD is the availability of the data and
the algorithms to treat it. Therefore, a comprehensive analysis aimed to provide aware-
ness of the available data and codes and diversity across data and codes descriptions.

• The future directions are discussed to present potential future research outlooks.
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The authors also hope to raise awareness about the large body of knowledge on FDD
that has been produced in the last half-century for building systems specifically, with a
focus on the data used in the articles. This might help the building community to realize
the great potential of FDD to improve the building sector to become more efficient, reliable,
and sustainable in the emerging data-driven society.

This systematic review has the following structure:
Section 1 accounts for the introduction and motivation of this review. It also discusses

the most cited and extensive reviews of FDD in building systems. Section 2 presents the
methodology for this systematic literature review. Section 3 (Results Part I) presents the
terminology and definitions of the FDD process and classification of FDD algorithms to
mitigate shortcoming 1. Section 4 (Results Part II) addresses shortcoming 2. The identified
literature from Section 2 is presented, discussed, and visualized. Section 5 (Results Part
III) focuses on the data used in each article and addresses shortcoming number 3. In
addition, this section presents the found datasets and open code for FDD in building
systems. Section 6 presents a discussion of the key findings. Section 7 makes concluding
remarks and presents the future outlook for FDD in building systems. Abbreviations
contains the abbreviations used in this review. Appendix A contains an overview of all the
articles used for the analysis in Sections 4 and 5.

2. Methodology

This article used a semiautomated literature search and reference-filtering process, fol-
lowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
principle to ensure replication and quality assurance of this review [34]. The semiauto-
mated methodology consisted of six steps; (1) initial keywords search; (2) search block
development; (3) selection of reference databases; (4) query string creation; (5) reference
filtering and quality check; and (6) final reference selection. A flowchart containing the
expanded steps can be seen in Figure 1 below. The RefWorks reference handler was used in
this semiautomated methodology [35].
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The references, keywords, and search blocks from steps 1 to 6 in the semiautomated
methodology can be found in a GitHub repository [36].
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Step 1: Initial keyword search
This step consisted of identifying the keywords relevant to the article by review-

ing a handful of existing articles in the field of fault detection and diagnosis in building
systems. Here, the keywords and phrases that appeared most commonly and the varia-
tions/acronyms were analyzed and chosen for step 2.

Step 2: Search block development
Three individual search blocks were defined from the identified keywords in step 1,

which used the OR operator internally and the AND operator between the blocks. The
three blocks covered different modeling approaches (search block 1), fault detection (and
diagnosis) (search block 2), and building and their systems (search block 3).

Step 3: Selection of reference databases
The three databases selected for this article were Scopus, Web of Science, and ProQuest,

as these were deemed the most suitable databases within the article’s scope. The collection
of literature was completed in April 2021, so works published after April 2021 were
therefore not included in this article.

Step 4: Creation of query strings
The query strings were created for each database individually by combining the search

blocks with the database-specific options to filter accordingly. These options included
language, subject area, and category, among others. The filters were imposed to filter out
as many irrelevant articles as possible without filtering out any articles from relevant areas.
Therefore, if there was any doubt whether certain filters might exclude relevant material,
they were not used, thereby lowering the risk of removing relevant articles but increasing
the necessary efforts in the later manual filtering process.

Step 5: Reference filtering and quality check
This step consisted of filtering all the collected articles by removing the duplicates

and then filtering the relevant articles based on their titles and abstracts in RefWorks.
After the filtering, a quality check was performed to ensure that specific “indicators”
were found. For example, articles expected to be found in the search were among the
well-cited articles in the field, but were not detected automatically. Delimitations of the
articles were determined as follows: articles containing multiple faults, only supervised
and unsupervised machine learning algorithms, or only FDD concerning HVAC systems in
buildings were not investigated; for example, not photovoltaic systems or FDD in connected
building networks such as district heating.

The first and second authors conducted the reference filtering and quality check.
The specific indicators and relevancy were agreed upon beforehand to obtain a uniform
filtering process.

Step 6: Final reference selection
This step consisted of (1) removing articles that could not be found online and (2) a

final quality check for delimitations.
The final number of relevant articles was 221 for Sections 3–5 in this literature review,

approximately 12% of the 1854 references found in the selected databases.

3. Results of the Review, Part I: Terminology and Categorization of FDD Methods
3.1. FDD Terminology
3.1.1. The Classical FDD Framework and Related Fields

Isermann defined a fault as the following: “A fault is an unpermitted deviation of at
least one characteristic property (feature) of the system from the acceptable, usual standard
condition” [37]. The primary objective of an FDD process is to detect faults, diagnose their
causes, and possibly enable correction before additional damage to the system or loss of
service occurs. The existing FDD procedures differ in the modeling methods employed,
the input and output parameters, and the overall purpose. Fault detection (FD) aims to
discover faulty operations in a system. However, it can only reveal a fault if something
is wrong in the system; it cannot discover the fault source (when detection and diagnosis
are not performed in one step). Consequently, the fault diagnosis aims to identify the
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physical fault factors in the systems (type, location, severity, and time). Typically, FDD
has three main processes: fault detection, fault isolation, and fault identification. Together,
fault isolation and fault identification are commonly designated as fault diagnoses. Fault
evaluation follows fault diagnoses. This process evaluates the impact on the system in
terms of, for example, energy use, cost, or effects on other performance indicators. Based on
this step, a decision is then made regarding how to respond to the fault (action or no action).
Together these four steps (detection, isolation, identification, and evaluation) enable what
is commonly referred to as automated fault detection and diagnosis (AFDD) [37].

A related process in FDD is fault-tolerant control (FTC), which accounts for the feed-
back to the control system; for example, when the FDD system provides the fault informa-
tion to the control system of the building. In a simple manner, the control system will react
by retuning the existing control parameters, rescheduling the current control strategy, or
both. The latter is performed with the aim of optimizing the operation of the postfault sys-
tem. This part is typically called control reconfiguration (ConRec). For example, a typical
active fault-tolerant control (AFTC) consists of two parts: FDD and ConRec. However, the
ConRec needs to be automatically performed online or in real time by the control system
itself [37]. Zhang et al. [38] conducted a bibliographical review of FTC and discussed a
general framework consisting of FTC and FDD for active fault-tolerant control systems.

Another process related to FDD is the modeling of fault behavior, typically called fault
impact analysis (FIA) or fault evaluation (FE). Here, the aim is to assess the impact of the
faults on specific systems. For HVAC, this is typically energy, cost, or indoor environment.
Selected articles within HVAC are briefly discussed next. Li et al. critically reviewed
the fault modeling of HVAC systems in buildings. Typical faults in HVAC systems were
presented, and modeling tools such as HVACSIM+, Modelica, TRNSYS, and EnergyPlus
were discussed [39]. Another widely used tool is MATLAB/Simulink. Ginestet et al.
modeled the impact of faults in the AHU controller of a three-way valve, mixing box
dampers (flow problems), and sensor inversion using MATLAB/Simulink to model the
effects on energy use and IEQ of such faults [40]. Roth et al. presented an extensive list
of typical faults and investigated the impact of faults in commercial buildings in the USA
regarding their energy use [7]. Andersen et al. investigated typical faults occurring in
demand-controlled ventilation. Here, they modeled the faults’ impact on energy use and
indoor environmental quality (IEQ) in a Nordic climate with the building performance
simulation tool IDA ICE [6].

3.1.2. A Suggestion for a Common FDD Framework

There is a vast amount of literature on FDD for the different engineering disciplines.
Consequently, similar concepts have been defined and named differently across those
fields. Table 2 describes the frequent abbreviations, definitions, and typical synonyms of
key concepts found in the explored literature on FDD. Table 3 describes the sub-processes
for FDD.

Table 2. The main nomenclature of terms frequently used for FDD in building systems.

Abbreviation Full Name Synonym Definition

AFDD Automated fault detection
and diagnosis

Automated fault detection
and diagnostics/fault

detection, diagnosis, and
evaluation (FDD&E)

Consists of fault detection, fault isolation,
fault identification, fault evaluation

FDD Fault detection and diagnosis Fault detection and
diagnostics

Consists of fault detection, fault isolation,
and fault identification (with the last two

commonly known collectively as
fault diagnosis)

FD Fault detection -
This step involves monitoring the physical

system or device and detecting any abnormal
conditions (problems)
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Table 3. Nomenclature of subprocesses for FDD in building systems.

Abbreviation Full Name Synonym Definition

FI Fault isolation Fault analysis

This process involves isolating the specific
fault that occurred, including determining the
type of fault, the location of the fault, and the

time of detection

FI Fault identification This process includes determining the size and
time-variant behavior of a fault

FDI Fault detection and isolation - Fault detection and fault isolation

FDI Fault detection and
identification - Fault detection and fault identification

FE Fault evaluation Fault impact analysis (FIA)

Fault evaluation assesses the size and
significance of the impact on system

performance (in terms of energy use, cost,
availability, or effects on other

performance indicators)

Figure 2 above presents a generic fault detection and diagnosis process for all engineer-
ing systems expanded from Katipamula et al. [10]. As shown in Tables 2 and 3, the authors
used the abbreviation AFDD in their article without clarifying the definition. As automatic
indicates an automatic process, it was unclear whether the FDD process was automatic or
manual. Therefore, it is suggested to use FDD&E instead of AFDD if this process is not
occurring automatically (not working by itself with little or no direct human control). To
clearly distinguish whether this process is automatic or not, it is suggested to use AFD,
AFDD, and AFDD&E for methods requiring minimal human input or interaction while
running, and FD, FDD, and FDD&E if the methods require human input or interaction
while running. In the case of the implementation of AFDD, other essential factors, such as
IT structure and data handling, need to be addressed.
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3.2. Method Categorizations for FDD

Several classifications regarding FDD methods have previously been created (see
Table 4).

Table 4. Categorization of methods in selected articles used to streamline the categorizations found
in the explored literature. The mentioned references below created categorizations in their review.

Ref. Categorizations of FDD Methodologies

Katipamula et al. [10]
- Qualitative-model-based
- Quantitative-model-based
- Process-history-based

Zhao et al. [21] - Data-driven-based
- Knowledge-driven-based

Mirnaghi et al. [13] - Data-mining methods
- Statistical methods

Zhang et al. [38] - Model-based methods
- Data-based methods

Li et al. [22] - Manual feature engineering
- Automated feature engineering

Ahmad et al. [12]
- Prediction
- Optimization
- Control and diagnosis

An attempt to streamline the categorizations found in the explored literature in Table 4
above is presented in Figure 3. This file is available in a GitHub repository [36] and is
open for additional contributions. Zhao et al. [21], Katipamula et al. [11], Woohyun and
Katipamula [14], Gourabpasi and Nik-Bakht [20], Li et al. [22], Shi et al. [26], and Ahmad
et al. [12] were not included due to similar definitions and not the focus of these reviews.
Zhang et al.’s [38] data-based methods and model-based methods were chosen as the base
for further division of the articles, since (1) this article mainly concerned a bibliographic
review of FTC, but also discussed the FDD process; and (2) these definitions were simplistic.

In Figure 3, the suggested categorization consists of model-based methods and data-
based methods to distinguish if historical measurements of the building are needed to
initialize the method or not. In the case of model-based methods, experts can set up this
model while only knowing the metadata of the building or system. However, data-based
methods require initial data and calibrated measurement training data. Even though these
divisions seem intricate, the transition from one to the other can be relatively un-demanding
for some methods. For example, if a simplified physical model (white-box model) is used,
it can become a gray-box model by having coefficients that require building or system-
specific training data to be approximated. This is why gray-box models were classified as
data-based methods in this review, but they are always on the border between model-based
and data-based, as they are created using physical knowledge but trained using historical
data of the system. An examples of this was found in [41], in which a gray-box model
(in this case, a resistor–capacitor (RC) model) was compared to a detailed physical model
(EnergyPlus model). The deviation between the selected key performance indicator (KPI)
was then used for FD. The gray-box model was trained using two weeks of data from the
physical model, and it predicted an indoor air temperatures close to the physical model
under fault-free conditions. Gray-box models also have been used as a basis in FD or FDD
schemes for providing the reference model needed for residual comparison [42–46].
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This review’s main dividers (model-based and data-based) were further split into qual-
itative and quantitative methods. Both model-based and data-based qualitative methods
focus on rules [47–49] and relations between parameters [8,50,51]. Contrarily, the model-
based quantitative methods focus more on using a reference model to compare the mea-
sured data from the system [42,43,52]. Data-based quantitative methods use statistics for,
among others, data clustering [53–55], pattern recognition [56–58] and classification [59–61]
to extract the knowledge from the data.

3.2.1. Data-Based Methods

As mentioned above, data-based methods rely on initial measured data to train the
model serving as a system reference. This is one of the strengths of these methods, as they
do not necessarily rely on knowing the system’s physics and characteristics beforehand.
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On the contrary, they are calibrated with real measurement data to fit the system’s actual
behavior [62–64]. Furthermore, this is also a weakness of data-based methods, as using
the data from the specific systems means that the model is well fitted for the system, but
cannot be directly applied to another similar system. Even though it is the same type,
the specific behavior might differ significantly. This problem was demonstrated in [65],
in which several different FD models for a reversible heat pump were trained using an
experimental dataset [66] and then applied in FD using a real building dataset [67]. The
results can be seen in Figure 4. For all the methods, just applying the trained model to
a different system meant that the Matthews correlation coefficient (MCC) [68] dropped
from 0.40–0.75 to 0–0.05, except for the naïve Bayes classifier (NB), which had a poor
performance from the beginning. When modifying the labels of the actual building dataset
to also include timesteps right before failure, the classification and regression tree (CART)
and random forest classifier (RFC) models could predict the faults before they occurred,
but not well enough to serve as the sole FD method of a system.
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Figure 4. MCC for the FD model. The training system is the system on which the model is trained.
The directly transferred system is the new system in which nothing is changed about the model or
system. The transferred system with improved fault labels uses the original models, but has better
fault labels. This figure is adapted from [65], Figures 7–9, which was published in the Energy journal,
198, G. Bode, S. Thul, M. Baranski, D. Müller, “Real-world application of machine-learning-based
fault detection trained with experimental data”, 5–6, Copyright Elsevier 2020.

In addition the data-based method’s ability to be fitted to a system, it is also com-
mon for these methods to continuously be updated over time to adapt to a system’s
changes [69,70]. Of course, the update frequency and relevance depend on the method
used. Some methods are based on this continuous fit of parameters, with the change in
fitted parameters being the fault indicator. This was performed with both autoregressive
with exogenous input (ARX) and autoregressive moving average with exogenous input
(ARMAX) models [71]. The data-based methods can be fast and easy to set up in this case,
and were recommended in [13,14] to be used in future FDD implementations.

3.2.2. Model-Based Methods

On the one hand, model-based methods have the advantage of typically being based
on a system’s physics, thereby enabling easier understanding and interpretation of the
behavior and results of the methods [49,72,73]. On the other hand, they have the disad-
vantage of needing experts to set them up for each system individually, meaning that it
the process to create them can be labor-intensive initially. However, transferring them
to similar systems requires less labor. This category of methods is broad, spanning from
detailed physical models to simple alarms. Quantitative methods are generally based on
physics, while qualitative methods are based on rules or relations between variables.
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3.2.3. Hybrid Methods

Several of the FDD methods found in the literature consisted of a combination of
algorithms from both data-based and model-based methods. Examples of combined data-
based quantitative and model-based qualitative methods [72,74] and combined data-based
quantitative and model-based quantitative methods [75,76] were found. These were defined
as hybrid methods. However, for identifiability, we chose to classify them according to
their individual methods; otherwise, every combination would need to be included.

4. Results of the Review, Part II: FDD in Building Systems
4.1. Overview of the Articles

The keywords, journals, and countries (of the publishing research teams) found in the
reviewed articles are presented in this section. As shown in Figure 5, the prominent actors
working in the field of FDD in building systems are China and the USA. The latter were
involved in approximately 60% of the publications. An interactive figure is available on a
GitHub repository [36].
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In the left part of Figure 6, one can observe that the journal Energy and Buildings
accounts for almost 25% of the literature on the topic, followed by six other journals
(between 10 and 20 articles each). The journals with less than 10 articles made up 19% of
the literature. In the word cloud of keywords in the right part of Figure 6, one can observe
that the articles investigating FDD in building systems usually used fault detection, fault
diagnosis, fault detection and diagnosis, and FDD. Diagnose, diagnostic, and diagnostics
were also common variants used instead of diagnosis.

4.2. Categorization of the Articles

The explored literature was sorted based on EST groups (see Figure 7) according
to [77], which provided a clearer perspective from the building and systems point of view.
Table 5 describes the explored literature within the EST groups, the corresponding building
system, and its components. The delimitations of the investigated articles resulted in the
following EST groups being excluded: building envelope, energy storage (EV battery),
energy storage (other), energy grid, environmental energy, and appliances.
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Table 5. The defined EST groups, the corresponding building systems, and components.

Energy System Terminology Groups Building System

Energy conversion

Centralized heating system (CHS)

Centralized cooling system (CCS)

Terminal unit/air conditioning system (TU/AC)

Energy distribution
Air-handling unit (AHU)

Terminal unit/air-conditioning system

Energy use Whole building (WB)

Figure 7 presents the distribution of the articles in each EST group sorted by the
building systems above. As one can observe, the energy conversion and the building
system CCS had the highest share of publications (approximately 55%). Energy distribution
and AHU were present in close to 40% of the articles.
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Figure 8 describes the articles sorted by building system and year of publication. The
year 2021 only included articles investigated until April 2021. On the one hand, the AHU
was the most-investigated building system in the last decades. On the other hand, the CCS
building system also was widely studied, but has seen an increased interest since 2008.
Figure 8 contains a treemap of the EST groups and the number of articles.
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Figure 8. Number of articles within each EST group.

Figure 9 describes a two-layered structure of the number of articles (layer two) within
each EST group (layer one). The color code from layer two is represented in Figure 10, in
which the number of articles is sorted by building system and year of publication. The year
2021 only covers publications until April 2021.
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Figure 10. Articles sorted by building system and year of publication. The year 2021 only covers
publications until April 2021.

4.3. Modeling Approach

Based on the EST groups in Figure 7, the reviewed articles were further sorted into the
categories defined in Figure 3 and presented in Figure 11. This figure presents four layers.
Layer one is the EST groups and is further divided into layer two, data-based or model-
based methods. Layer two is then further divided into quantitative and qualitative methods
(layer three), separately for the data- and model-based methods. Layer three is then further
divided into algorithms in layer four. The algorithms were adopted from Figure 3 and
were divided into the following categories: machine learning, statistical, artificial neural
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network, gray box, fuzzy logic, physical model, estimator-based, casual model, and ARMA.
These categories are further described in the respective literature presented in Table 4.
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As one can observe in Figure 11, the data-based methods were the major modeling
approaches in all the EST groups. Within the data-based methods, the quantitative model-
ing method (machine learning, statistical, and artificial neural network algorithms) was
predominantly used; while in the model-based methods, estimator-based, rule-based, and
causal models were found to be used. Nevertheless, several of the articles within energy
conversion under the machine learning algorithm category used principal component
analysis (PCA) in correlation with other algorithms; PCA is not, by definition, a machine
learning algorithm.
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4.4. Algorithm Distribution

This subsection presents the FD, two-step FDD, and one-step FDD algorithm distri-
bution. The two-step FDD typically requires two different algorithms: one to detect the
fault and one to diagnose the fault. In comparison, one-step FDD uses a single algorithm to
simultaneously perform fault detection and diagnosis. A complete list of all the articles
with the year of publication, building system, component, and EST group can be found
in Appendix A. As this review was focused on creating a common glossary and under-
standing of FDD, the specific workings of the different algorithms are not explained. To
read more about the details of each algorithm, it is suggested to read either the individual
articles associated with each algorithm, or see the previously mentioned literature reviews,
especially for building systems [12,14,22,78–80] for a three-part review on fault detection
and diagnosis explicitly targeting the characteristics of each algorithm.

Table 6 presents the general overview of the algorithms used for FD and one- and
two-step FDD in all the articles in the selected EST groups. Please note that Table 6 consists
of the sum across the EST groups. Table 7 presents the FD and one- and two-step FDD
grouped by the EST groups. The four most used algorithms are discussed in further
detail hereafter.

Table 6. Fault detection (FD) and one- and two-step FDD methods used in all the articles.

Category
Fault Detection

Two-Step Fault Detection
and Diagnosis

(Fault Detection/Diagnosis)

One-Step Fault Detection
and Diagnosis

(70 Articles) (55 Articles) (97 Articles)

The four most applied
algorithms for all articles.

Building system was not taken
into account in this category.

PCA (8) [81–88] PCA + Q-statistics/Q-contribution
plot (3) [89–91] SVM (18) [56,57,70,92–106]

ANN (4) [107–110] Gray-box model/expert ruleset (2)
[111,112] Ruleset (4) [48,49,113,114]

ARX (3) [71,115,116] - Residuals (3) [42,43,117]

- - DBN (3) [118–120]

A complete list of all the articles with the year of publication, building system, compo-
nent, and EST group can be found in Appendix A. See [7,13,20] for a broader overview of
typical faults, building systems investigated, and trends in this research area.

In Table 6, one can observe that PCA, ANN, and ARX were the most used methods
for only fault detection. PCA was the most common, as it was used in 13% of the articles
performing only FD. When used in combination with other methods, it was used in
22 articles (31%). PCA was also the most common algorithm for two-step FDD, combined
with Q-statistics for detection and a Q-contribution plot for diagnosis. Further, a gray-
box/expert ruleset also was used. As the variability in the algorithm combinations was high
in the two-step FDD, it was not possible to conclude the historically preferred algorithm. A
support vector machine (SVM) was mainly used in the one-step FDD methods, appearing
in 17% of the articles. Finally, ruleset, residuals, and diagnostic Bayesian network (DBN)
were typical methods for one-step FDD.

Figures 12–14 describes the distribution of articles within each EST group and FD,
two-step FDD, and one-step FDD. Articles with algorithms only used once do not have a
label in the figures, but can be found in Appendix A.

Figure 12 shows that a vast amount of algorithms were applied in the different re-
viewed articles. However, a few of them stood out. For energy-conversion systems, these
were PCA and variations of PCA. Further, residuals, multilayer perceptron (MLP), and
ANN + residual algorithms were applied twice. Moreover, for energy distribution, the
Chernoff bound, and for energy use, ANN were both found to be applied two times.



Energies 2022, 15, 4366 18 of 50

Energies 2022, 15, x FOR PEER REVIEW 18 of 51 
 

 

especially for building systems [12,14,22] and [78–80] for a three-part review on fault de-

tection and diagnosis explicitly targeting the characteristics of each algorithm. 

Table 6 presents the general overview of the algorithms used for FD and one- and 

two-step FDD in all the articles in the selected EST groups. Please note that Table 6 consists 

of the sum across the EST groups. Table 7 presents the FD and one- and two-step FDD 

grouped by the EST groups. The four most used algorithms are discussed in further detail 

hereafter. 

Table 6. Fault detection (FD) and one- and two-step FDD methods used in all the articles. 

Category 
Fault Detection 

Two-Step Fault Detection and  

Diagnosis 

(Fault Detection/Diagnosis) 

One-Step Fault Detection 

and Diagnosis 

(70 Articles) (55 Articles) (97 Articles) 

The four most applied algo-

rithms for all articles. 

Building system was not taken 

into account in this category. 

PCA (8) [81–88] 
PCA + Q-statistics/Q-contribution plot (3) 

[89–91] 
SVM (18) [56,57,70,92–106] 

ANN (4) [107–110] 
Gray-box model/expert ruleset (2) 

[111,112] 
Ruleset (4) [48,49,113,114] 

ARX (3) [71,115,116] - Residuals (3) [42,43,117] 

- - DBN (3) [118–120] 

A complete list of all the articles with the year of publication, building system, com-

ponent, and EST group can be found in Appendix A. See [7,13,20] for a broader overview 

of typical faults, building systems investigated, and trends in this research area. 

In Table 6, one can observe that PCA, ANN, and ARX were the most used methods 

for only fault detection. PCA was the most common, as it was used in 13% of the articles 

performing only FD. When used in combination with other methods, it was used in 22 

articles (31%). PCA was also the most common algorithm for two-step FDD, combined 

with Q-statistics for detection and a Q-contribution plot for diagnosis. Further, a gray-

box/expert ruleset also was used. As the variability in the algorithm combinations was 

high in the two-step FDD, it was not possible to conclude the historically preferred algo-

rithm. A support vector machine (SVM) was mainly used in the one-step FDD methods, 

appearing in 17% of the articles. Finally, ruleset, residuals, and diagnostic Bayesian net-

work (DBN) were typical methods for one-step FDD. 

Figures 12–14 describes the distribution of articles within each EST group and FD, 

two-step FDD, and one-step FDD. Articles with algorithms only used once do not have a 

label in the figures, but can be found in Appendix A. 

 

Figure 12. Energy-conversion, energy-distribution, and energy-use EST groups for FD. Figure 12. Energy-conversion, energy-distribution, and energy-use EST groups for FD.

Energies 2022, 15, x FOR PEER REVIEW 19 of 51 
 

 

 

Figure 13. Energy-conversion, energy-distribution, and energy-use EST groups for two-step FDD. 

 

Figure 14. Energy-conversion, energy-distribution, and energy-use EST groups for one-step FDD. 

Figure 12 shows that a vast amount of algorithms were applied in the different re-

viewed articles. However, a few of them stood out. For energy-conversion systems, these 

were PCA and variations of PCA. Further, residuals, multilayer perceptron (MLP), and 

ANN + residual algorithms were applied twice. Moreover, for energy distribution, the 

Chernoff bound, and for energy use, ANN were both found to be applied two times. 

For two-step FDD, which can be seen in Figure 13, all algorithms were found to be 

only used once. As two-step FDD requires two various algorithms, one for fault detection 

and one for diagnosis, this was considered a natural finding. It could, however, also imply 

that the field is still in the process of maturing through testing different combinations of 

algorithms. 

Figure 13. Energy-conversion, energy-distribution, and energy-use EST groups for two-step FDD.

For two-step FDD, which can be seen in Figure 13, all algorithms were found to be
only used once. As two-step FDD requires two various algorithms, one for fault detection
and one for diagnosis, this was considered a natural finding. It could, however, also imply
that the field is still in the process of maturing through testing different combinations of
algorithms.

The distribution of the one-step FDD can be seen in Figure 14. SVM was applied
five times in the energy-conversion group. Further, the Bayesian network (BN), back-
propagation neural network (BPNN), DBN, decision tree (DT), multiclass SVM, radial
basis function exponentially weighted moving average (RBF-EWMA), and residual + fault
pattern analysis were all found to be applied two times. In the energy-distribution group,
the ruleset was applied three times, while a wavelet neural network (WNN), DBN, fuzzy
model + degree of belief, and residuals were all found to be applied two times. Moreover,
all algorithms in the energy-use group were found to only be applied once.

In Table 7, it can be seen that a variety of algorithms have been used for different
building systems. PCA was generally used for CHS and CCS in energy conversion for
fault detection. The PCA algorithm’s main feature is based on the possibility of reducing a
higher-dimensional space into a lower-dimensional space. This algorithm is appropriate
for fault detection as a fault deviates from a reference behavior, and is therefore a relatively
simple and easily applicable method for FD. It is more challenging for fault diagnosis, as it
typically requires labeled data. For AHU in the energy-distribution group, Chernoff bound
(CB) was found to be applied two times. The method is generic, with the potential to be
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applied to many different systems, as stated in [121]. In addition to the generic properties
of this method, it is also relatively simple to implement and scale to different systems, as it
is based on outlier detection. The method itself was developed in [122]. For TU/AC, the
combination of a model for predictions and residuals (the difference between model and
actual measurements) was applied in two cases. This method is simple to implement, but
requires significant expert knowledge. In [41], the method was deployed as an RC model to
be compared with an EnergyPlus model instead of an actual building. The method detected
faults correctly in 70 to 82% of the cases. CART was used in four articles on FD for the EST
energy-use group. This method is used because it provides a decision tree with if–then
rules, meaning that the outcome is interpretable by both humans and computers [55,61,123].
Regarding classification accuracy (CA) [61], it was between 80 and 90%, while the rest did
not provide a detection-accuracy measure.
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For two-step FDD, the general trend was challenging to observe, as there was a great
variety in the algorithms. However, gray box and expert ruleset, as well as PCA with Q-
statistics and Q-contribution plot, were tested twice each. In the case of the gray-box model
and expert ruleset, the gray box is a reference model that is meant to be compared to the
available measurements, while the expert ruleset determines the fault threshold [111,112].
In [111], the expert ruleset was determined based on the physical behavior of the parameters,
and implemented as dividers based on the ratio between the measurement and reference
model and the normalized heat-transfer coefficient. The method does suffer from the choice
of the confidence interval, as increasing the sensitivity to faults also increases the number of
false positives (detecting faults when there are no faults). The vital point is that no dataset
with ground truth is needed for the method. The PCA with Q-statistics and Q-contribution
plots were based on calculating the Q-statistics for each component, with a threshold for the
fault-detection part, followed by a Q-contribution plot for the fault diagnosis, to identify the
most probable cause of the fault [89–91]. One point noted in [90] was that the PCA model
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needed to be updated when the measurement conditions excessively changed. Otherwise,
there was a risk of an increase in the false-positive results.

Table 7. FD and one- and two-step FDD algorithms divided by the EST groups. Fields indicated with
(-) mean that no trend was found.

Energy System
Terminology Category Fault Detection

Two-Step Fault Detection
and Diagnosis

(Fault Detection/Diagnosis)

One-Step Fault Detection
and Diagnosis

Energy conversion

CHS
(11 Articles) (1 Article) (8 articles)

PCA (3) [81–83] - BN (2) [124,125]

CCS

(24 articles) (26 articles) (41 articles)

PCA (6) [82,84–88] Gray-box model/Expert
ruleset (2) [111,112] SVM (9) [56,57,94–96,100,101,104,105]

- - Residuals + fault-pattern analysis (2)
[126,127]

TU/AC
(1 article) (2 articles) (9 articles)

- - DT (2) [64,92]
Energy distribution

AHU

(23 articles) (18 articles) (34 articles)

CB (2) [121,128] PCA + Q-statistics/Q-contribution
plot (2) [89,90] Ruleset (4) [49,113,114]

- - Fuzzy model + degree of belief (2)
[129,130]

- - Hidden Markov model (HMM) (2)
[131,132]

- - WNN (2) [133,134]

CCS
(1 article) (0 articles) (1 article)

- - -

TU/AC
(2 articles) (1 article) (4 articles)

Model + Residuals (2)
[41,135] - Residuals (2) [42,43]

Energy use

WB

(13 articles) (7 articles) (4 articles)

Cart + (various) (4)
[55,61,123,136] - -

For one-step FDD, SVM was used 18 times [56,57,70,92–106], with 9 of these regarding
CCS, while rulesets were used 4 times for AHU [48,49,113,114]. Typically, labeled datasets
are needed for one-step FDD, as supervised-learning algorithms are used. This eases
the FDD process by skipping the FD step, but might be more computationally heavier.
SVM is a supervised-learning algorithm based on finding the hyperplane that results in
the most considerable minimum distance to the training examples. The reasons for its
widespread use are the high accuracy obtained from the algorithm compared to other
algorithms [57,101] and its ability to be combined with other algorithms [57]. In addition,
FDD algorithms using rulesets and thresholds can be fast and easy to program. Rulesets
require expert knowledge to derive a set of rules (if–then–else). However, the flexibility of
these models can be lost if additional rules or changes are needed.
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5. Results of the Review, Part III: The Importance of Driving Research Innovation
5.1. Datasets and Code

This subsection discusses reproducibility in the FDD articles and presents the available
code and datasets found in the explored literature.

Reproducibility is one of the keys to reliable research, and can contribute to devel-
opment, innovation, and collaboration between the industry and the scientific commu-
nity [137]. Generally, there was no uniform guideline regarding what to include in the
published articles regarding reproducibility, as this was up to each publisher. Consequently,
there was a wide variety of appendices, data, and supporting materials in the published
articles. As presented before, there exist numerous approaches applicable to FDD. How-
ever, FDD frameworks that mainly use machine-learning algorithms may benefit from
the reproducibility potential of machine-learning pipeline practices, which systematically
include the code, data, and computing environment [138]. Nevertheless, this is a very
valuable praxis that is common in, for example, data science, computer science, electrical
engineering, or mathematics, but it has yet to be adopted within civil engineering, as this
field increasingly relies on big data.

In Table 8 below, an article from this review is presented if it met one or more of the
following criteria: included pseudo-code, dataset (applied to test or validate algorithm),
or reference to a dataset, source code, or similar, that could relate and support repro-
ducible research. Several articles included equations or algorithms; however, most of them
only described general concepts, and did not provide the details of applied algorithms.
Reproducible research was thus cumbersome.

Table 8. Datasets and code used in the explored literature.

Ref. Dataset Description Can be
Found Here

[139]

Dataset for building fault
detection and diagnostics

algorithm creation and
performance testing

Open datasets (both numerical simulations and
fault emulation in laboratory). [140]

[93,97,141–147] ASHRAE RP-1312 States which dataset they used. [148]

[58] ASHRAE RP-1020
and ASHRAE RP-1312 States which dataset they used. [148,149]

[56,57,59,70,84,94–
96,101,105,111,132,150–171] ASHRAE RP-1043 States which dataset they used. [172]

[173] ASHRAE RP-1139 States which dataset they used. [174]

[86,175–179] Electric factory dataset States which dataset they used. [180]

[45,99,142,143,181–184] - Provided pseudo code in article. -

[185,186] - Explicit equations in Appendix. -

[166] - Source code in MATLAB and Python under
“supplementary material” online. -

[94] - Source code and user manual for method in the
data repository. [187]

[188] - Python source code is in the appendix of
the article. -

5.2. Do Available Datasets Drive the Research?

Among the numerous publications that were reviewed in this article, several datasets
were identified. However, some of them had a higher applicability and openness than
others. In this subsection, these identified datasets are presented and discussed in brief.
Of the different datasets, two were predominantly used: “ASHRAE RP-1043” [172] and an
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“electric factory” [180]. These datasets focused on a CCS. The ASHRAE RP-1043 dataset
was part of the ASHRAE Research Project 1043, in which the objective was to develop
tools for the evaluation of FDD algorithms suitable for chillers. The electric factory dataset
contains measurements from a screw chiller system in a real electric factory located in
Wuhan, China.

5.2.1. Dataset Analysis

Figure 15 shows the number of articles investigating CCS and how many used the
ASHRAE RP-1043 or the electric factory datasets. Green and red arrows indicate when the
ASHRAE RP-1043 and the electric factory datasets became available. One can observe in
the figure below that the publications on CCS were highly investigated using the datasets
presented above—the ASHRAE RP-1043 (green column) and the electric factory dataset
(red column), respectively. Especially in 2016 and 2018, 8 out of 12 and 7 out of 8 articles
on CCS used these datasets. The use of the electric factory dataset decreased after 2018.
However, the ASHRAE dataset is still frequently applied.
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Figure 15. Number of publications on CCS and datasets used. Black: total number of publications on
CCS per year. Yellow: the sum of the presented datasets. Green: number of articles on CCS using the
ASHRAE RP-1043 dataset. Red: number of articles on CCS using the electric factory dataset. The
green and red arrows indicate when the ASHRAE RP-1043 dataset and the electric factory dataset,
respectively, became publicly available.

A cumulative sum chart (CUSUM) analysis performed on the data in Figure 15 indi-
cated a sharp and significant increase in the number of publications after the release of
these two datasets, as can be seen in Figure 16. A changepoint analysis was performed
using the bootstrap method to determine the confidence level [189]. The boxplot shows
that the bootstraps returned a lower Sdiff value, indicating a significant changepoint, with
a confidence level of >99%. The negative values of the CUSUM plot indicated that, as
expected, there was an upward shift, meaning that the number of articles had increased.
The results of the CUSUM estimator confirmed that a change occurred in 2010.



Energies 2022, 15, 4366 23 of 50

Energies 2022, 15, x FOR PEER REVIEW 23 of 51 
 

 

 

Figure 15. Number of publications on CCS and datasets used. Black: total number of publications 

on CCS per year. Yellow: the sum of the presented datasets. Green: number of articles on CCS using 

the ASHRAE RP-1043 dataset. Red: number of articles on CCS using the electric factory dataset. The 

green and red arrows indicate when the ASHRAE RP-1043 dataset and the electric factory dataset, 

respectively, became publicly available. 

A cumulative sum chart (CUSUM) analysis performed on the data in Figure 15 indi-

cated a sharp and significant increase in the number of publications after the release of 

these two datasets, as can be seen in Figure 16. A changepoint analysis was performed 

using the bootstrap method to determine the confidence level [189]. The boxplot shows 

that the bootstraps returned a lower Sdiff value, indicating a significant changepoint, with 

a confidence level of >99%. The negative values of the CUSUM plot indicated that, as ex-

pected, there was an upward shift, meaning that the number of articles had increased. The 

results of the CUSUM estimator confirmed that a change occurred in 2010. 

 

Figure 16. CUSUM chart for investigations of chillers (on the left) and the Sdiff boxplot for the 

changepoint and the bootstraps (on the right) for CCS articles. 

5.2.2. Performance Evaluation Metrics 

The performance evaluation metrics for the articles applying the ASHRAE RP-1043 

dataset are further presented and discussed in this subsection. Furthermore, four chal-

0
1
2
3
4
5
6
7
8
9

10
11
12
13

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

N
u

m
b

er
 o

f 
ar

ti
cl

es

Publications on CCS Sum of datasets

Dataset from ASHRAE RP-1043 Dataset from electric factory

-40

-30

-20

-10

0

10

1992 1998 2004 2010 2016

C
U

S
U

M
 [

−]

Time [Year]

CUSUM chart for the investigations of 

chillers  

Figure 16. CUSUM chart for investigations of chillers (on the left) and the Sdiff boxplot for the
changepoint and the bootstraps (on the right) for CCS articles.

5.2.2. Performance Evaluation Metrics

The performance evaluation metrics for the articles applying the ASHRAE RP-1043
dataset are further presented and discussed in this subsection. Furthermore, four challenges
arose from these findings. Firstly, it was apparent that there were several definitions for the
same metric. For example, in the case of FD, it was found that one of the metrics had seven
different definitions: fault detection rate, correct rate, detection accuracy, classification
accuracy, hit rate, recall, and true positive rate. This can be seen in Table 11. Secondly, there
were cases in which a similar definition was used when specifying different metrics. This
was especially the case for “False Alarm Rate” (FAR), which was shown to be calculated
using two different algorithms for both FD and FDD, with the algorithms not providing
the same result. Thirdly, many articles stated what metric was used without making it clear
how it was calculated. This might not be a problem if a consensus about the naming of the
different metrics existed, but as shown, it did not appear to be settled. The last challenge was
that the reviewed articles used different metrics, meaning that comparisons between the
articles became either complicated or impossible, depending on the information available
in the different metrics.

To alleviate some of these challenges, several proposals were discussed. For the first
and second challenges, a standardized definition convention for the confusion matrix is pro-
posed in Table 9 (confusion matrix of FD, one faulty and one nonfaulty class) and Table 10
(confusion matrix of FDD, multiple faulty and one nonfaulty class). These two tables were
inspired by the work in [104]. Examples of how the confusion matrix previously was used
can be found in [96,104,105,111,150,155,156,158,160,161,163,168,170]. The variations in the
performance evaluation metrics definitions are described in Table 11. The performance
evaluation metric with an underscore is the name suggested for future application to avoid
confusion. The references in bold specified precisely how the metric was calculated and the
name of the metric. The references without bold text only stated the name of the metric,
and not the numerical calculation. The third challenge can be solved by encouraging
authors of future articles to clarify precisely how the metric is calculated. Lastly, the fourth
challenge requires a joint initiative, as standard metrics should be defined or developed.
However, it can only be alleviated by authors providing the confusion matrix, as performed
in [96,104,105,111,150,155,156,158,160,161,163,168,170]. This will allow other authors to
calculate the metrics they need from the different articles, thus enabling better comparison.
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Table 9. Proposed generalized definition template for confusion matrix of FD (one faulty and one
nonfaulty class).

Predicted Class NP

Negative (Nonfaulty) NP,N Positive (Faulty) NP,P

True
class NT

Negative (Nonfaulty)
NT,N

TN (No alarm) FP (False alarm)

Positive (Faulty)
NT,P

FN (Missed alarm) TP (Alarm)

Table 10. Proposed generalized definition template for confusion matrix of FDD (multiple faulty and
one nonfaulty class).

Predicted Class NP

Negative
(Non-Faulty)

NP,N

Positive
(Fault 1)
NP,P,cp

. . .
Positive

(Fault n − 1)
NP,P,cp

Positive
(Fault n)
NP,P,cp

True
class NT

Negative
(Nonfaulty)

NT,N

TN (No alarm) FP,cp (False alarm)

Positive (Fault 1)
NT,P,ct

FN,ct (Missed alarm)

TP,ct = TP,1
(Alarm)

... TP,ct (Alarm) FP,ct,cp (Misdiagnosed alarm)

Positive (Fault n
− 1)

NT,P,ct

FP,ct,cp (Misdiagnosed alarm) TP,ct = TP,n−1
(Alarm)

Positive (Fault n)
NT,P,ct

TP,ct = TP,n
(Alarm)

TP is the true-positive result (fault is detected and is present), TN is the true-negative
result (fault is not detected/diagnosed and is not present), FP is the false-positive re-
sult (fault is detected and is not present), FN is the false-negative result (fault is not de-
tected/diagnosed and is present), N is the total number of samples (both faulty and
nonfaulty), NT,P is the total number of true positive (faulty) samples, NT,N is the total
number of true negative (nonfaulty) samples, NP,P is the total number of predicted positive
(faulty) samples, NP,N is the total number of predicted negative (nonfaulty) samples, and
Nc is the number of classes (both faulty and nonfaulty).

TP,ct is the true-positive result for each fault class (fault is diagnosed and is present), TN
is the true-negative result (fault is not detected/diagnosed and is not present), FP,cp is the
false-alarm result (fault is diagnosed and is not present), FP,ct,cp is the misdiagnosed-alarm
result (fault is diagnosed and is not the correct class), FN,ct is the false-negative result (fault
is not detected/diagnosed and is present), N is the total number of samples (both faulty
and nonfaulty), NT,P,ct is the number of true positive (faulty) samples for each fault class,
NT,N is the total number of true negative (nonfaulty) samples, NP,P,cp is the number of
predicted positive (faulty) samples for each fault class, NP,N is the total number of predicted
negative (nonfaulty) samples, and Nc is the number of classes (both faulty and nonfaulty).
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Table 11. The performance evaluation metric with an underscore is the name suggested for future
application to avoid confusion. The references in bold specifies precisely how the metric was
calculated and the name of the metric. The references without bold text only stated the name of the
metric, and not the numerical calculation.

Reference Performance Evaluation Metric Equation

[96,104,105,111,150,155,156,158,
160,161,163,168,170] Confusion matrix -

Used in FD (1 nonfault class and 1 fault class)

Global [104,105] Correct rate (CR) TP+TN
N

[104] Misclassification rate (MisCR) 1− TP+TN
N = FP+FN

N

Local

[57,153,164,168,171]
[154]

[70,84]
[101]

[104,105]
[104]
[104]

Fault-detection rate (FDR)
Correct rate

Detection accuracy
Classification accuracy

Hit rate
Recall

True-positive rate

TP
TP+FN

= TP
NT,P

[153] False-alarm rate FP
FP+TP

= FP
NP,P

[57,84,104,105,111,154,168,171] False-alarm rate (FAR) FP
FP+TN

= FP
NT,N

Used in FDD (1 nonfault class and multiple fault classes)

Global

[56,57,94,95,151,152,155,156,158,
161,163,166]

[96,104,105,150]
[159,160,165,169,190]

[101]
[162]

Accuracy
Correct rate (CR)

Correct diagnosis rate
Classification accuracy

Diagnosis rate

TN+∑ TP,ct
N

[159,165,169,190] False-diagnosis rate (FaDR) 1− TN+∑ TP,ct
N

[94] Macro-F1 (MF1) [191] ∑
Nc−1
c=1 F1

Nc

[95] Matthews correlation coefficient (MCC) TN∗∏ TP,ct√
NT,N∗∏ NT,P,ct∗NP,N∗∏ NP,P,cp

[95] G-mean
√

∏ PREC

Local

[155,161] False-alarm rate ∑ FP,cp+∑ FP,ct,cp

∑ FP,cp+∑ FP,ct,cp+∑ TP,ct
= ∑ FP,cp+∑ FP,ct,cp

∑ NP,P,cp

[56,104,105,167] False-alarm rate (FAR) ∑ FP,cp

∑ FP,cp+TN
= ∑ FP,cp

∑ NT,N

[155] Fake-alarm rate (FaAR) ∑ FP,cp

∑ FP,cp+∑ FP,ct,cp+∑ TP,ct
= ∑ FP,cp

∑ NP,P,cp

[155,156] Misdiagnosed-alarm rate (MisR) ∑ FP,ct,cp

∑ FP,cp+∑ FP,ct,cp+∑ TP,ct
= ∑ FP,ct,cp

∑ NP,P,cp

[155] Missed-detection rate (MDR) ∑ FN,ct
∑ FP,cp+∑ FP,ct,cp+∑ TP,ct

= ∑ FN,ct
∑ NP,P,cp

[156] Misdiagnosed normal rate (MisNR) 1− TN
TN+∑ FP,cp

= 1− TN
∑ NT,N

Local
(calculated per

class)

[95,156]
[157,167,170]

Precision (PREC)
Diagnosis ratio

TP,ct
NP,P,cp

or TN
NP,N

[104,156]
[59]
[95]

[111]
[104,105]

[157,167,170]

Recall (REC)
Sensitivity index

Sensitivity
Successful diagnosed ratio

Hit rate
Detection ratio

TP,ct
NT,P,ct

or TN
NT,N

[156]
[95]

F1-score (F1)
F-measure

2∗PREC∗REC
PREC+REC

[56] False-negative rate (FNR) FN,ct

FN,ct+∑Nc−1
cp=1 FP,ct,cp+TP,ct

= FN,ct
NT,P,ct

[56] False-positive rate (FPR) ∑Nc−1
cp=1 FP,ct,cp

FN,ct+∑Nc−1
cp=1 FP,ct,cp+TP,ct

=
∑Nc−1

cp=1 FP,ct,cp

NT,P,ct



Energies 2022, 15, 4366 26 of 50

5.3. Current Dataset and Code Repositories

This subchapter aims to increase the awareness of public repositories containing code
and datasets for FDD in the selected building systems listed in Table 12. One should note
that not all datasets are available for free.

Table 12. The current dataset repositories sorted based on the building system, type of data/code,
and whether the dataset was open source. “Experimental data” and “Simulation data” were defined
as the following: experimental data comprised a fault dataset created and emulated in a laboratory;
simulation data comprised a fault dataset created and emulated in a simulation environment.

Building System Description Reference Type of
Data/Code

Open
Source?

Dataset repositories

Chiller Tools and data for FDD methods applied to
chillers: ASHRAE RP-1043 [172] Experimental

data No

Air-handling units
Tools for evaluating fault detection and

diagnostic methods for air-handling units:
ASHRAE RP-1312

[148] Simulation data No

Real building Demonstration of fault detection and diagnostic
methods in a real building: ASHRAE RP-1020 [149] Implementation No

Vapor compression
equipment

Development and comparison of one-lone model
training techniques for model-based FDD

methods applied to vapor-compression
equipment: ASHRAE RP-1139

[174] Simulation/numerical
data No

Chiller Electric factory dataset [180] Experimental
data No

Heat pump Validation of the self-diagnosis efficiency
system [192]

Experimental
data, hardware-in-

the-loop
No

Air-handling unit and
rooftop unit Labeled data for FDD [140] Experimental and

simulation data Yes

Air-handling unit Air-handling fault test data [193] Experimental
data No

Chiller and boiler plant
Automated diagnostic algorithms for chillers,

boilers, cooling towers, and
chilled-water distribution

[194] Simulation data No

Open code and data repositories

Air-handling unit Development of fault models for hybrid fault
detection and diagnostics algorithm [195,196] Code and data Yes

Air-handling unit Fault detection and diagnosis in air-handling unit
using Dymola data [197] Code and data Yes

Building energy-use
data

Methods to analyze the available data set of
historic building energy fault data [198] Code and data Yes

Heat pump and air
conditioner

LabView codes and associated codes for using a
rule-based-chart method of fault detection

and diagnosis
[199] Code and data Yes

6. Discussion of Key Findings
6.1. A Uniform FDD Framework—A Utopia or within Reach?

Three observations were addressed for the first shortcoming: (1) the number of defini-
tions of FD and FDD that existed—these were found both in the definition and terminology
for FDD in building systems and in the use of different variations in keywords, especially
for FDD; (2) the number of different definitions for the same performance evaluation met-
rics found in the reviewed articles increased the gap for a uniform framework; and (3)
the number of different algorithms, including their variations and combinations for FDD,
was immense. On the one hand, this allowed for modeling flexibility, but on the other
hand, this diversity could be perceived as an overwhelming and confusing task. It is thus
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challenging for stakeholders to identify what method is adequate for their specific case
without expert knowledge and competencies in FDD, programming, and HVAC implemen-
tation. This indicated that this field is still under rapid development in the research area,
but lacks practical guidelines; pilot projects; and standardization of vocabulary, methods,
and technologies before being market-ready.

6.2. What Are the Common Algorithms Used for FDD in Building Systems?

FDD algorithms are system-specific, and certain adaptations of code and data are
necessary for each specific building system. However, to investigate trends, an initiative
to divide the building systems into (1) energy system terminologies (energy conversion,
energy distribution, and energy use); and (2) fault detection, two-step fault detection and
diagnosis, and one-step fault detection and diagnosis was undertaken. Of the 221 articles
investigated in this article, PCA was found to be a popular fault-detection method for
all building systems. Moreover, in combination with Q-statistics or Q-contribution, PCA
was the most used algorithm for two-step fault detection and diagnosis, even though it
was only used in 3 out of 55 articles. SVM was the main algorithm used for one-step
FDD. However, in general, it was found that the algorithms varied immensely, and it was
challenging to determine a specific trend in the used algorithms. This was because most
of the algorithms had the potential to perform well or poorly due to the circumstances
(system type, measured variables, preprocessing, or combination with other methods).

6.3. How to Drive the Research Innovation and Increase the Reproducibility of FDD in Building Systems

As open-source practices are becoming increasingly common in the sciences, it is
crucial to increase the reproducibility of FDD articles. All articles for peer-reviewed publica-
tions need to follow a selected principle, for example, the findable, accessible, interoperable,
and reusable (FAIR) principle [200] or PRISMA [34]. Contrary to some other fields, such
as applied mathematics and statistical science, there was an apparent lack of reproducible
material from the reviewed FDD articles. Therefore, more substantial initiatives may be
necessary to adapt this culture to the built environment.

Published work on the topic originated mainly from China and the USA. It seemed
that Europe and the rest of the world are lagging behind. This can create a skewed focus,
as the challenges in these countries might differ. Consequently, the created labeled datasets
and scientific work on FDD from China and the USA mainly focused on CCS in warmer
weather conditions. In general, there were only a few open-access datasets for FDD in
building systems. These consisted of mainly emulated faults in different AHUs. Another
observation was mainly the local use of these datasets. For example, the electric factory
dataset was observed only to be used in China, and the ASHRAE RP-1043 was mainly
used in cooperation with ASHRAE publications. However, increasing the openness of the
existing dataset may also contribute to research innovation in other countries.

7. Conclusions and Suggestions for Future Work

The contribution of this paper was to provide a review of articles focusing on the
three identified shortcomings for FDD in building systems. The identified shortcomings
were: (1) a lack of a uniform glossary in FDD, especially for building systems; (2) a need
for an up-to-date overview of the FDD algorithms for building systems, along with the
different data requirements and necessary inputs to move further toward actual building
implementation; and (3) a shortage of open-source FDD repositories for data and code.

In short, three conclusions were derived from this review. (1) Research on fault
detection and diagnosis in building systems is still at the developing stage. This was evident
through this review, as the identified definitions varied across different built environment
disciplines. In addition, the numerous combinations of the applicable algorithms were
evident through the variety in published work. Therefore, this article aimed to contribute to
a uniform FDD framework. Firstly, this consisted of providing a table with frequently used
definitions, synonyms, and meanings of FDD in building systems, as presented in Section 2.
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Secondly, an FDD method map of the explored existing reviews was provided. This file is
available in a GitHub repository [36] and is open for additional contributions. Thirdly, as
several articles did not concretize whether the FDD process was performed automatically
or manually, it was suggested to use the abbreviations FD, FDD, or FDD&E if the process
is manual or semimanual; and AFD, AFDD, or AFDD&E if the process is fully automatic.
Lastly, a generalized terminology for performance evaluation metrics and templates for
a confusion matrix was proposed (Section 5.2.2). (2) Data drives the research activity.
(3) Reproducibility is a key to enhancing research innovation. Datasets have been shown to
increase research activity. Nevertheless, there is an apparent lack of available open datasets
for FDD. It appeared that a handful of research groups with access to purchasable datasets
are using these extensively. However, the lack of dataset diversity and availability has
restricted FDD research to theoretical articles, and thus has slowed the implementation of
these methods in real buildings. The repetitive use of the same datasets, combined with a
focus on theoretical research, can impose a challenge in the actual implementation of FDD.
This review provided a list and a table of datasets and code to increase the awareness of
available repositories.

More substantial initiatives are needed from publishers to increase the reproducibility
of the publications in the future. Out of 221 articles, only 65 articles added information
that supported reproducible research. This showed that this sector has great potential
in open-source practices. Reproducible research is especially essential for innovation, as
learning from experience and even negative results can constitute new knowledge for
actual building implementation.

Based on the knowledge derived from this review, suggestions for future work are to
identify gaps and barriers to the actual implementation of FDD in existing buildings. In
addition, investigations on how far they have progressed in the industry and how they
approach fault detection and diagnosis in today’s building systems are crucial to further
practical development and implementation.
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Abbreviations
General Abbreviations
Name Abbreviation Name Abbreviation
Air conditioning system AC Feature engineering FEng
Automatic fault detection AFD Fault-relevant features FF
Automatic fault detection and diagnosis AFDD Fault identification FId
Automatic fault detection, diagnosis AFDD&E Fault impact analysis FIA
and evaluation
Active fault-tolerant control AFTC Fault isolation FIs
Air-handling unit AHU Fault-tolerant control FTC
Centralized cooling system CCS Heat pump HP
Centralized heating system CHS Heating, ventilation, and air conditioning HVAC
Control reconfiguration ConRec International Energy Agency IEA
Cumulative sum CUSUM International Energy Agency’s Energy in IEA-EBC

Buildings and Communities Programme
Energy system terminology EST Indoor environmental quality IEQ
European Union EU Key performance indicator KPI
Fault detection FD Machine learning ML
Fault detection and diagnosis FDD Preferred Reporting Items for Systematic PRISMA

Reviews and Meta-Analyses
Fault detection, diagnosis FDD&E Terminal unit TU
and evaluation
Fault evaluation FE Whole building WB
FDD evaluation metric abbreviations
Name Abbreviation Name Abbreviation
Correct rate CR Matthews correlation coefficient MCC
F1-score F1 Missed detection rate MDR
Fake-alarm rate FaAR Macro-F1 MF1
False-diagnosis rate FaDR Misclassification rate MisCR
False-alarm rate FAR Misdiagnosed normal rate MisNR
Fault-detection rate FDR Misdiagnosed alarm rate MisR
False-negative rate FNR Precision PREC
False-positive rate FPR Recall REC
FDD algorithm abbreviations
Name Abbreviation Name Abbreviation
Auto-associative neural network AANN Gordon-Ng model GN
Adaptive synthetic ADASYN Gaussian process GP
sampling approach
Auto encoder AE Gradient penalty GPEN
Adaptive forgetting through AFMM Hidden Markov model HMM
multiple models
Adaptive genetic algorithm AGA Hidden semi-Markov model HSMM
Adaptive Gaussian mixture model AGMM Isolated forest IF
Adaptive neuro-fuzzy ANFIS Joint angle analysis JAA
inference system
Artificial neural network ANN Kernelized discriminant analysis KDA
Self-adapting principal APCA Kernel entropy component analysis KECA
component analysis
Auto-regressive integrated ARIMA Kalman filter KF
moving average
Association rule mining ARM K-means K-means
Autoregressive moving average ARMAX K-nearest neighbor KNN
with exogenous input
Analytical redundancy relations ARR Kriging KRG
Autoregressive with exogenous input ARX Linear discriminant analysis LDA
Adaptive symbolic aSAX Linear regression LIR
aggregate approximation
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Unscented Kalman filter AUK Logistic regression LR
Basic ensemble method BEM Least squares LS
Bayesian interference BI Long short-term memory LSTM
Bayesian network BN Multiconvolutional neural network MCNN
Back-propagation neural network BPNN Multilayer perceptron MLP
Borderline synthetic minority BSM Multiple linear regression MLR
oversampling technology
Class association rules CAR Multiclass neural network MNN
Classification and regression tree CART Mixture of probabilistic principal MPPCA

component analysis
Classification based on association CBA Multiregion XGBoost MR-XGBoost
Complete ensemble empirical CEEMD Multiscale interval-valued principal MSIPCA
mode decomposition

component analysis
Cascade forest CF Multiscale interval principal component analysis MSIPCA
Complex fuzzy principal CFPCA Nonlinear autoregressive with exogenous input NARX
component analysis
Convolutional neural network CNN Naïve Bayes NB
Change point detection CPD Naïve Bayes classifier NBC
Cuckoo search CS Neural network NN
Conditional Wasserstein CW Partitioning around medoids PAM
Conditional Wasserstein generative CWGAN Principal component analysis PCA
adversarial network
Data-temporal attention network DAN Partial least squares PLS
Decoupling-based DB Probabilistic neural network PNN
Diagnostic Bayesian network DBN Pattern-recognition-enhanced sensor fault Pre-SFDD

detection and diagnosis
Deep belief network DBNN Quantitative association rule mining QARM
Density-based spatial clustering of DBSCAN Residual subspace (from PCA) R
applications with noise
Distributed clustering DC Recursive autoregressive with exogenous input RARX
Differential evolution DE Radial basis function RBF
Discrete events system DES Resistor–capacitor RC
Deep neural network DNN Reconstruction based RCB
D-S evidence theory DSET Recurrent cerebellar model articulation controller RCMAC
Decision tree DT Recursive deterministic perceptron RDP
Dynamic Bayesian network DYBN Random forest RF
Evolutionary double attention EDA Random forest classifier RFC
Encoder–decoder network EDN Recursive feature elimination and cross-validation RFECV
Ensemble empirical EEMD Recursive one-class support vector machine ROSVM
mode decomposition
Extended Kalman filter EKF Rough sets RS
Expert knowledge-based EK-UFI Simulated annealing SA
unseen fault identification
Extreme learning machine ELM Supervised auto encoder SAE
Ensemble diagnostic model EMD Stochastic gradient descent with momentum SGDM
Elman neural network ENN Simple linear regression SLR
Extra trees ET Synthetic minority oversampling technology SMOTE
Entropy weighting k-means EWKM Shallow neural network SNN
Exponentially weighted EWMA Self-production SP
moving average
Fractal correlation dimension FCD Statistical process control SPC
Fault detection FD Principal component analysis with SPCA

statistical data cleaning
Fisher discriminant analysis FDA Square prediction error SPE
Fault detection and diagnosis FDD Semisupervised kernelized discriminant analysis SSKDA
Failure mode and effect analysis FEMA Semisupervised linear discriminant analysis SSLDA
Feed-forward neural network FFNN Steady-state qualitative zones SSQZ
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Feature importance FI Support vector data description SVDD
Fuzzy inference system FIS Sensor validity index SVI
Fisher linear discriminant analysis FLDA Support vector machine SVM
Fuzzy principal FPCA Support vector regression SVR
component analysis
Fuzzy reasoning FR Threshold denoising TD
Genetic algorithm GA Tree-structured fault-dependence kernel TFDK
Generative adversarial network GAN Univariate feature selection UFS
General diagnostics engine GDE Variational autoencoder VAE
Generalized extreme GESD Wavelet analysis WA
studentized deviate
Generalized likelihood ratio test GLRT Wavelet neural network WNN
Gaussian mixture model GMM Extreme gradient boost XGBoost
Gaussian mixture regression GMR

Appendix A. FDD Algorithm and Building System Encyclopedia

Table A1. Energy conversion: centralized heating system.

Ref
ID/Ref.

Year
Published Component Fault Detection Fault Diagnosis

General CHS articles FD
536

[115] 2020 Electrical heating ARX + residuals; RF + residuals

702
[81] 2018 Heating reactor; industrial

component PCA + Fisher score + Threshold

713
[109] 2018 ANN + residuals

437
[201] 2013 Solar collector Feature generation + change detection +

residuals
1426
[202] 2008 Residuals

General CHS articles One-step FDD
93

[106] 2020 MSIPCA+KNN; MSIPCA+SVM

967
[103] 2019 Solar heater SVM + DSET

General CHS articles Two-step FDD
1654
[203] 2003 Open window; radiator valve Characteristic parameter + residuals +

threshold
Adaptive model +

residuals
Heat pump articles FD

71
[65] 2020 Heat pump LR; KNN; CART; RFC; NBC; SVM; MLP

111
[60] 2019 Air-source heat pump CNN

724
[82] 2017 Reversible heat pump; sensor PCA; FPCA; CFPCA

785
[204] 2016 Heat pump; geothermal heat

exchanger MLP; DT; FLDA

1218
[74] 2010 Heating energy use; heat pump;

underfloor heating
Statistical analysis + threshold; ruleset;

residuals
1397
[83] 2008 Air-source reversible heat pump PCA + SPE + threshold

Heat pump articles One-step FDD
265

[205] 2017 Sensor; actuator; heat pump “Agents” + residuals + threshold

Both boiler and heat pump articles One-step FDD
49

[118] 2020 Gas boiler; heat pump; aquifer
thermal energy storage DBN

114
[124] 2019 BN

Boiler articles One-step FDD
525
[98] 2020 Boiler KNN; DT; RF; SVM

278
[125] 2017 Boiler; pump; radiator BN

286
[45] 2017 Condensing boiler Residuals
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Table A2. Energy conversion: centralized cooling system.

Ref.
ID/Ref.

Year
Published Component Fault Detection Fault Diagnosis

CCS articles FD
553

[206] 2020 Energy; ground source chiller CEEMD-LSTM

157
[176] 2019 Sensor; chiller EEMD + PCA

174
[177] 2018 Sensor; chiller EMD + TD + PCA

193
[84] 2018 Chillers PCA + BN

713
[109] 2018 ANN + residuals

724
[82] 2017 Reversible heat pump; sensor PCA; FPCA; CFPCA

344
[52] 2016 Heat-exchanger system Residuals + threshold

(t-statistics)
315
[85] 2016 Sensor; chiller PCA

337
[164] 2016 Chillers PCA + R + SVDD

339
[86] 2016 Sensor; chiller; sensitivity

analysis PCA

349
[178] 2016 Sensor; chiller SPCA

402
[76] 2014 Chiller; cooling tower SPC limits

449
[171] 2013 Chillers SVDD

1029
[207] 2013 Cooling tower system; chillers;

heat-exchanger system
Performance index + SVR +

EWMA control charts
463

[180] 2012 Sensor; chiller APCA + Q-residuals + threshold

1366
[208] 2010 Condenser cooling water

systems
Performance index + residuals +

threshold

1382
[88] 2008

Cooling tower systems;
chillers; sensor; heat
exchangers; pumps

PCA

1397
[83] 2008 Air-source reversible heat

pump PCA + SPE + threshold

1432
[209] 2008 Sensor; chiller Wavelet analysis

1468
[210] 2006 Chillers Kalman filter + residuals +

threshold
1485
[211] 2005 Chillers ANFIS

1663
[212] 2002 Chillers ARIMA + threshold

1886
[213] 1996 Sensor; heat exchanger; pump

control DES

CCS articles One-step FDD
15

[166] 2021 Chillers Semi-GAN

18
[161] 2021 Chillers SP-CNN

20
[152] 2021 Chillers SVR+BN

21
[153] 2021 Chillers KECA
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Table A2. Cont.

Ref.
ID/Ref.

Year
Published Component Fault Detection Fault Diagnosis

27
[154] 2021 Chillers Bayesian network

28
[155] 2021 Chillers SA-DNN

495
[214] 2021 Chillers XGBoost + CART + mean shift clustering + Euclidean distance

37
[184] 2020 Chillers Pre-SFDD

41
[185] 2020 Sensor; chiller plant Bayesian

42
[156] 2020 Chillers EMD

49
[118] 2020 Heat pump; aquifer thermal

energy storage DBN

63
[59] 2020 Chillers CBA

92
[56] 2020 Chillers SVM

101
[94] 2020 Chillers RF; SVM; DT; NBC; MLP; KNN; LR

556
[100] 2020 Chillers; unbalanced dataset ADASYN-SVM; BSM-SVM; SMOTE-SVM

572
[101] 2020 Chillers CWGAN-SVM

122
[215] 2019 Sensor; chiller DAN + threshold

126
[95] 2019 Chillers SVM

139
[96] 2019 Chillers LS-SVM

149
[188] 2019 Chiller XGBoost + threshold

176
[181] 2018 Sensor Penalty function + residuals

205
[160] 2018 Chillers ARM + CAR

207
[75] 2018 Chillers GMR-AUK

711
[150] 2018 Chiller BPNN; PNN

279
[216] 2017 Chillers MPPCA

755
[70] 2017 Chillers ROSVM-EKF

304
[165] 2016 Chillers MLR-EWMA; KRG-EWMA; RBF-EWMA

306
[169] 2016 Chillers DE-LSSVR-EWMA

319
[158] 2016 Chillers LDA

321
[163] 2016 Chillers TFDK

353
[190] 2015 Chillers RBF-EWMA

837
[217] 2015 Vapor compression refrigerant

system FIS; ANN
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Table A2. Cont.

Ref.
ID/Ref.

Year
Published Component Fault Detection Fault Diagnosis

396
[218] 2014 Chillers UKF

399
[57] 2014 Chillers SVM-ARX; SVM; SVM-MLR; MLP-ARX

1407
[162] 2011 Centrifugal chillers Performance index + FR + ANN

1517
[173] 2011 Chillers Lumped physical GN + parameter tracking

1361
[104] 2010 Chillers Multiclass SVM

1362
[105] 2010 Chillers Multiclass SVM

1436
[48] 2008 Chiller Ruleset + performance index + residuals + threshold

1318
[219] 2002 Chillers NN classifier

1679
[126] 2001 Chillers Residuals + fault-pattern analysis

1683
[127] 2000 Chillers Residuals + fault-pattern analysis

1970
[186] 1999 Sensor; chiller plant Bias estimator + confidence interval

CCS articles Two-step FDD

6
[53] 2021

Chilled water pump system;
condenser water pump system;
cooling tower system; chiller

system

Association rules Expert knowledge

7
[220] 2021 Chillers MNN LR (logistic regression)

189
[175] 2018 Sensor; chiller DBSCAN + PCA + threshold Contribution analysis

994
[221] 2017 Chillers Standard deviation of virtual

sensor Virtual sensor + residuals

305
[179] 2016 Sensor; chiller SVDD-D statistic SVDD-DV contribution

350
[222] 2016 Chiller; dehumidifier NARX+LS-SVM+AGA Expert knowledge +

contribution analysis
789
[87] 2016 Chillers PCA RCB

364
[151] 2015 Chillers MLR residuals; SLR residuals;

DB residuals

MLR residual relation; SLR
residual relation; DB residual

relation
1123
[112] 2015 Chillers Gray-box model + eigenvalues Expert ruleset

407
[168] 2014 Chillers One class SVDD Multiclass SVDD

448
[159] 2013 Chillers SVR-EWMA Fault rule table

932
[223] 2012 Chiller; cooling tower

Residuals + threshold;
performance index + residuals +

threshold
FD on sublevel + ruleset

1030
[111] 2012 Chillers Gray-box model + performance

index + threshold Expert ruleset

1353
[224] 2011 Chillers

Gray-box model parameters +
threshold (mean and standard
deviation averaged over 24 h)

The physical meaning of each
parameter
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Table A2. Cont.

Ref.
ID/Ref.

Year
Published Component Fault Detection Fault Diagnosis

1560
[170] 2011 Chillers Performance index + residuals +

threshold Ruleset

1605
[157] 2011 Chillers

Performance index + PCA +
Q-statistics + threshold +

residuals
Contribution analysis

1448
[225] 2007 Sensor; chiller GLRT SVM + PCA + PLS

1621
[167] 2005 Chillers Performance index + residuals +

threshold Fault pattern

1490
[110] 2004 Chillers ANN + residuals Expert ruleset

1495
[91] 2004 Chillers PCA + Q-statistics + threshold Q-contribution plot

1504
[226] 2003 Chillers PCA + SPE + threshold SPE + SVI

1656
[227] 2003 Chillers Residuals + threshold Expert ruleset; recursive

parameter estimation
1336
[228] 2002 Chillers GA estimator Residuals

1664
[229] 2002 Chillers Residuals + KNN + prototypes

and membership functions Residuals + ruleset

1341
[230] 2001 Chillers Residuals + threshold Characteristic quality +

threshold
1867
[231] 1998 Chiller; rooftop air conditioner Probability distribution of

residuals + threshold Fault pattern

Table A3. Energy conversion: terminal unit/Air-conditioning system.

Ref Year
Published Component Fault Detection Fault Diagnosis

TU/AC articles FD
884

[232] 2014 Sensor FCD + residuals + SVR

TU/AC articles One-step FDD
501

[233] 2021 Variable refrigerant flow BPNN-DT

39
[234] 2020 Variable refrigerant flow CF (consists of RF + ET) + IT

48
[92] 2020 Variable refrigerant flow DT; SVM (best for single faults); CL; SNN; DNN (best for multiple

faults)

50
[235] 2020 Variable refrigerant flow GMM-PCA

51
[236] 2020 Variable refrigerant flow 1-D CNN; ensemble 1-D CNN

96
[64] 2020 Fan coil DT

550
[99] 2020 Fan coil K-means + multiclass SVM

140
[237] 2019 Variable refrigerant flow CBA + ARM

187
[238] 2018 Variable refrigerant flow DBNN

285
[239] 2017 Variable refrigerant flow BPNN

TU/AC articles Two-step FDD

962
[240] 2019 Sensor; water-source heat pump PCA + Q statistic + T2 statistic

+ threshold

Subtractive clustering +
K-means clustering + Q statistic

+ T2 statistic + threshold
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Table A4. Energy distribution: air-handling unit.

Ref Year
Published Component Fault Detection Fault Diagnosis

AHU articles FD
119

[241] 2019 VAV Ruleset

149
[188] 2019 VAV; fan XGBoost + threshold

156
[128] 2019 Chernoff bound

637
[121] 2019 Electricity use Chernoff bound

975
[242] 2019 VAV; heating coil; cooling coil;

sensor NB; RF; DT

256
[71] 2017

All air system; gas furnace;
vapor-compression air

conditioner

Deviation in ARX model
parameter identified; deviation
in ARMAX Model parameter

identified
260

[243] 2017 SVR + GP with residuals

344
[52] 2016 Residuals + threshold

(t-statistics)
1014
[244] 2015 PCA; LDA; KDA; SSLDA;

SSKDA
401

[141] 2014 Wavelet + PCA + Q-residuals +
threshold

408
[58] 2014 Pattern matching + PCA +

Q-residuals + threshold
476

[245] 2012 BN

1569
[147] 2011

DYBN + HMM + graphical
model + agglomerative

clustering algorithm
1219
[246] 2010 Sensor FCD

1671
[247] 2002

SSQZ; performance index +
ruleset; residual analysis +

threshold
1543
[248] 2001 VAV RARX + frequency analysis

1545
[249] 2001 Dual-duct system; sensor;

control; heating coil; cooling coil

Feedforward controller from
static model + PI controller +

residuals + threshold
1662
[108] 2001 DCV ANN

1854
[116] 1998 VAV ARX; AFMM

1985
[250] 1996 VAV GDE

1896
[251] 1996 Cooling coil RBF network + residuals +

threshold
1841
[252] 1995 Dampers; heating coil; cooling

coil Constraint suspension

1905
[253] 1994 Control; sensor Performance index + threshold

(mean and standard deviation)
AHU articles One-step FDD

2
[8] 2021

Economizer control; outside air
damper; chilled-water and
hot-water valve; supply fan

Trend analysis (manual)
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Table A4. Cont.

Ref Year
Published Component Fault Detection Fault Diagnosis

3
[254] 2021 Fan CS-ELM

5
[255] 2021 MCNN

13
[143] 2021 SAE

45
[49] 2020 Ruleset

57
[256] 2020 Sensor AE-BI

82
[93] 2020 RF; SVM; MLP; KNN; DT

94
[257] 2020 Sensor AANN

540
[258] 2020 Sensor; calibration BI

562
[120] 2020 DCV; IAQ DBN

134
[145] 2019 EK-UFI

636
[259] 2019 Sensor DNN

971
[260] 2019 GMR

176
[181] 2018 Sensor Penalty function + residuals

217
[131] 2018 HMM

1031
[132] 2018 HMM + K-means clustering

235
[73] 2017 Semantic model mean vote

274
[146] 2017 Dynamic HMM

278
[125] 2017 BN

316
[72] 2016 APAR

812
[261] 2016 Cooling coil; sensor Fuzzy logic model with residuals

373
[97] 2015 SVM-ARX

821
[142] 2015 NARX-TDNN

823
[262] 2015 VAV; sensor Probabilistic graphical model

1587
[134] 2011 WNN

1676
[129] 2011 Chiller valve; cooling coil Fuzzy model + degree of belief

1408
[133] 2009 VAV sensors WNN

1436
[48] 2008 Room level; fan Ruleset + performance index + residuals + threshold

1465
[263] 2006 Residuals + RS + ANN
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Table A4. Cont.

Ref Year
Published Component Fault Detection Fault Diagnosis

1469
[264] 2006 Sensor PCA

1516
[265] 2002 Preheating process In situ testing under specific conditions

1830
[130] 1999 Sensor; cooling coil Fuzzy model + degree of belief

1850
[113] 1999 Outdoor air ventilation and

economizer operation Ruleset

1851
[266] 1999 VAV ANN; K-nearest; nearest prototype; rule-based; Bayes classifier

1853
[114] 1999 VAV; cooling coil Ruleset

AHU articles Two-step FDD

44
[144] 2020

aSAX + cSpade (in transient
period); aSAX + CART (in

nontransient period)

aSAX + CART (in nontransient
period)

168
[267] 2018 Parity relation (residuals) Profile estimation (residuals)

872
[268] 2014 Sensor Combined BPNN + threshold Subtractive clustering analysis

1034
[51] 2012 Rooftop unit Relation between variables Correlation with reference

1212
[269] 2011 VAV PCA + correlation analysis +

threshold FD on sublevel

1531
[270] 2011 VAV; cooling coil; fan

Analytical model + residuals +
threshold; electrical power

analysis

Expert knowledge; parameter
estimation + threshold [144]

1229
[271] 2010 BPNN ENN + WA

1351
[272] 2010 VAV PCA + residuals + threshold FD on sublevel

1412
[273] 2009 Residuals Ruleset

1273
[274] 2007 VAV; sensor PCA + Q-statistics + threshold FDA + Mahalanobis distance

1268
[275] 2006 VAV; sensor PCA Contribution plots and JAA

(joint-angle analysis)
1444
[276] 2006 Cooling coil; fan Performance index + residual

analysis SVM

1452
[277] 2006 VAV; chiller PCA + SPE + threshold Expert ruleset + joint-angle point

1615
[90] 2005 Sensor PCA + Q-statistics + threshold

PCA + Q-contribution plot +
Ruleset + fault pattern +

residuals
1502
[278] 2004 Heating coil; cooling coil RCMAC + residuals + ruleset Ruleset

1498
[89] 2003 Sensor PCA + Q-statistics + threshold Q-statistic + Q-contribution plot

+ expert ruleset
1537
[279] 2001 Residuals + t-distribution Magnitude of residuals + expert

knowledge
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Table A5. Energy distribution: terminal unit/Air-conditioning system.

Ref Year
Published Component Fault Detection Fault Diagnosis

TU/AC articles FD
8

[41] 2021 RC model + residuals

1326
[135] 2001 Room level Model + residuals +threshold

TU/AC articles One-step FDD
83

[42] 2020 VAV; damper Residuals

224
[43] 2018 VAV; damper Residuals

264
[280] 2017 Sensor; cooling coil DC + residuals + threshold

864
[119] 2014 VAV DBN

TU/AC articles Two-step FDD
328

[281] 2016 VAV; damper Fuzzy logic Fuzzy logic + ANN

Table A6. Energy use: Whole building.

Ref Year
Published Component Fault Detection Fault Diagnosis

WB articles FD
4

[282] 2021 Energy EDA-LSTM

24
[55] 2021 Electricity DBSCAN + K-means + CART

574
[47] 2020 Sensors; actuators; BMS; zone Expert rules from inverse RC

model
150

[283] 2019 Energy CPD

647
[123] 2019 Energy use Change-point model; CART;

ANN
619

[284] 2019 HVAC; sensor; control PCA; PCA-wavelet

190
[61] 2018 Energy CART + aSAX

361
[136] 2015 Electricity; lighting; total active

power
CART + GESD; K-means +

GESD; DBSCAN; MLP-BEM
366

[117] 2015 Energy Residuals

370
[285] 2015 Energy

K-means + QARM; PAM +
QARM; hierarchical clustering

+ QARM; EWKM + QARM;
fuzzy c-means clustering +

QARM
1459
[286] 2006 Energy Outlier detection

1852
[287] 1999 Belief network (collection of

NNs)
1922
[107] 1992 Electricity ANN

WB articles One-step FDD
69

[288] 2020 Sensor; HVAC ARR

222
[289] 2018 HVAC FEMA
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Table A6. Cont.

Ref Year
Published Component Fault Detection Fault Diagnosis

811
[102] 2016 Meters; electricity WASVM

440
[290] 2013 Energy; total; refrigeration;

lighting; HVAC; boiler ANN + residuals

441
[291] 2013 Energy RDP

909
[50] 2013 Energy Graphical network mode + anomaly score

WB articles Two-step FDD
19

[54] 2021 Energy ANN + CART + “Follow the
leader” clustering + residuals ANN + profile + threshold

517
[292] 2020 Energy SVM with threshold SVM

987
[44] 2018 Room level; heating system;

AHU
RC model + residuals +

threshold Ruleset

870
[293] 2014 Energy EnergyPlus model + PCA +

Q-residuals
Contribution from variables

(covariance)

1380
[294] 2009 Sensor; heating/cooling system

billing PCA + SPE + threshold SVI + threshold

References
1. IEA; UNEP; GlobalABC. Global Status Report for Buildings and Construction. 2019. Available online: https://www.worldgbc.

org/sites/default/files/2019%20Global%20Status%20Report%20for%20Buildings%20and%20Construction.pdf (accessed on 7
June 2022).

2. Agora Energiwende European Energy Transition 2030: The Big Picture. 2019. Available online: https://static.agora-energiewende.
de/fileadmin/Projekte/2019/EU_Big_Picture/153_EU-Big-Pic_WEB.pdf (accessed on 7 June 2022).

3. Menezes, A.C.; Cripps, A.; Bouchlaghem, D.; Buswell, R. Predicted vs. actual energy performance of non-domestic buildings:
Using post-occupancy evaluation data to reduce the performance gap. Appl. Energy 2012, 97, 355–364. [CrossRef]

4. Mahdavi, A.; Berger, C.; Amin, H.; Ampatzi, E.; Andersen, R.K.; Azar, E.; Barthelmes, V.M.; Favero, M.; Hahn, J.; Khovalyg, D.;
et al. The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality? Sustainability 2021, 13, 3146. [CrossRef]

5. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398.
[CrossRef]

6. Andersen, K.H.; Holøs, S.B.; Yang, A.; Thunshelle, K.; Fjellheim, Ø.; Lund Jensen, R. Impact of Typical Faults Occurring in
Demand-controlled Ventilation on Energy and Indoor Environment in a Nordic Climate. E3S Web Conf. 2020, 172, 09006.
[CrossRef]

7. Roth, K.W.; Llana, P.; Feng, M.; Westphalen, D. The Energy Impact of Faults in U.S. Commercial Buildings. Int. Refrig. Air Cond.
Conf. Purdue 2004. Available online: https://docs.lib.purdue.edu/iracc/665/ (accessed on 7 June 2022).

8. Isazadeh, A.; Kamal, R.; Yagua, C.; Eluvathingal, S.; Claridge, D.E. Detecting deficiencies using building performance data
in healthcare facilities: Improving operational efficiency with Continuous Commissioning®. Energy Build. 2021, 241, 110953.
[CrossRef]

9. McKellar, M.G. Failure Diagnosis for a Household Refrigerator. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 1987.
10. Katipamula, S.; Brambley, M.R. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—

A Review, Part I. HVACR Res. 2005, 11, 3–25. [CrossRef]
11. Katipamula, S.; Brambley, M.R. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—

A Review, Part II. HVACR Res. 2005, 11, 169–187. [CrossRef]
12. Ahmad, M.W.; Mourshed, M.; Yuce, B.; Rezqui, Y. Computational intelligence techniques for HVAC systems: A review. Build.

Simul. 2016, 9, 359–398. [CrossRef]
13. Mirnaghi, M.S.; Haghighat, F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods:

A comprehensive review. Energy Build. 2020, 229, 110492. [CrossRef]
14. Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol. Built Environ.

2018, 24, 3–21. [CrossRef]
15. IEA ANNEX 25 Real Time Simulation of HVAC Systems for Building Optimisation, Fault Detection and Diagnosis Building Optimization

and Fault Diagnosis Source Book; Technical Research Centre of Finland, VTT Building Technology: Espoo, Finland, 1996.
16. IEA ECBCS Annex 25: Real Time Simulation of HVAC Systems for Building Optimisation, Fault Detection and Diagnostics; ESSU:

Coventry, UK, 1999.

https://www.worldgbc.org/sites/default/files/2019%20Global%20Status%20Report%20for%20Buildings%20and%20Construction.pdf
https://www.worldgbc.org/sites/default/files/2019%20Global%20Status%20Report%20for%20Buildings%20and%20Construction.pdf
https://static.agora-energiewende.de/fileadmin/Projekte/2019/EU_Big_Picture/153_EU-Big-Pic_WEB.pdf
https://static.agora-energiewende.de/fileadmin/Projekte/2019/EU_Big_Picture/153_EU-Big-Pic_WEB.pdf
http://doi.org/10.1016/j.apenergy.2011.11.075
http://doi.org/10.3390/su13063146
http://doi.org/10.1016/j.enbuild.2007.03.007
http://doi.org/10.1051/e3sconf/202017209006
https://docs.lib.purdue.edu/iracc/665/
http://doi.org/10.1016/j.enbuild.2021.110953
http://doi.org/10.1080/10789669.2005.10391123
http://doi.org/10.1080/10789669.2005.10391133
http://doi.org/10.1007/s12273-016-0285-4
http://doi.org/10.1016/j.enbuild.2020.110492
http://doi.org/10.1080/23744731.2017.1318008


Energies 2022, 15, 4366 41 of 50

17. IEA Annex 34 Computer Aided Evaluation of HVAC System Performance Energy Conservation in Buildings and Community Systems;
FaberMaunseel Ltd.: Hertfordshire, UK, 2006.

18. IEA ECBCS Annex 34: Demonstrating Automated Fault Detection and Diagnosis Methods in Real Buildings; Technical Research Centre
of Finland (VTT): Espoo, Finland, 2001.

19. IEA EBC ANNEX Subtask C: Applications and Services. Available online: https://annex81.iea-ebc.org/subtasks (accessed on 9
May 2022).

20. Hosseini Gourabpasi, A.; Nik-Bakht, M. Knowledge Discovery by Analyzing the State of the Art of Data-Driven Fault Detection
and Diagnostics of Building HVAC. CivilEng 2021, 2, 986–1008. [CrossRef]

21. Zhao, Y.; Li, T.; Zhang, X.; Zhang, C. Artificial intelligence-based fault detection and diagnosis methods for building energy
systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 2019, 109, 85–101. [CrossRef]

22. Li, G.; Hu, Y.; Liu, J.; Fang, X.; Kang, J. Review on Fault Detection and Diagnosis Feature Engineering in Building Heating,
Ventilation, Air Conditioning and Refrigeration Systems. IEEE Access 2021, 9, 2153–2187. [CrossRef]

23. Yu, Y.; Woradechjumroen, D.; Yu, D. A review of fault detection and diagnosis methodologies on air-handling units. Energy Build.
2014, 82, 550–562. [CrossRef]

24. Rogers, A.P.; Guo, F.; Rasmussen, B.P. A review of fault detection and diagnosis methods for residential air conditioning systems.
Build. Environ. 2019, 161, 106236. [CrossRef]

25. Bellanco, I.; Fuentes, E.; Valles, M.; Salom, J. A review of the fault behavior of heat pumps and measurements, detection and
diagnosis methods including virtual sensors. J. Build. Eng. 2021, 39, 102254. [CrossRef]

26. Shi, Z.; O’Brien, W. Development and implementation of automated fault detection and diagnostics for building systems: A
review. Autom. Constr. 2019, 104, 215–229. [CrossRef]

27. Behravan, A. Diagnostic Classifiers Based on Fuzzy Bayesian Belief Networks and Deep Neural Networks for Demand-Controlled
Ventilation and Heating Systems. Ph.D. Thesis, University of Siegen, Siegen, Germany, 2021. Available online: https://dspace.ub.
uni-siegen.de/handle/ubsi/2154 (accessed on 7 June 2022).

28. Shi, Z. A Probabilistic Distributed Fault Detection, Diagnostics and Evaluation Framework for Building Systems. Doctoral Thesis,
Carleton University, Ottawa, ON, Canada, 2018. [CrossRef]

29. Massieh, N. Fault Detection and Diagnosis in Building HVAC Systems. Ph.D. Thesis, University of California, Berkeley, CA, USA,
2010. Available online: https://escholarship.org/uc/item/6w02z2hm (accessed on 7 June 2022).

30. Theodoridis, S. Machine Learning: A Bayesian and Optimization Perspective; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-
0-12-818803-3. Available online: https://www.elsevier.com/books/machine-learning/theodoridis/978-0-12-818803-3 (accessed
on 7 June 2022).

31. Carbonell, J. Machine Learning: Paradigms and Methods; The MIT Press: Cambridge, MA, USA, 1990; p. 404. ISBN 9780262530880.
Available online: https://mitpress.mit.edu/books/machine-learning-2 (accessed on 7 June 2022).

32. Alpaydin, E. Introduction to Machine Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-01243-0.
Available online: https://www.cmpe.boun.edu.tr/~{}ethem/i2ml2e/index.html (accessed on 7 June 2022).

33. Andersen, K.H.; Melgaard, S.P.; Marszal-Pomianowska, A.; Jensen, R.L.; Fehr, T.; Heiselberg, P.K. Technical Report: SATO KPI
TOOL; Institut for Byggeri, By og Miljø (BUILD), Aalborg Universitet: København, Denmark, 2022.

34. PRISMA Home Page. Available online: http://www.prisma-statement.org/ (accessed on 29 March 2022).
35. Ex Libris RefWorks. Available online: https://refworks.proquest.com/ (accessed on 9 May 2022).
36. Heimar, K.A.; Melgaard, S.P. aauphd2024. Available online: https://github.com/aauphd2024/FDD_review_buildingsystems

(accessed on 7 June 2022).
37. Isermann, R. Fault-Diagnosis Applications; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-12766-3.
38. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 2008, 32, 229–252.

[CrossRef]
39. Li, Y.; O’Neil, Z. A critical review of fault modeling of HVAC systems in buildings. Build. Simul. 2018, 11, 953–975. [CrossRef]
40. Ginestet, S.; Marchio, D.; Morisot, O. Evaluation of faults impacts on energy consumption and indoor air quality on an air

handling unit. Energy Build. 2008, 40, 51–57. [CrossRef]
41. Chintala, R.; Winkler, J.; Jin, X. Automated fault detection of residential air-conditioning systems using thermostat drive cycles.

Energy Build. 2021, 236, 110691. [CrossRef]
42. Subramaniam, M.; Jain, T.; Yame, J.J. Bilinear model-based diagnosis of lock-in-place failures of variable-air-volume HVAC

systems of multizone buildings. J. Build. Eng. 2020, 28, 101023. [CrossRef]
43. Subramaniam, A.M.; Jain, T. Nonlinear Observer-based Fault Diagnosis for a Multi-Zone Building. IFAC-Pap. 2018, 51, 544–549.

[CrossRef]
44. Berquist, J.; O’Brien, W. A Quantitative Model-Based Fault Detection and Diagnostics (FDD) System for Zone-Level Inefficiencies.

ASHRAE Trans. 2018, 124, 133–152.
45. Baldi, S.; Quang, T.L.; Holub, O.; Endel, P. Real-time monitoring energy efficiency and performance degradation of condensing

boilers. Energy Convers. Manag. 2017, 136, 329–339. [CrossRef]
46. Behravan, A.; Obermaisser, R.; Abboush, M. Fault injection framework for demand-controlled ventilation and heating systems

based on wireless sensor and actuator networks. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 525–531. [CrossRef]

https://annex81.iea-ebc.org/subtasks
http://doi.org/10.3390/civileng2040053
http://doi.org/10.1016/j.rser.2019.04.021
http://doi.org/10.1109/ACCESS.2020.3040980
http://doi.org/10.1016/j.enbuild.2014.06.042
http://doi.org/10.1016/j.buildenv.2019.106236
http://doi.org/10.1016/j.jobe.2021.102254
http://doi.org/10.1016/j.autcon.2019.04.002
https://dspace.ub.uni-siegen.de/handle/ubsi/2154
https://dspace.ub.uni-siegen.de/handle/ubsi/2154
http://doi.org/10.22215/etd/2018-13348
https://escholarship.org/uc/item/6w02z2hm
https://www.elsevier.com/books/machine-learning/theodoridis/978-0-12-818803-3
https://mitpress.mit.edu/books/machine-learning-2
https://www.cmpe.boun.edu.tr/~{}ethem/i2ml2e/index.html
http://www.prisma-statement.org/
https://refworks.proquest.com/
https://github.com/aauphd2024/FDD_review_buildingsystems
http://doi.org/10.1016/j.arcontrol.2008.03.008
http://doi.org/10.1007/s12273-018-0458-4
http://doi.org/10.1016/j.enbuild.2007.01.012
http://doi.org/10.1016/j.enbuild.2020.110691
http://doi.org/10.1016/j.jobe.2019.101023
http://doi.org/10.1016/j.ifacol.2018.09.629
http://doi.org/10.1016/j.enconman.2017.01.016
http://doi.org/10.1109/IEMCON.2018.8614756


Energies 2022, 15, 4366 42 of 50

47. Gunay, H.B.; Shi, Z.; Newsham, G.; Moromisato, R. Detection of zone sensor and actuator faults through inverse greybox
modelling. Build. Environ. 2020, 171, 106659. [CrossRef]

48. Song, Y.; Akashi, Y.; Yee, J. A development of easy-to-use tool for fault detection and diagnosis in building air-conditioning
systems. Energy Build. 2008, 40, 71–82. [CrossRef]

49. Mattera, C.G.; Jradi, M.; Skydt, M.R.; Engelsgaard, S.S.; Shaker, H.R. Fault detection in ventilation units using dynamic energy
performance models. J. Build. Eng. 2020, 32, 101635. [CrossRef]

50. O’Neill, Z.; Bailey, T.; Dong, B.; Shashanka, M.; Luo, D. Advanced building energy management system demonstration for
Department of Defense buildings. Implic. A Data Driven-Built Environ. 2013, 1295, 44–53. [CrossRef]

51. Najafi, M.; Auslander, D.M.; Haves, P.; Sohn, M.D. A statistical pattern analysis framework for rooftop unit diagnostics. HVAC R
Res. 2012, 18, 406.

52. Gao, D.C.; Wang, S.; Shan, K.; Yan, C. A system-level fault detection and diagnosis method for low delta-T syndrome in the
complex HVAC systems. Appl. Energy 2016, 164, 1028–1038. [CrossRef]

53. Xu, Y.; Yan, C.; Shi, J.; Lu, Z.; Niu, X.; Jiang, Y.; Zhu, F. An anomaly detection and dynamic energy performance evaluation
method for HVAC systems based on data mining. Sustain. Energy Technol. Assess. 2021, 44, 101092. [CrossRef]

54. Piscitelli, M.S.; Brandi, S.; Capozzoli, A.; Xiao, F. A data analytics-based tool for the detection and diagnosis of anomalous daily
energy patterns in buildings. Build. Simul. 2021, 14, 131–147. [CrossRef]

55. Liu, X.; Ding, Y.; Tang, H.; Xiao, F. A data mining-based framework for the identification of daily electricity usage patterns and
anomaly detection in building electricity consumption data. Energy Build. 2021, 231, 110601. [CrossRef]

56. Fan, Y.; Cui, X.; Han, H.; Lu, H. Feasibility and improvement of fault detection and diagnosis based on factory-installed sensors
for chillers. Appl. Therm. Eng. 2020, 164, 114506. [CrossRef]

57. Yan, K.; Shen, W.; Mulumba, T.; Afshari, A. ARX model based fault detection and diagnosis for chillers using support vector
machines. Energy Build. 2014, 81, 287–295. [CrossRef]

58. Li, S.; Wen, J. Application of pattern matching method for detecting faults in air handling unit system. Autom. Constr. 2014, 43,
49–58. [CrossRef]

59. Liu, J.; Shi, D.; Li, G.; Xie, Y.; Li, K.; Liu, B.; Ru, Z. Data-driven and association rule mining-based fault diagnosis and action
mechanism analysis for building chillers. Energy Build. 2020, 216, 109957. [CrossRef]

60. Eom, Y.H.; Yoo, J.W.; Hong, S.B.; Kim, M.S. Refrigerant charge fault detection method of air source heat pump system using
convolutional neural network for energy saving. Energy 2019, 187, 115877. [CrossRef]

61. Capozzoli, A.; Piscitelli, M.S.; Brandi, S.; Grassi, D.; Chicco, G. Automated load pattern learning and anomaly detection for
enhancing energy management in smart buildings. Energy 2018, 157, 336–352. [CrossRef]

62. Brastein, O.M.; Ghaderi, A.; Pfeiffer, C.F.; Skeie, N.O. Analysing uncertainty in parameter estimation and prediction for grey-box
building thermal behaviour models. Energy Build. 2020, 224, 110236. [CrossRef]

63. Navarro-Esbri, J.; Berbegall, V.; Verdu, G.; Cabello, R.; Llopis, R. A low data requirement model of a variable-speed vapour
compression refrigeration system based on neural networks. Int. J. Refrig. Rev. Int. Froid 2007, 30, 1452–1459. [CrossRef]

64. Ranade, A.; Provan, G.; El-Din Mady, A.; O’Sullivan, D. A computationally efficient method for fault diagnosis of fan-coil unit
terminals in building Heating Ventilation and Air Conditioning systems. J. Build. Eng. 2020, 27, 100955. [CrossRef]

65. Bode, G.; Thul, S.; Baranski, M.; Müller, D. Real-world application of machine-learning-based fault detection trained with
experimental data. Energy 2020, 198, 117323. [CrossRef]

66. Kim, M.; Payne, W.V.; Domanski, P.A.; Yoon, S.H.; Hermes, C.J.L. Performance of a residential heat pump operating in the cooling
mode with single faults imposed. Appl. Therm. Eng. 2009, 29, 770–778. [CrossRef]

67. Bode, G.; Fütterer, J.; Müller, D. Mode and storage load based control of a complex building system with a geothermal field.
Energy Build. 2018, 158, 1337–1345. [CrossRef]

68. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
(BBA)—Protein Struct. 1975, 405, 442–451. [CrossRef]

69. Nassif, N.; Moujaes, S.; Zaheeruddin, M. Self-tuning dynamic models of HVAC system components. Energy Build. 2008, 40,
1709–1720. [CrossRef]

70. Yan, K.; Ji, Z.; Shen, W. Online fault detection methods for chillers combining extended kalman filter and recursive one-class
SVM. Neurocomputing 2017, 228, 205–212. [CrossRef]

71. Turner, W.J.N.; Staino, A.; Basu, B. Residential HVAC fault detection using a system identification approach. Energy Build. 2017,
151, 1–17. [CrossRef]

72. Dey, D.; Dong, B. A probabilistic approach to diagnose faults of air handling units in buildings. Energy Build. 2016, 130, 177–187.
[CrossRef]

73. Ploennigs, J.; Maghella, M.; Schumann, A.; Chen, B. Semantic Diagnosis Approach for Buildings. IEEE Trans. Ind. Inform. 2017, 13,
3399–3410. [CrossRef]

74. Torrens, J.I.; Keane, M.; Costa, A.; O’Donnell, J. Multi-Criteria optimisation using past, real time and predictive performance
benchmarks. Simul. Model. Pract. Theory 2011, 19, 1258–1265. [CrossRef]

75. Karami, M.; Wang, L. Fault detection and diagnosis for nonlinear systems: A new adaptive Gaussian mixture modeling approach.
Energy Build. 2018, 166, 477–488. [CrossRef]

http://doi.org/10.1016/j.buildenv.2020.106659
http://doi.org/10.1016/j.enbuild.2007.01.011
http://doi.org/10.1016/j.jobe.2020.101635
http://doi.org/10.1111/nyas.12188
http://doi.org/10.1016/j.apenergy.2015.02.025
http://doi.org/10.1016/j.seta.2021.101092
http://doi.org/10.1007/s12273-020-0650-1
http://doi.org/10.1016/j.enbuild.2020.110601
http://doi.org/10.1016/j.applthermaleng.2019.114506
http://doi.org/10.1016/j.enbuild.2014.05.049
http://doi.org/10.1016/j.autcon.2014.03.002
http://doi.org/10.1016/j.enbuild.2020.109957
http://doi.org/10.1016/j.energy.2019.115877
http://doi.org/10.1016/j.energy.2018.05.127
http://doi.org/10.1016/j.enbuild.2020.110236
http://doi.org/10.1016/j.ijrefrig.2007.03.007
http://doi.org/10.1016/j.jobe.2019.100955
http://doi.org/10.1016/j.energy.2020.117323
http://doi.org/10.1016/j.applthermaleng.2008.04.009
http://doi.org/10.1016/j.enbuild.2017.11.026
http://doi.org/10.1016/0005-2795(75)90109-9
http://doi.org/10.1016/j.enbuild.2008.02.026
http://doi.org/10.1016/j.neucom.2016.09.076
http://doi.org/10.1016/j.enbuild.2017.06.008
http://doi.org/10.1016/j.enbuild.2016.08.017
http://doi.org/10.1109/TII.2017.2726001
http://doi.org/10.1016/j.simpat.2010.11.002
http://doi.org/10.1016/j.enbuild.2018.02.032


Energies 2022, 15, 4366 43 of 50

76. Sun, B.; Luh, P.B.; Jia, Q.S.; O’Neill, Z.; Song, F. Building energy doctors: An SPC and Kalman Filter-based method for system-level
fault detection in HVAC systems. IEEE Trans. Autom. Sci. Eng. 2014, 11, 215–229. [CrossRef]

77. Andersen, K.H.; Melgaard, S.P.; Marszal-Pomianowska, A.; Jensen, R.L.; Fehr, T.; Heiselberg, P. Development and description of
the SATO KPI Tool. Aalb. Univ. 2022, 302. Available online: https://vbn.aau.dk/da/publications/development-and-description-
of-the-sato-kpi-tool (accessed on 7 June 2022).

78. Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part III: Process history
based methods. Comput. Chem. Eng. 2003, 27, 327–346. [CrossRef]

79. Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part I: Quantitative
model-based methods. Comput. Chem. Eng. 2003, 27, 293–311. [CrossRef]

80. Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis Part II: Qualitative
models and search strategies. Comput. Chem. Eng. 2003, 27, 313–326. [CrossRef]

81. Hsieh, T. A micro-view-based data mining approach to diagnose the aging status of heating coils. Knowl. Based Syst. 2018, 143,
10–18. [CrossRef]

82. Visek, E.; Mazzarella, L.; Motta, M. Temperature sensor signal reconstruction for failure detection of vapor compression system.
Appl. Soft Comput. 2017, 60, 679–688. [CrossRef]

83. Chen, Y.; Lan, L. A fault detection technique for air-source heat pump water chiller/heaters. Energy Build. 2009, 41, 881–887.
[CrossRef]

84. Wang, Z.; Wang, L.; Liang, K.; Tan, Y. Enhanced chiller fault detection using Bayesian network and principal component analysis.
Appl. Therm. Eng. 2018, 141, 898–905. [CrossRef]

85. Cotrufo, N.; Zmeureanu, R. PCA-based method of soft fault detection and identification for the ongoing commissioning of chillers.
Energy Build. 2016, 130, 443–452. [CrossRef]

86. Hu, Y.; Li, G.; Chen, H.; Li, H.; Liu, J. Sensitivity analysis for PCA-based chiller sensor fault detection. Int. J. Refrig. 2016, 63,
133–143. [CrossRef]

87. Beghi, A.; Brignoli, R.; Cecchinato, L.; Menegazzo, G.; Rampazzo, M.; Simmini, F. Data-driven Fault Detection and Diagnosis for
HVAC water chillers. Control Eng. Pract. 2016, 53, 79–91. [CrossRef]

88. Wang, S.; Zhou, Q.; Xiao, F. A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults.
Energy Build. 2010, 42, 477–490. [CrossRef]

89. Wang, S.; Xiao, F. Detection and diagnosis of AHU sensor faults using principal component analysis method. Energy Convers.
Manag. 2004, 45, 2667–2686. [CrossRef]

90. Wang, S.; Xiao, F. Sensor Fault Detection and Diagnosis of Air-Handling Units Using a Condition-Based Adaptive Statistical
Method. HVAC R Res. 2006, 12, 127–150. [CrossRef]

91. Wang, S.; Cui, J. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component
analysis method. Appl. Energy 2005, 82, 197–213. [CrossRef]

92. Zhou, Z.; Li, G.; Wang, J.; Chen, H.; Zhong, H.; Cao, Z. A comparison study of basic data-driven fault diagnosis methods for
variable refrigerant flow system. Energy Build. 2020, 224, 110232. [CrossRef]

93. Yan, K.; Huang, J.; Shen, W.; Ji, Z. Unsupervised learning for fault detection and diagnosis of air handling units. Energy Build.
2020, 210, 109689. [CrossRef]

94. Yan, K.; Su, J.; Huang, J.; Mo, Y. Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks. IEEE Trans.
Autom. Sci. Eng. 2020, 19, 387–395. [CrossRef]

95. Fan, Y.; Cui, X.; Han, H.; Lu, H. Chiller fault diagnosis with field sensors using the technology of imbalanced data. Appl. Therm.
Eng. 2019, 159, 113933. [CrossRef]

96. Han, H.; Cui, X.; Fan, Y.; Qing, H. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault
indicative features. Appl. Therm. Eng. 2019, 154, 540–547. [CrossRef]

97. Mulumba, T.; Afshari, A.; Yan, K.; Shen, W.; Norford, L.K. Robust model-based fault diagnosis for air handling units. Energy
Build. 2015, 86, 698–707. [CrossRef]

98. Shohet, R.; Kandil, M.S.; Wang, Y.; McArthur, J.J. Fault detection for non-condensing boilers using simulated building automation
system sensor data. Adv. Eng. Inform. 2020, 46, 101176. [CrossRef]

99. Dey, M.; Rana, S.P.; Dudley, S. Smart building creation in large scale HVAC environments through automated fault detection and
diagnosis. Future Gener. Comput. Syst. Int. J. Escience 2020, 108, 950–966. [CrossRef]

100. Fan, Y.; Cui, X.; Han, H.; Lu, H. Chiller fault detection and diagnosis by knowledge transfer based on adaptive imbalanced
processing. Sci. Technol. Built Environ. 2020, 26, 1082–1099. [CrossRef]

101. Yan, K.; Chong, A.; Mo, Y. Generative adversarial network for fault detection diagnosis of chillers. Build. Environ. 2020, 172,
106698. [CrossRef]

102. Fu, Y.; Li, Z.; Feng, F.; Xu, P. Data-quality detection and recovery for building energy management and control systems: Case
study on submetering. Sci. Technol. Built Environ. 2016, 22, 798–809. [CrossRef]

103. Jiang, S.; Minjie, L.; Caiwu, L.; Shunling, R.; Wang, Z.; Chen, B. SVM-DS fusion based soft fault detection and diagnosis in solar
water heaters. Energy Explor. Exploit. 2019, 37, 1125–1146. [CrossRef]

104. Han, H.; Gu, B.; Wang, T.; Li, Z.R. Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of
feature selection and machine learning. Int. J. Refrig. 2011, 34, 586–599. [CrossRef]

http://doi.org/10.1109/TASE.2012.2226155
https://vbn.aau.dk/da/publications/development-and-description-of-the-sato-kpi-tool
https://vbn.aau.dk/da/publications/development-and-description-of-the-sato-kpi-tool
http://doi.org/10.1016/S0098-1354(02)00162-X
http://doi.org/10.1016/S0098-1354(02)00160-6
http://doi.org/10.1016/S0098-1354(02)00161-8
http://doi.org/10.1016/j.knosys.2017.12.001
http://doi.org/10.1016/j.asoc.2017.06.054
http://doi.org/10.1016/j.enbuild.2009.03.007
http://doi.org/10.1016/j.applthermaleng.2018.06.037
http://doi.org/10.1016/j.enbuild.2016.08.083
http://doi.org/10.1016/j.ijrefrig.2015.11.006
http://doi.org/10.1016/j.conengprac.2016.04.018
http://doi.org/10.1016/j.enbuild.2009.10.017
http://doi.org/10.1016/j.enconman.2003.12.008
http://doi.org/10.1080/10789669.2006.10391171
http://doi.org/10.1016/j.apenergy.2004.11.002
http://doi.org/10.1016/j.enbuild.2020.110232
http://doi.org/10.1016/j.enbuild.2019.109689
http://doi.org/10.1109/TASE.2020.3035620
http://doi.org/10.1016/j.applthermaleng.2019.113933
http://doi.org/10.1016/j.applthermaleng.2019.03.111
http://doi.org/10.1016/j.enbuild.2014.10.069
http://doi.org/10.1016/j.aei.2020.101176
http://doi.org/10.1016/j.future.2018.02.019
http://doi.org/10.1080/23744731.2020.1757327
http://doi.org/10.1016/j.buildenv.2020.106698
http://doi.org/10.1080/23744731.2016.1195658
http://doi.org/10.1177/0144598718816604
http://doi.org/10.1016/j.ijrefrig.2010.08.011


Energies 2022, 15, 4366 44 of 50

105. Han, H.; Gu, B.; Kang, J.; Li, Z.R. Study on a hybrid SVM model for chiller FDD applications. Appl. Therm. Eng. 2011, 31, 582–592.
[CrossRef]

106. Gharsellaoui, S.; Mansouri, M.; Trabelsi, M.; Harkat, M.F.; Refaat, S.S.; Messaoud, H. Interval-valued features based machine
learning technique for fault detection and diagnosis of uncertain HVAC systems. IEEE Access 2020, 8, 171892–171902. [CrossRef]

107. Kreider, J.F.; Wang, X.A.; Anderson, D.; Dow, J. Expert systems, neural networks and artificial intelligence applications in
commercial building HVAC operations. Autom. Constr. 1992, 1, 225–238. [CrossRef]

108. Wang, S.; Chen, Y. Fault-tolerant control for outdoor ventilation air flow rate in buildings based on neural network. Build. Environ.
2002, 37, 691–704. [CrossRef]

109. Gunay, H.B.; Shen, W.; Yang, C. Blackbox modeling of central heating and cooling plant equipment performance. Sci. Technol.
Built Environ. 2018, 24, 396–409. [CrossRef]

110. Rueda, E.; Tassou, S.A.; Grace, I.N. Fault detection and diagnosis in liquid chillers. Proc. Inst. Mech. Eng. Part E J. Process. Mech.
Eng. 2005, 219, 117–125. [CrossRef]

111. Zhao, Y.; Wang, S.; Xiao, F.; Ma, Z. A simplified physical model-based fault detection and diagnosis strategy and its customized
tool for centrifugal chillers. HVAC R Res. 2013, 19, 283.

112. He, Z.; Li, Z. A Fault Diagnosis Warning System of Refrigeration Systems Based on Fault Direction Space Method for Data Center.
ASHRAE Trans. 2015, 121, AT-15-C031.

113. Katipamula, S.; Pratt, R.G.; Chassin, D.P.; Taylor, Z.T.; Gowri, K.; Brambley, M.R. Automated fault detection and diagnostics for
outdoor-air ventilation systems and economizers: Methodology and results from field testing. ASHRAE Trans. 1999, 105 Pt 1,
CH-99-5-2.

114. Han, C.Y.; Xiao, Y.; Ruther, C.J. Fault detection and diagnosis of HVAC systems. ASHRAE Trans. 1999, 105 Pt 1, 1.
115. Parzinger, M.; Hanfstaengl, L.; Sigg, F.; Spindler, U.; Wellisch, U.; Wirnsberger, M. Residual Analysis of Predictive Modelling Data

for Automated Fault Detection in Building’s Heating, Ventilation and Air Conditioning Systems. Sustainability 2020, 12, 6758.
[CrossRef]

116. Yoshida, H.; Kumar, S. ARX and AFMM model-based on-line real-time data base diagnosis of sudden fault in AHU of VAV
system. Energy Convers. Manag. 1999, 40, 1191–1206. [CrossRef]

117. Lin, G.; Claridge, D.E. A temperature-based approach to detect abnormal building energy consumption. Energy Build. 2015, 93,
110–118. [CrossRef]

118. Taal, A.; Itard, L. P&ID-based automated fault identification for energy performance diagnosis in HVAC systems: 4S3F method,
development of DBN models and application to an ATES system. Energy Build. 2020, 224, 110289. [CrossRef]

119. Xiao, F.; Zhao, Y.; Wen, J.; Wang, S. Bayesian network based FDD strategy for variable air volume terminals. Autom. Constr. 2014,
41, 106–118. [CrossRef]

120. Taal, A.; Itard, L. Fault detection and diagnosis for indoor air quality in DCV systems: Application of 4S3F method and effects of
DBN probabilities. Build. Environ. 2020, 174, 106632. [CrossRef]

121. Alexandersen, E.K.; Skydt, M.R.; Engelsgaard, S.S.; Bang, M.; Jradi, M.; Shaker, H.R. A stair-step probabilistic approach for
automatic anomaly detection in building ventilation system operation. Build. Environ. 2019, 157, 165–171. [CrossRef]

122. Cheung, B.; Kumar, G.; Rao, S.A. Statistical algorithms in fault detection and prediction: Toward a healthier network. Bell Labs
Tech. J. 2005, 9, 171–185. [CrossRef]

123. Gunay, H.B.; Shen, W.; Newsham, G.; Ashouri, A. Detection and interpretation of anomalies in building energy use through
inverse modeling. Sci. Technol. Built Environ. 2019, 25, 488–503. [CrossRef]

124. Parhizkar, T.; Aramoun, F.; Esbati, S.; Saboohi, Y. Efficient performance monitoring of building central heating system using
Bayesian Network method. J. Build. Eng. 2019, 26, 100835. [CrossRef]

125. Verbert, K.; Babuška, R.; De Schutter, B. Combining knowledge and historical data for system-level fault diagnosis of HVAC
systems. Eng. Appl. Artif. Intell. 2017, 59, 260–273. [CrossRef]

126. Byung-Cheon, A.; Mitchell, J.W.; McIntosh, I.B.D. Model-based fault detection and diagnosis for cooling towers/Discussion.
ASHRAE Trans. 2001, 107, 839.

127. McIntosh, I.B.D.; Mitchell, J.W.; Beckman, W.A. Fault detection and diagnosis in chillers—Part I: Model development and
application/Discussion. ASHRAE Trans. 2000, 106, 268.

128. Bang, M.; Engelsgaard, S.S.; Alexandersen, E.K.; Riber Skydt, M.; Shaker, H.R.; Jradi, M. Novel real-time model-based fault
detection method for automatic identification of abnormal energy performance in building ventilation units. Energy Build. 2019,
183, 238–251. [CrossRef]

129. Dexter, A.L.; Ngo, D. Fault diagnosis in air-conditioning systems: A multi-step fuzzy model-based approach. HVAC R Res. 2001,
7, 83. [CrossRef]

130. Ngo, D.; Dexter, A.L. A robust model-based approach to diagnosing faults in air-handling units. ASHRAE Trans. 1999, 105, 1078.
131. Yan, Y.; Luh, P.B.; Pattipati, K.R. Fault Diagnosis of Components and Sensors in HVAC Air Handling Systems with New Types of

Faults. IEEE Access 2018, 6, 21682–21696. [CrossRef]
132. Guo, Y.; Wall, J.; Li, J.; West, S. Intelligent Model Based Fault Detection and Diagnosis for HVAC System Using Statistical Machine

Learning Methods. ASHRAE Trans. 2013, 119, DA-13-C018.
133. Du, Z.; Jin, X.; Yang, Y. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural

network. Appl. Energy 2009, 86, 1624–1631. [CrossRef]

http://doi.org/10.1016/j.applthermaleng.2010.10.021
http://doi.org/10.1109/ACCESS.2020.3019365
http://doi.org/10.1016/0926-5805(92)90015-C
http://doi.org/10.1016/S0360-1323(01)00076-2
http://doi.org/10.1080/23744731.2017.1401417
http://doi.org/10.1243/095440805X8575
http://doi.org/10.3390/su12176758
http://doi.org/10.1016/S0196-8904(99)00022-9
http://doi.org/10.1016/j.enbuild.2015.02.013
http://doi.org/10.1016/j.enbuild.2020.110289
http://doi.org/10.1016/j.autcon.2013.10.019
http://doi.org/10.1016/j.buildenv.2019.106632
http://doi.org/10.1016/j.buildenv.2019.04.036
http://doi.org/10.1002/bltj.20070
http://doi.org/10.1080/23744731.2019.1565550
http://doi.org/10.1016/j.jobe.2019.100835
http://doi.org/10.1016/j.engappai.2016.12.021
http://doi.org/10.1016/j.enbuild.2018.11.006
http://doi.org/10.1080/10789669.2001.10391431
http://doi.org/10.1109/ACCESS.2018.2806373
http://doi.org/10.1016/j.apenergy.2009.01.015


Energies 2022, 15, 4366 45 of 50

134. Du, Z.; Jin, X.; Yang, Y. Wavelet Neural Network-Based Fault Diagnosis in Air-Handling Units. HVAC R Res. 2008, 14, 959–973.
[CrossRef]

135. Yu, B.; Van Paassen, D.; Riahy, S. General modeling for model-based FDD on building HVAC system. Simul. Pract. Theory 2002, 9,
387–397. [CrossRef]

136. Capozzoli, A.; Lauro, F.; Khan, I. Fault detection analysis using data mining techniques for a cluster of smart office buildings.
Expert Syst. Appl. 2015, 42, 4324–4338. [CrossRef]

137. Alston, J.M.; Rick, J.A. A Beginner’s Guide to Conducting Reproducible Research. Bull. Ecol. Soc. Am. 2021, 102, e01801.
[CrossRef]

138. What Are Machine Learning Pipelines?—Azure Machine Learning. Available online: https://docs.microsoft.com/en-us/azure/
machine-learning/concept-ml-pipelines (accessed on 29 March 2022).

139. Granderson, J.; Lin, G.; Harding, A.; Im, P.; Chen, Y. Building fault detection data to aid diagnostic algorithm creation and
performance testing. Sci. Data 2020, 7, 65. [CrossRef]

140. ASHRAE Dataset for Building Fault Detection and Diagnostics Algorithm Creation and Performance Testing. Available online:
https://figshare.com/articles/dataset/LBNLDataSynthesisInventory_pdf/11752740/3 (accessed on 9 May 2022).

141. Li, S.; Wen, J. A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy
Build. 2014, 68, 63–71. [CrossRef]

142. Yuwono, M.; Guo, Y.; Wall, J.; Li, J.; West, S.; Platt, G.; Su, S.W. Unsupervised feature selection using swarm intelligence and
consensus clustering for automatic fault detection and diagnosis in Heating Ventilation and Air Conditioning systems. Appl. Soft
Comput. 2015, 34, 402–425. [CrossRef]

143. Yun, W.S.; Hong, W.H.; Seo, H. A data-driven fault detection and diagnosis scheme for air handling units in building HVAC
systems considering undefined states. J. Build. Eng. 2021, 35, 102111. [CrossRef]

144. Piscitelli, M.S.; Mazzarelli, D.M.; Capozzoli, A. Enhancing operational performance of AHUs through an advanced fault detection
and diagnosis process based on temporal association and decision rules. Energy Build. 2020, 226, 110369. [CrossRef]

145. Li, D.; Zhou, Y.; Hu, G.; Spanos, C.J. Identifying Unseen Faults for Smart Buildings by Incorporating Expert Knowledge With
Data. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1412–1425. [CrossRef]

146. Yan, Y.; Luh, P.B.; Pattipati, K.R. Fault Diagnosis of HVAC Air-Handling Systems Considering Fault Propagation Impacts among
Components. IEEE Trans. Autom. Sci. Eng. 2017, 14, 705–717. [CrossRef]

147. Wall, J.; Guo, Y.; Li, J.; West, S. A Dynamic Machine Learning-based Technique for Automated Fault Detection in HVAC Systems.
ASHRAE Trans. 2011, 117, 449–456.

148. Wen, J.; Li, S. RP-1312—Tools for Evaluating Fault Detection and Diagnostic Methods for Air-Handling Units. Available
online: https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-
handling-units?product_id=1833299 (accessed on 9 May 2022).

149. ASHRAE RP-1020—Demonstration of Fault Detection and Diagnostic Methods in a Real Building. Available online:
https://www.techstreet.com/standards/rp-1020-demonstration-of-fault-detection-and-diagnostic-methods-in-a-real-
building?product_id=1719101 (accessed on 9 May 2022).

150. Liang, Q.; Han, H.; Cui, X.; Qing, H.; Fan, Y. Comparative study of probabilistic neural network and back propagation network
for fault diagnosis of refrigeration systems. Sci. Technol. Built Environ. 2018, 24, 448–457. [CrossRef]

151. Zhao, X. Lab test of three fault detection and diagnostic methods’ capability of diagnosing multiple simultaneous faults in chillers.
Energy Build. 2015, 94, 43–51. [CrossRef]

152. Wang, Z.; Wang, L.; Tan, Y.; Yuan, J.; Li, X. Fault diagnosis using fused reference model and Bayesian network for building energy
systems. J. Build. Eng. 2021, 34, 101957. [CrossRef]

153. Xia, Y.; Ding, Q.; Li, Z.; Jiang, A. Fault detection for centrifugal chillers using a Kernel Entropy Component Analysis (KECA)
method. Build. Simul. 2021, 14, 53–61. [CrossRef]

154. Wang, Z.; Wang, L.; Tan, Y.; Yuan, J. Fault detection based on Bayesian network and missing data imputation for building energy
systems. Appl. Therm. Eng. 2021, 182, 116051. [CrossRef]

155. Han, H.; Xu, L.; Cui, X.; Fan, Y. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA).
Int. J. Refrig. 2021, 121, 269–278. [CrossRef]

156. Han, H.; Zhang, Z.; Cui, X.; Meng, Q. Ensemble learning with member optimization for fault diagnosis of a building energy
system. Energy Build. 2020, 226, 110351. [CrossRef]

157. Wang, S.; Cui, J. A Robust Fault Detection and Diagnosis Strategy for Centrifugal Chillers. HVAC R Res. 2006, 12, 407–428.
[CrossRef]

158. Li, D.; Hu, G.; Spanos, C.J. A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant
analysis. Energy Build. 2016, 128, 519–529. [CrossRef]

159. Zhao, Y.; Wang, S.; Xiao, F. A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-
weighted moving average control charts and support vector regression. Appl. Therm. Eng. 2013, 51, 560–572. [CrossRef]

160. Huang, R.; Liu, J.; Chen, H.; Li, Z.; Liu, J.; Li, G.; Guo, Y.; Wang, J. An effective fault diagnosis method for centrifugal chillers
using associative classification. Appl. Therm. Eng. 2018, 136, 633–642. [CrossRef]

161. Gao, J.; Han, H.; Ren, Z.; Fan, Y. Fault diagnosis for building chillers based on data self-production and deep convolutional neural
network. J. Build. Eng. 2021, 34, 102043. [CrossRef]

http://doi.org/10.1080/10789669.2008.10391049
http://doi.org/10.1016/S1569-190X(02)00062-X
http://doi.org/10.1016/j.eswa.2015.01.010
http://doi.org/10.1002/bes2.1801
https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines
https://docs.microsoft.com/en-us/azure/machine-learning/concept-ml-pipelines
http://doi.org/10.1038/s41597-020-0398-6
https://figshare.com/articles/dataset/LBNLDataSynthesisInventory_pdf/11752740/3
http://doi.org/10.1016/j.enbuild.2013.08.044
http://doi.org/10.1016/j.asoc.2015.05.030
http://doi.org/10.1016/j.jobe.2020.102111
http://doi.org/10.1016/j.enbuild.2020.110369
http://doi.org/10.1109/TASE.2018.2876611
http://doi.org/10.1109/TASE.2017.2669892
https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299
https://www.techstreet.com/standards/rp-1312-tools-for-evaluating-fault-detection-and-diagnostic-methods-for-air-handling-units?product_id=1833299
https://www.techstreet.com/standards/rp-1020-demonstration-of-fault-detection-and-diagnostic-methods-in-a-real-building?product_id=1719101
https://www.techstreet.com/standards/rp-1020-demonstration-of-fault-detection-and-diagnostic-methods-in-a-real-building?product_id=1719101
http://doi.org/10.1080/23744731.2017.1375012
http://doi.org/10.1016/j.enbuild.2015.02.039
http://doi.org/10.1016/j.jobe.2020.101957
http://doi.org/10.1007/s12273-019-0598-1
http://doi.org/10.1016/j.applthermaleng.2020.116051
http://doi.org/10.1016/j.ijrefrig.2020.10.023
http://doi.org/10.1016/j.enbuild.2020.110351
http://doi.org/10.1080/10789669.2006.10391187
http://doi.org/10.1016/j.enbuild.2016.07.014
http://doi.org/10.1016/j.applthermaleng.2012.09.030
http://doi.org/10.1016/j.applthermaleng.2018.03.041
http://doi.org/10.1016/j.jobe.2020.102043


Energies 2022, 15, 4366 46 of 50

162. Zhou, Q.; Wang, S.; Xiao, F. A novel strategy for the fault detection and diagnosis of centrifugal chiller systems. HVAC R Res.
2009, 15, 57–75. [CrossRef]

163. Li, D.; Zhou, Y.; Hu, G.; Spanos, C.J. Fault detection and diagnosis for building cooling system with a tree-structured learning
method. Energy Build. 2016, 127, 540–551. [CrossRef]

164. Li, G.; Hu, Y.; Chen, H.; Shen, L.; Li, H.; Hu, M.; Liu, J.; Sun, K. An improved fault detection method for incipient centrifugal
chiller faults using the PCA-R-SVDD algorithm. Energy Build. 2016, 116, 104–113. [CrossRef]

165. Tran, D.A.T.; Chen, Y.; Jiang, C. Comparative investigations on reference models for fault detection and diagnosis in centrifugal
chiller systems. Energy Build. 2016, 133, 246–256. [CrossRef]

166. Li, B.; Cheng, F.; Zhang, X.; Cui, C.; Cai, W. A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled
data. Appl. Energy 2021, 285, 116459. [CrossRef]

167. Cui, J.; Wang, S. A model-based online fault detection and diagnosis strategy for centrifugal chiller systems. Int. J. Therm. Sci.
2005, 44, 986–999. [CrossRef]

168. Zhao, Y.; Xiao, F.; Wen, J.; Lu, Y.; Wang, S. A robust pattern recognition-based fault detection and diagnosis (FDD) method for
chillers. HVAC R Res. 2014, 20, 798–809. [CrossRef]

169. Tran, D.A.T.; Chen, Y.; Ao, H.L.; Cam, H.N.T. An enhanced chiller FDD strategy based on the combination of the LSSVR-DE
model and EWMA control charts. Int. J. Refrig. 2016, 72, 81–96. [CrossRef]

170. Xiao, F.; Zheng, C.; Wang, S. A fault detection and diagnosis strategy with enhanced sensitivity for centrifugal chillers. Appl.
Therm. Eng. 2011, 31, 3963–3970. [CrossRef]

171. Zhao, Y.; Wang, S.; Xiao, F. Pattern recognition-based chillers fault detection method using Support Vector Data Description
(SVDD). Appl. Energy 2013, 112, 1041–1048. [CrossRef]

172. ASHRAE RP-1043—Fault Detection and Diagnostic (FDD) Requirements and Evaluation Tools for Chillers. Available on-
line: https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-
for-chillers?product_id=1716217 (accessed on 9 May 2022).

173. Reddy, T.A.; Niebur, D.; Andersen, K.K.; Pericolo, P.P.; Cabrera, G. Evaluation of the suitability of different chiller performance
models for on-line training applied to automated fault detection and diagnosis (RP-1139). HVAC R Res. 2003, 9, 385–414.
[CrossRef]

174. ASHRAE RP-1139—Development and Comparison of On-Line Model Training Techniques for Model-Based FDD Methods Ap-
plied to Vapor Compression Equipment. Available online: https://www.techstreet.com/standards/rp-1139-development-and-
comparison-of-on-line-model-training-techniques-for-model-based-fdd-methods-applied-to-vapor-compression-equipment?
product_id=1711767 (accessed on 9 May 2022).

175. Li, G.; Hu, Y. Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and
principal component analysis. Energy Build. 2018, 173, 502–515. [CrossRef]

176. Li, G.; Hu, Y. An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition
based denoising. Energy Build. 2019, 183, 311–324. [CrossRef]

177. Mao, Q.; Fang, X.; Hu, Y.; Li, G. Chiller sensor fault detection based on empirical mode decomposition threshold denoising and
principal component analysis. Appl. Therm. Eng. 2018, 144, 21–30. [CrossRef]

178. Hu, Y.; Chen, H.; Li, G.; Li, H.; Xu, R.; Li, J. A statistical training data cleaning strategy for the PCA-based chiller sensor fault
detection, diagnosis and data reconstruction method. Energy Build. 2016, 112, 270–278. [CrossRef]

179. Li, G.; Hu, Y.; Chen, H.; Li, H.; Hu, M.; Guo, Y.; Shi, S.; Hu, W. A sensor fault detection and diagnosis strategy for screw chiller
system using support vector data description-based D-statistic and DV-contribution plots. Energy Build. 2016, 133, 230–245.
[CrossRef]

180. Hu, Y.; Chen, H.; Xie, J.; Yang, X.; Zhou, C. Chiller sensor fault detection using a self-Adaptive Principal Component Analysis
method. Energy Build. 2012, 54, 252–258. [CrossRef]

181. Wang, S.; Xing, J.; Jiang, Z.; Li, J. A decentralized sensor fault detection and self-repair method for HVAC systems. Build. Serv.
Eng. Res. Technol. 2018, 39, 667–678. [CrossRef]

182. Yang, C.; Gunay, B.; Shi, Z.; Shen, W. Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment
Health Monitoring. TASE 2021, 18, 346–355. [CrossRef]

183. Yang, C.; Shen, W.; Chen, Q.; Gunay, B. Toward failure mode and effect analysis for heating, ventilation and air-conditioning. In
Proceedings of the 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD),
Wellington, New Zealand, 26–28 April 2017; pp. 408–413. [CrossRef]

184. Luo, X.J.; Fong, K.F. Novel pattern recognition-enhanced sensor fault detection and diagnosis for chiller plant. Energy Build. 2020,
228, 110443. [CrossRef]

185. Ng, K.H.; Yik, F.W.H.; Lee, P.; Lee, K.K.Y.; Chan, D.C.H. Bayesian method for HVAC plant sensor fault detection and diagnosis.
Energy Build. 2020, 228, 110476. [CrossRef]

186. Wang, S.W.; Wang, J.B. Law-based sensor fault diagnosis and validation for building air-conditioning systems. HVACR Res. 1999,
5, 353–380. [CrossRef]

187. Chiller Fault Diagnosis Based on VAE Enabled Generative Adversarial Networks. Available online: https://github.com/
BlingBlingss/VAE-CWGAN-GP (accessed on 9 May 2022).

http://doi.org/10.1080/10789669.2009.10390825
http://doi.org/10.1016/j.enbuild.2016.06.017
http://doi.org/10.1016/j.enbuild.2015.12.045
http://doi.org/10.1016/j.enbuild.2016.09.062
http://doi.org/10.1016/j.apenergy.2021.116459
http://doi.org/10.1016/j.ijthermalsci.2005.03.004
http://doi.org/10.1080/10789669.2014.938006
http://doi.org/10.1016/j.ijrefrig.2016.07.024
http://doi.org/10.1016/j.applthermaleng.2011.07.047
http://doi.org/10.1016/j.apenergy.2012.12.043
https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217
https://www.techstreet.com/standards/rp-1043-fault-detection-and-diagnostic-fdd-requirements-and-evaluation-tools-for-chillers?product_id=1716217
http://doi.org/10.1080/10789669.2003.10391077
https://www.techstreet.com/standards/rp-1139-development-and-comparison-of-on-line-model-training-techniques-for-model-based-fdd-methods-applied-to-vapor-compression-equipment?product_id=1711767
https://www.techstreet.com/standards/rp-1139-development-and-comparison-of-on-line-model-training-techniques-for-model-based-fdd-methods-applied-to-vapor-compression-equipment?product_id=1711767
https://www.techstreet.com/standards/rp-1139-development-and-comparison-of-on-line-model-training-techniques-for-model-based-fdd-methods-applied-to-vapor-compression-equipment?product_id=1711767
http://doi.org/10.1016/j.enbuild.2018.05.025
http://doi.org/10.1016/j.enbuild.2018.10.013
http://doi.org/10.1016/j.applthermaleng.2018.07.104
http://doi.org/10.1016/j.enbuild.2015.11.066
http://doi.org/10.1016/j.enbuild.2016.09.037
http://doi.org/10.1016/j.enbuild.2012.07.014
http://doi.org/10.1177/0143624418775881
http://doi.org/10.1109/TASE.2020.2998586
http://doi.org/10.1109/CSCWD.2017.8066729
http://doi.org/10.1016/j.enbuild.2020.110443
http://doi.org/10.1016/j.enbuild.2020.110476
http://doi.org/10.1080/10789669.1999.10391243
https://github.com/BlingBlingss/VAE-CWGAN-GP
https://github.com/BlingBlingss/VAE-CWGAN-GP


Energies 2022, 15, 4366 47 of 50

188. Chakraborty, D.; Elzarka, H. Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold.
Energy Build. 2019, 185, 326–344. [CrossRef]

189. Taylor, W.A. Change-Point Analysis: A Powerful New Tool For Detecting Changes. Available online: https://variation.com/wp-
content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf (accessed on 7
June 2022).

190. Tran, D.A.T.; Chen, Y.; Chau, M.Q.; Ning, B. A robust online fault detection and diagnosis strategy of centrifugal chiller systems
for building energy efficiency. Energy Build. 2015, 108, 441–453. [CrossRef]

191. Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel
EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [CrossRef] [PubMed]

192. Bellanco, I.; Belío, F.; Salom, J. Validation of the self-diagnosis efficiency system. IREC 2021. Available online: https://www.tri-
hp.eu/fileadmin/downloads/Deliverables/D6.3_-_Validation_of_the_self-diagnosis_efficiency.pdf (accessed on 7 June 2022).

193. Oak Ridge National Laboratory ORNL Air Handling Fault Test Data FRP#2. Available online: https://data.openei.org/
submissions/392 (accessed on 9 May 2022).

194. Pacific Northwest National Laboratory Automated Diagnostic Algorithms for Chillers, Boilers, Cooling Towers, and Chilled
Water Distribution. Available online: https://buildingsystems.pnnl.gov/fdd/automated/auto.stm (accessed on 9 May 2022).

195. Metadata Record for: Building Fault Detection Data to Aid Diagnostic Algorithm Creation and Performance Testing. Avail-
able online: https://springernature.figshare.com/articles/dataset/Metadata_record_for_Building_fault_detection_data_to_aid_
diagnostic_algorithm_creation_and_performance_testing/11743074/2 (accessed on 1 April 2022).

196. Purdue University Open Studio Fault Models. Available online: https://github.com/NREL/OpenStudio-fault-measure-gem
(accessed on 9 May 2022).

197. Fault Detection and Diagnosis in Air Handling Unit with Using Dymola Data. Available online: https://github.com/Kyu2
/Fault-Detection-and-Diagnosis (accessed on 9 May 2022).

198. Fault Detection Diagnosis Project: A.I. Methods to Analyze Data. Available online: https://github.com/Kunind/Fault_Detection_
Diagnosis_Project (accessed on 9 May 2022).

199. NIST FDD for Residential Air Conditioners and Heat Pumps. Available online: https://github.com/FDeeDee/NIST-FDD-for-
Residential-Air-Conditioners-and-Heat-Pumps (accessed on 9 May 2022).

200. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; Silva Santos,
L.B.D.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship: Comment. Sci. Data
2016, 3, 1–9. [CrossRef]

201. De Keizer, C.; Kuethe, S.; Jordan, U.; Vajen, K. Simulation-based long-term fault detection for solar thermal systems. Sol. Energy
2013, 93, 109–120. [CrossRef]

202. Djuric, N.; Novakovic, V.; Frydenlund, F. Heating system performance estimation using optimization tool and BEMS data. Energy
Build. 2008, 40, 1367–1376. [CrossRef]

203. Yu, B.; van Paassen, A.H.C.; Riahy, S. Open window and defective radiator valve detection. Build. Serv. Eng. Res. Technol. 2003, 24,
117–124. [CrossRef]

204. Luis Casteleiro-Roca, J.; Quintian, H.; Luis Calvo-Rolle, J.; Corchado, E.; del Carmen Meizoso-Lopez, M.; Pinon-Pazos, A. An
intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Log. 2016, 17, 36–47.
[CrossRef]

205. Papadopoulos, P.M.; Reppa, V.; Polycarpou, M.M.; Panayiotou, C.G. Distributed Diagnosis of Actuator and Sensor Faults in
HVAC Systems. IFAC-Pap. 2017, 50, 4209–4215. [CrossRef]

206. Xu, C.; Chen, H. Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical
modeling method. Int. J. Refrig. Rev. Int. Froid 2020, 114, 106–117. [CrossRef]

207. Zhao, Y.; Wang, S.; Xiao, F. A system-level incipient fault-detection method for HVAC systems. HVAC R Res. 2013, 19, 593–601.
[CrossRef]

208. Ma, Z.; Wang, S. Online fault detection and robust control of condenser cooling water systems in building central chiller plants.
Energy Build. 2011, 43, 153–165. [CrossRef]

209. Xu, X.; Xiao, F.; Wang, S. Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal
component analysis methods. Appl. Therm. Eng. 2008, 28, 226–237. [CrossRef]

210. Navarro-Esbrí, J.; Torrella, E.; Cabello, R. A vapour compression chiller fault detection technique based on adaptative algorithms.
Application to on-line refrigerant leakage detection. Int. J. Refrig. 2006, 29, 716–723. [CrossRef]

211. Shin, Y.; Kim, Y.; Moon, G.; Choi, S. In-situ diagnosis of vapor-compressed chiller performance for energy saving. J. Mech. Sci.
Technol. 2005, 19, 1670–1681. [CrossRef]

212. Riemer, P.L.; Mitchell, J.W.; Beckman, W.A. The use of time series analysis in fault detection and diagnosis methodologies.
ASHRAE Trans. 2002, 108, 384–394.

213. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure diagnosis using discrete-event models.
IEEE Trans. Control Syst. Technol. 1996, 4, 105–124. [CrossRef]

214. Zhang, S.; Zhu, X.; Anduv, B.; Jin, X.; Du, Z. Fault detection and diagnosis for the screw chillers using multi-region XGBoost
model. Sci. Technol. Built Environ. 2021, 27, 608–623. [CrossRef]

http://doi.org/10.1016/j.enbuild.2018.12.032
https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf
https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf
http://doi.org/10.1016/j.enbuild.2015.09.044
http://doi.org/10.1109/TNSRE.2017.2721116
http://www.ncbi.nlm.nih.gov/pubmed/28678710
https://www.tri-hp.eu/fileadmin/downloads/Deliverables/D6.3_-_Validation_of_the_self-diagnosis_efficiency.pdf
https://www.tri-hp.eu/fileadmin/downloads/Deliverables/D6.3_-_Validation_of_the_self-diagnosis_efficiency.pdf
https://data.openei.org/submissions/392
https://data.openei.org/submissions/392
https://buildingsystems.pnnl.gov/fdd/automated/auto.stm
https://springernature.figshare.com/articles/dataset/Metadata_record_for_Building_fault_detection_data_to_aid_diagnostic_algorithm_creation_and_performance_testing/11743074/2
https://springernature.figshare.com/articles/dataset/Metadata_record_for_Building_fault_detection_data_to_aid_diagnostic_algorithm_creation_and_performance_testing/11743074/2
https://github.com/NREL/OpenStudio-fault-measure-gem
https://github.com/Kyu2/Fault-Detection-and-Diagnosis
https://github.com/Kyu2/Fault-Detection-and-Diagnosis
https://github.com/Kunind/Fault_Detection_Diagnosis_Project
https://github.com/Kunind/Fault_Detection_Diagnosis_Project
https://github.com/FDeeDee/NIST-FDD-for-Residential-Air-Conditioners-and-Heat-Pumps
https://github.com/FDeeDee/NIST-FDD-for-Residential-Air-Conditioners-and-Heat-Pumps
http://doi.org/10.1038/sdata.2016.18
http://doi.org/10.1016/j.solener.2013.03.023
http://doi.org/10.1016/j.enbuild.2007.12.006
http://doi.org/10.1191/0143624403bt063oa
http://doi.org/10.1016/j.jal.2015.09.007
http://doi.org/10.1016/j.ifacol.2017.08.816
http://doi.org/10.1016/j.ijrefrig.2020.02.035
http://doi.org/10.1080/10789669.2013.789371
http://doi.org/10.1016/j.enbuild.2010.09.003
http://doi.org/10.1016/j.applthermaleng.2007.03.021
http://doi.org/10.1016/j.ijrefrig.2005.12.008
http://doi.org/10.1007/BF03023943
http://doi.org/10.1109/87.486338
http://doi.org/10.1080/23744731.2021.1877966


Energies 2022, 15, 4366 48 of 50

215. Li, D.; Li, D.; Li, C.; Li, L.; Gao, L. A novel data-temporal attention network based strategy for fault diagnosis of chiller sensors.
Energy Build. 2019, 198, 377–394. [CrossRef]

216. Sharifi, R.; Langari, R. Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models. Mech. Syst. Signal Process.
2017, 85, 638–650. [CrossRef]

217. Kocyigit, N. Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference
systems and artificial neural network. Int. J. Refrig. Rev. Int. Froid 2015, 50, 69–79. [CrossRef]

218. Bonvini, M.; Sohn, M.D.; Granderson, J.; Wetter, M.; Piette, M.A. Robust on-line fault detection diagnosis for HVAC components
based on nonlinear state estimation techniques. Appl. Energy 2014, 124, 156–166. [CrossRef]

219. Bailey, M.B.; Kreider, J.F. Creating an automated chiller fault detection and diagnostics tool using a data fault library. ISA Trans.
2003, 42, 485–495. [CrossRef]

220. Lee, D.; Lai, C.W.; Liao, K.K.; Chang, J.W. Artificial intelligence assisted false alarm detection and diagnosis system development
for reducing maintenance cost of chillers at the data centre. J. Build. Eng. 2021, 36, 102110. [CrossRef]

221. Janecke, A.; Terrill, T.J.; Rasmussen, B.P. A comparison of static and dynamic fault detection techniques for transcritical
refrigeration. Int. J. Refrig. 2017, 80, 212. [CrossRef]

222. Gao, Y.; Liu, S.; Li, F.; Liu, Z. Fault detection and diagnosis method for cooling dehumidifier based on LS-SVM NARX model. Int.
J. Refrig. 2016, 61, 69–81. [CrossRef]

223. Ma, Z.; Wang, S. Fault-tolerant supervisory control of building condenser cooling water systems for energy efficiency. HVACR
Res. 2012, 18, 126–146. [CrossRef]

224. Sun, B.; Luh, P.B.; O’Neill, Z. SPC and Kalman filter-based fault detection and diagnosis for an air-cooled chiller. Front. Electr.
Electron. Eng. China 2011, 6, 412–423. [CrossRef]

225. Namburu, S.M.; Azam, M.S.; Luo, J.; Choi, K.; Pattipati, K.R. Data-driven modeling, fault diagnosis and optimal sensor selection
for HVAC chillers. IEEE Trans. Autom. Sci. Eng. 2007, 4, 469–473. [CrossRef]

226. Wang, S.; Chen, Y. Sensor validation and reconstruction for building central chilling systems based on principal component
analysis. Energy Convers. Manag. 2004, 45, 673–695. [CrossRef]

227. Buswell, R.A.; Haves, P.; Wright, J.A. Model-based condition monitoring of a HVAC cooling coil sub-system in a real building.
Build. Serv. Eng. Res. Technol. 2003, 24, 103–116. [CrossRef]

228. Wang, S.W.; Wang, J.B. Robust sensor fault diagnosis and validation in HVAC systems. Trans. Inst. Meas. Control. 2002, 24,
231–262. [CrossRef]

229. Castro, N.S. Performance evaluation of a reciprocating chiller using experimental data and model predictions for fault detection
and diagnosis. ASHRAE Trans. 2002, 108, 889–903.

230. Wang, S.W.; Wang, J.B.; Burnett, J. Validating BMS sensors for chiller condition monitoring. Trans. Inst. Meas. Control. 2001, 23,
201–225. [CrossRef]

231. Breuker, M.S.; Braun, J.E. Evaluating the performance of a fault detection and diagnostic system for vapor compression equipment.
HVAC R Res. 1998, 4, 401–425. [CrossRef]

232. Yang, X.; Jin, X.; Du, Z.; Fan, B.; Zhu, Y. Optimum operating performance based online fault-tolerant control strategy for sensor
faults in air conditioning systems. Autom. Constr. 2014, 37, 145–154. [CrossRef]

233. Ding, X.; Guo, Y.; Liu, T.; Liu, Q.; Chen, H. New fault diagnostic strategies for refrigerant charge fault in a VRF system using
hybrid machine learning method. J. Build. Eng. 2021, 33, 101577. [CrossRef]

234. Zeng, Y.; Chen, H.; Xu, C.; Cheng, Y.; Gong, Q. A hybrid deep forest approach for outlier detection and fault diagnosis of variable
refrigerant flow system. Int. J. Refrig. 2020, 120, 104–118. [CrossRef]

235. Guo, Y.; Chen, H. Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach.
Int. J. Refrig. 2020, 118, 1–11. [CrossRef]

236. Cheng, H.; Chen, H.; Li, Z.; Cheng, X. Ensemble 1-D CNN diagnosis model for VRF system refrigerant charge faults under
heating condition. Energy Build. 2020, 224, 110256. [CrossRef]

237. Liu, J.; Li, G.; Liu, B.; Li, K.; Chen, H. Knowledge discovery of data-driven-based fault diagnostics for building energy systems: A
case study of the building variable refrigerant flow system. Energy 2019, 174, 873–885. [CrossRef]

238. Guo, Y.; Tan, Z.; Chen, H.; Li, G.; Wang, J.; Huang, R.; Liu, J.; Ahmad, T. Deep learning-based fault diagnosis of variable refrigerant
flow air-conditioning system for building energy saving. Appl. Energy 2018, 225, 732–745. [CrossRef]

239. Guo, Y.; Li, G.; Chen, H.; Wang, J.; Guo, M.; Sun, S.; Hu, W. Optimized neural network-based fault diagnosis strategy for VRF
system in heating mode using data mining. Appl. Therm. Eng. 2017, 125, 1402–1413. [CrossRef]

240. Zhang, H.; Chen, H.; Guo, Y.; Wang, J.; Li, G.; Shen, L. Sensor fault detection and diagnosis for a water source heat pump
air-conditioning system based on PCA and preprocessed by combined clustering. Appl. Therm. Eng. 2019, 160, 114098. [CrossRef]

241. Deshmukh, S.; Samouhos, S.; Glicksman, L.; Norford, L. Fault detection in commercial building VAV AHU: A case study of an
academic building. Energy Build. 2019, 201, 163–173. [CrossRef]

242. Yang, C.; Shen, W.; Gunay, B.; Shi, Z. Toward Machine Learning-based Prognostics for Heating Ventilation and Air-Conditioning
Systems. ASHRAE Trans. 2019, 125, 106–115.

243. Van Every, P.M.; Rodriguez, M.; Jones, C.B.; Mammoli, A.A.; Martínez-Ramón, M. Advanced detection of HVAC faults using
unsupervised SVM novelty detection and Gaussian process models. Energy Build. 2017, 149, 216–224. [CrossRef]

http://doi.org/10.1016/j.enbuild.2019.06.034
http://doi.org/10.1016/j.ymssp.2016.08.028
http://doi.org/10.1016/j.ijrefrig.2014.10.017
http://doi.org/10.1016/j.apenergy.2014.03.009
http://doi.org/10.1016/S0019-0578(07)60149-9
http://doi.org/10.1016/j.jobe.2020.102110
http://doi.org/10.1016/j.ijrefrig.2017.04.020
http://doi.org/10.1016/j.ijrefrig.2015.08.020
http://doi.org/10.1080/10789669.2011.568320
http://doi.org/10.1007/s11460-011-0164-9
http://doi.org/10.1109/TASE.2006.888053
http://doi.org/10.1016/S0196-8904(03)00180-8
http://doi.org/10.1191/0143624403bt062oa
http://doi.org/10.1191/0142331202tm030oa
http://doi.org/10.1177/014233120102300401
http://doi.org/10.1080/10789669.1998.10391412
http://doi.org/10.1016/j.autcon.2013.10.011
http://doi.org/10.1016/j.jobe.2020.101577
http://doi.org/10.1016/j.ijrefrig.2020.08.014
http://doi.org/10.1016/j.ijrefrig.2020.06.009
http://doi.org/10.1016/j.enbuild.2020.110256
http://doi.org/10.1016/j.energy.2019.02.161
http://doi.org/10.1016/j.apenergy.2018.05.075
http://doi.org/10.1016/j.applthermaleng.2017.07.065
http://doi.org/10.1016/j.applthermaleng.2019.114098
http://doi.org/10.1016/j.enbuild.2019.06.051
http://doi.org/10.1016/j.enbuild.2017.05.053


Energies 2022, 15, 4366 49 of 50

244. Shioya, M.; Masukawa, Y.; Yairi, T.; Yoshida, K. Energy Fault Detection in Office Building System by Machine Learning Methods.
ASHRAE Trans. 2015, 121, 185–196.

245. Najafi, M.; Auslander, D.M.; Bartlett, P.L.; Haves, P.; Sohn, M.D. Application of machine learning in the fault diagnostics of air
handling units. Appl. Energy 2012, 96, 347–358. [CrossRef]

246. Yang, X.; Jin, X.; Du, Z.; Zhu, Y. A novel model-based fault detection method for temperature sensor using fractal correlation
dimension. Build. Environ. 2011, 46, 970–979. [CrossRef]

247. Carling, P. Comparison of three fault detection methods based on field data of an air-handling unit. ASHRAE Trans. 2002, 108,
904–921.

248. Yoshida, H.; Kumar, S.; Morita, Y. Online fault detection and diagnosis in VAV air handling unit by RARX modeling. Energy Build.
2001, 33, 391–401. [CrossRef]

249. Salsbury, T.I.; Diamond, R.C. Fault detection in HVAC systems using model-based feedforward control. Energy Build. 2001, 33,
403–415. [CrossRef]

250. Fornera, L.; Glass, A.S.; Gruber, P.; Todtli, J. Qualitative fault detection based on logical programming applied to a variable air
volume air-handling unit. Control. Eng. Pract. 1996, 4, 105–116. [CrossRef]

251. Haves, P.; Salsbury, T.I.; Wright, J.A. Condition monitoring in HVAC subsystems using first principles models. ASHRAE Trans.
1996, 102, 519–527.

252. Howell, J.; Maddison, E.J. Fault detection in HVAC plants based on constraint suspension. Build. Serv. Eng. Res. Technol. 1995, 16,
207–213. [CrossRef]

253. Fasolo, P.S.; Seborg, D.E. Monitoring and fault detection for an HVAC control system. HVAC R Res. 1995, 1, 177–193. [CrossRef]
254. Xu, Y.; Chen, N.; Shen, X.; Xu, L.; Pan, Z.; Pan, F. Proposal and experimental case study on building ventilating fan fault diagnosis

based on cuckoo search algorithm optimized extreme learning machine. Sustain. Energy Technol. Assess. 2021, 45, 100975.
[CrossRef]

255. Cheng, F.; Cai, W.; Zhang, X.; Liao, H.; Cui, C. Fault detection and diagnosis for Air Handling Unit based on multiscale
convolutional neural networks. Energy Build. 2021, 236, 110795. [CrossRef]

256. Yoon, S. In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference. Energy Build.
2020, 221, 110026. [CrossRef]

257. Elnour, M.; Meskin, N.; Al-Naemi, M. Sensor data validation and fault diagnosis using Auto-Associative Neural Network for
HVAC systems. J. Build. Eng. 2020, 27, 100935. [CrossRef]

258. Choi, Y.; Yoon, S. Virtual sensor-assisted in situ sensor calibration in operational HVAC systems. Build. Environ. 2020, 181, 107079.
[CrossRef]

259. Lee, K.; Wu, B.; Peng, S. Deep-learning-based fault detection and diagnosis of air-handling units. Build. Environ. 2019, 157, 24–33.
[CrossRef]

260. Karami, M.; Wang, L. Automatic Fault Detection and Diagnosis of Air Handling Unit Using an Online Machine Learning
Algorithm. ASHRAE Trans. 2019, 125, 56–59.

261. Zhou, Y. Sensor selection in neuro-fuzzy modelling and fault diagnosis in HVAC system. J. Intell. Fuzzy Syst. 2016, 30, 2365–2381.
[CrossRef]

262. Bengea, S.C.; Li, P.; Sarkar, S.; Vichik, S.; Adetola, V.; Kang, K.; Lovett, T.; Leonardi, F.; Kelman, A.D. Fault-tolerant optimal control
of a building HVAC system. Sci. Technol. Built Environ. 2015, 21, 734–751. [CrossRef]

263. Glos, M.; Romberg, D.; Endres, S.; Fietze, I. Estimation of spontaneous baroreflex sensitivity using transfer function analysis:
Effects of positive pressure ventilation. Biomed. Tech. 2007, 52, 66–72. [CrossRef]

264. Xiao, F.; Wang, S.; Zhang, J. A diagnostic tool for online sensor health monitoring in air-conditioning systems. Autom. Constr.
2006, 15, 489–503. [CrossRef]

265. Pakanen, J.E.; Sundquist, T. Automation-assisted fault detection of an air-handling unit; Implementing the method in a real
building. Energy Build. 2003, 35, 193–202. [CrossRef]

266. House, J.M.; Lee, W.Y.; Shin, D.R. Classification techniques for fault detection and diagnosis of an air-handling unit. ASHRAE
Trans. 1999, 105, 1087.

267. Andriamamonjy, A.; Saelens, D.; Klein, R. An auto-deployed model-based fault detection and diagnosis approach for Air
Handling Units using BIM and Modelica. Autom. Constr. 2018, 96, 508–526. [CrossRef]

268. Du, Z.; Fan, B.; Jin, X.; Chi, J. Fault detection and diagnosis for buildings and HVAC systems using combined neural networks
and subtractive clustering analysis. Build. Environ. 2014, 73, 1–11. [CrossRef]

269. Wu, S.; Sun, J. Cross-level fault detection and diagnosis of building HVAC systems. Build. Environ. 2011, 46, 1558–1566. [CrossRef]
270. Norford, L.K.; Wright, J.A.; Buswell, R.A.; Luo, D.; Klaassen, C.J.; Suby, A. Demonstration of fault detection and diagnosis

methods for air-handling units (ASHRAE 1020-RP). HVAC R Res. 2002, 8, 41–71. [CrossRef]
271. Fan, B.; Du, Z.; Jin, X.; Yang, X.; Guo, Y. A hybrid FDD strategy for local system of AHU based on artificial neural network and

wavelet analysis. Build. Environ. 2010, 45, 2698–2708. [CrossRef]
272. Wu, S.; Sun, J.Q. A top-down strategy with temporal and spatial partition for fault detection and diagnosis of building HVAC

systems. Energy Build. 2011, 43, 2134–2139. [CrossRef]
273. Seem, J.E.; House, J.M. Integrated control and fault detection of Air-Handling units. HVAC R Res. 2009, 15, 25–55. [CrossRef]
274. Du, Z.; Jin, X.; Wu, L. PCA-FDA-based fault diagnosis for sensors in VAV systems. HVACR Res. 2007, 13, 349–367. [CrossRef]

http://doi.org/10.1016/j.apenergy.2012.02.049
http://doi.org/10.1016/j.buildenv.2010.10.030
http://doi.org/10.1016/S0378-7788(00)00121-3
http://doi.org/10.1016/S0378-7788(00)00122-5
http://doi.org/10.1016/0967-0661(95)00213-9
http://doi.org/10.1177/014362449501600406
http://doi.org/10.1080/10789669.1995.10391318
http://doi.org/10.1016/j.seta.2020.100975
http://doi.org/10.1016/j.enbuild.2021.110795
http://doi.org/10.1016/j.enbuild.2020.110026
http://doi.org/10.1016/j.jobe.2019.100935
http://doi.org/10.1016/j.buildenv.2020.107079
http://doi.org/10.1016/j.buildenv.2019.04.029
http://doi.org/10.3233/IFS-152006
http://doi.org/10.1080/23744731.2015.1057085
http://doi.org/10.1515/BMT.2007.013
http://doi.org/10.1016/j.autcon.2005.06.001
http://doi.org/10.1016/S0378-7788(02)00050-6
http://doi.org/10.1016/j.autcon.2018.09.016
http://doi.org/10.1016/j.buildenv.2013.11.021
http://doi.org/10.1016/j.buildenv.2011.01.017
http://doi.org/10.1080/10789669.2002.10391289
http://doi.org/10.1016/j.buildenv.2010.05.031
http://doi.org/10.1016/j.enbuild.2011.04.020
http://doi.org/10.1080/10789669.2009.10390824
http://doi.org/10.1080/10789669.2007.10390958


Energies 2022, 15, 4366 50 of 50

275. Du, Z.; Jin, X.; Wu, L. Fault detection and diagnosis based on improved PCA with JAA method in VAV systems. Build. Environ.
2007, 42, 3221–3232. [CrossRef]

276. Liang, J.; Du, R. Model-based Fault Detection and Diagnosis of HVAC systems using Support Vector Machine method. Int. J.
Refrig. 2007, 30, 1104–1114. [CrossRef]

277. Du, Z.; Jin, X. Detection and diagnosis for sensor fault in HVAC systems. Energy Convers. Manag. 2007, 48, 693–702. [CrossRef]
278. Wang, S.; Jiang, Z. Valve fault detection and diagnosis based on CMAC neural networks. Energy Build. 2004, 36, 599–610.

[CrossRef]
279. Pakanen, J. Demonstrating a Fault Diagnostic Method in an Automated, Computer-Controlled HVAC Process. 2001. Available

online: https://publications.vtt.fi/pdf/publications/2001/P443.pdf (accessed on 7 June 2022).
280. Boem, F.; Reci, R.; Cenedese, A.; Parisini, T. Distributed Clustering-based Sensor Fault Diagnosis for HVAC Systems. IFAC-Pap.

2017, 50, 4197–4202. [CrossRef]
281. Allen, W.H.; Rubaai, A.; Chawla, R. Fuzzy Neural Network-Based Health Monitoring for HVAC System Variable-Air-Volume

Unit. IEEE Trans. Ind. Appl. 2016, 52, 2513–2524. [CrossRef]
282. Ding, Z.; Chen, W.; Hu, T.; Xu, X. Evolutionary double attention-based long short-term memory model for building energy

prediction: Case study of a green building. Appl. Energy 2021, 288, 116660. [CrossRef]
283. Touzani, S.; Ravache, B.; Crowe, E.; Granderson, J. Statistical change detection of building energy consumption: Applications to

savings estimation. Energy Build. 2019, 185, 123–136. [CrossRef]
284. Du, Z.; Jin, X.; Zhu, Y.; Wang, Y.; Zhang, W.; Chen, Z. Development and application of hardware-in-the-loop simulation for the

HVAC systems. Sci. Technol. Built Environ. 2019, 25, 1482–1493. [CrossRef]
285. Fan, C.; Xiao, F.; Yan, C. A framework for knowledge discovery in massive building automation data and its application in

building diagnostics. Autom. Constr. 2015, 50, 81–90. [CrossRef]
286. Seem, J.E. Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy Build. 2007, 39, 52–58.

[CrossRef]
287. Dodier, R.H.; Kreider, J.F. Detecting whole building energy problems. ASHRAE Trans. 1999, 105, 579.
288. Papadopoulos, P.M.; Reppa, V.; Polycarpou, M.M.; Panayiotou, C.G. Scalable distributed sensor fault diagnosis for smart

buildings. IEEE/CAA J. Autom. Sin. 2020, 7, 638–655. [CrossRef]
289. Yang, C.; Shen, W.; Chen, Q.; Gunay, B. A practical solution for HVAC prognostics: Failure mode and effects analysis in building

maintenance. J. Build. Eng. 2018, 15, 26–32. [CrossRef]
290. Mavromatidis, G.; Acha, S.; Shah, N. Diagnostic tools of energy performance for supermarkets using Artificial Neural Network

algorithms. Energy Build. 2013, 62, 304–314. [CrossRef]
291. Magoulès, F.; Zhao, H.; Elizondo, D. Development of an RDP neural network for building energy consumption fault detection

and diagnosis. Energy Build. 2013, 62, 133–138. [CrossRef]
292. Liu, Y.; Chen, H.; Zhang, L.; Wu, X.; Wang, X. Energy consumption prediction and diagnosis of public buildings based on support

vector machine learning: A case study in China. J. Clean. Prod. 2020, 272, 122542. [CrossRef]
293. O’Neill, Z.; Pang, X.; Shashanka, M.; Haves, P.; Bailey, T. Model-based real-time whole building energy performance monitoring

and diagnostics. J. Build. Perform. Simul. 2014, 7, 83–99. [CrossRef]
294. Chen, Y.; Lan, L. Fault detection, diagnosis and data recovery for a real building heating/cooling billing system. Energy Convers.

Manag. 2010, 51, 1015–1024. [CrossRef]

http://doi.org/10.1016/j.buildenv.2006.08.011
http://doi.org/10.1016/j.ijrefrig.2006.12.012
http://doi.org/10.1016/j.enconman.2006.09.023
http://doi.org/10.1016/j.enbuild.2004.01.037
https://publications.vtt.fi/pdf/publications/2001/P443.pdf
http://doi.org/10.1016/j.ifacol.2017.08.811
http://doi.org/10.1109/TIA.2015.2511160
http://doi.org/10.1016/j.apenergy.2021.116660
http://doi.org/10.1016/j.enbuild.2018.12.020
http://doi.org/10.1080/23744731.2019.1649462
http://doi.org/10.1016/j.autcon.2014.12.006
http://doi.org/10.1016/j.enbuild.2006.03.033
http://doi.org/10.1109/JAS.2020.1003123
http://doi.org/10.1016/j.jobe.2017.10.013
http://doi.org/10.1016/j.enbuild.2013.03.020
http://doi.org/10.1016/j.enbuild.2013.02.050
http://doi.org/10.1016/j.jclepro.2020.122542
http://doi.org/10.1080/19401493.2013.777118
http://doi.org/10.1016/j.enconman.2009.12.004

	Introduction 
	Current Reviews on FDD in Building Systems 
	Shortcomings 
	Contribution and Structure of the Review 

	Methodology 
	Results of the Review, Part I: Terminology and Categorization of FDD Methods 
	FDD Terminology 
	The Classical FDD Framework and Related Fields 
	A Suggestion for a Common FDD Framework 

	Method Categorizations for FDD 
	Data-Based Methods 
	Model-Based Methods 
	Hybrid Methods 


	Results of the Review, Part II: FDD in Building Systems 
	Overview of the Articles 
	Categorization of the Articles 
	Modeling Approach 
	Algorithm Distribution 

	Results of the Review, Part III: The Importance of Driving Research Innovation 
	Datasets and Code 
	Do Available Datasets Drive the Research? 
	Dataset Analysis 
	Performance Evaluation Metrics 

	Current Dataset and Code Repositories 

	Discussion of Key Findings 
	A Uniform FDD Framework—A Utopia or within Reach? 
	What Are the Common Algorithms Used for FDD in Building Systems? 
	How to Drive the Research Innovation and Increase the Reproducibility of FDD in Building Systems 

	Conclusions and Suggestions for Future Work 
	Appendix A
	References

