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Abstract: The powertrain of a fuel cell vehicle typically consists of two energy sources: a proton
electrolyte membrane fuel cell (PEMFC) stack and a battery package. In this paper, multi-dimensional
dynamic programming (MDDP) is used to solve the energy management strategy (EMS) of fuel cell
hybrid powertrain. This study built a fuel cell hybrid powertrain model, in which the battery model
is built based on the Thevenin equivalent circuit. In order to improve the calculating efficiency and
maintain the accuracy of the algorithm, the state variables in each stage are divided into primary
and secondary. In the reverse solution process, the corresponding relationship between the multi
state variables grid and the optimal cumulative function has been changed from three-dimensional to
two-dimensional. The EMS based on MDDP is applied to component sizing of a commercial vehicle.
Simulations were conducted using MATLAB under the C-WTVC working condition. By analyzing
the fuel economy and system durability, the optimal component combination of comprehensive
performance is obtained. Compared with the EMS based on dynamic programming (DP), the
proposed method effectively improves the calculation accuracy: the hydrogen consumption can be
reduced by 3.10%, and the durability of the fuel cell and battery can be improved by 1.08% and
0.13%, respectively.

Keywords: fuel cell; energy management strategy; dynamic programming; component sizing

1. Introduction

Under the double pressure of energy crisis and environmental pollution, countries all
over the world have developed a series of programs to alleviate this problem, and vigor-
ously developing new energy vehicles is an important measure to alleviate environmental
pressure and oil resource exhaustion [1]. New energy vehicles include a variety of models
such as battery electric vehicle (BEV), hybrid electric vehicle (HEV) and fuel cell vehicle
(FCV). Although BEV can help alleviate environmental and energy problems, problems
with battery technology such as long charging time, battery range and short battery life
cause it to have great limitations [2,3]. HEV is a kind of new energy vehicle that reduces
emissions, but it still needs to consume petroleum resources [4,5]. FCV has the advantages
of long driving range, fast energy replenishment, zero pollution and wide raw material
sources, and it is an important direction of future automotive development [6–8].

However, due to the relatively weak output characteristics of fuel cells, an additional
energy storage device is required to solve the problems of slow start, slow dynamic response
of fuel cells and braking energy recovery in actual application [9]. Due to different features
of the power sources in the fuel cell composite energy source system, a reasonable and
effective energy management strategy (EMS) is crucial in coordinating the distribution of
power flow and improving fuel economy and system durability.

There have been many papers on EMS in the literature with example literature surveys
being that of [10,11]. These papers can be separated into two categories, which are namely
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the rule-based EMS and optimization-based EMS [12]. The rule-based EMS has advantages
such as simple logic and strong adaptability to working conditions. According to the
different forms of rules, it can be divided into deterministic rules and fuzzy rules. The
EMS of deterministic rules controls the main energy sources (such as engines and fuel
cell) in the best working conditions or high efficiency range according to experience. Li
Q. et al., conducted regular analysis on the operating characteristics of the fuel cell system
and the optimal working area of the battery so that the system could work in the high-
efficiency area and achieve the best economy [13]. The state machine control proposed
by Mokrani Z. et al. [14] and the operation mode control proposed by Garcia P. et al. [15]
were adopted as the rule-based strategies and are effective for extending the lifetime of fuel
cells. The fuzzy rule-based EMS is proposed based on fuzzy controller [16]. Zhou D. et al.,
proposed an EMS for online driving conditions by integrating three offline optimized fuzzy
logic controller parameters [17]. Shen D. et al., proposed the fuzzy control method based
on robust model prediction to design the nonlinear control law to achieve the optimization
goal under the uncertainty of power demand [18].

Optimization-based EMS adopts an active optimization algorithm that can adaptively
change the rules or criteria based on the input and outputs and/or the history of these
parameters [19]. Optimization-based strategies can be divided into real-time optimization
strategies and global optimization strategies [20,21]. Real-time optimization strategies such
as model predictive control (MPC) [22] and the equivalent consumption minimum strategy
(ECMS) [23] have the advantage of high real-time performance, but only local optimum can
be achieved. Tao J. et al., proposed an algorithmic framework combining a Q-learning and
genetic algorithm for the power split between the fuel cell and supercapacitor of a vehicle,
and simulation results show that the SOC of the supercapacitor can be sustained within the
desired safe range, while reducing hydrogen consumption [24]. Papers [25,26] are based on
the Deep Reinforcement Learning optimizer to improve the driving conditions adaptability
of the EMS. Song K. et al., established a novel fuel cell degradation model, which can
obtain the efficiency under different states-of-health of the fuel cell. The EMS is adjusted
based on the efficiency of the fuel cell to balance the degradation [27]. Global optimization
strategies focus on Dynamic Programming (DP), Pontryagin’s Minimal Principle (PMP)
and heuristic algorithms [28–30]. Because the global optimization strategy needs to predict
the driving condition information and have a large amount of calculation, it is difficult
to apply it to real time optimization. However, it can be used as the evaluation standard
of other control strategies. Munoz P. et al., adopted DP as the optimization benchmark
of the proposed energy management control method based on neural networks for fuel
cell vehicles [31]. Gim J. et al., extracted the allowable current of the fuel cell through
the use of DP, then the modulation ratio of fuel cell system is solved by Particle Swarm
Optimization algorithm based on the allowable current [32]. Deng K. et al., introduced
the online adaptation mechanism of the PMP’s co-state into the MPC structure, which
shows promising fuel economy and battery charge sustaining [33]. Global Optimization-
based EMS highly coupled with the component sizing of fuel cell vehicles. To ensure
the comprehensive performance of the vehicle, the optimization of component sizing of
powertrain and energy management strategy should be considered simultaneously. The
component sizing method based on the optimization algorithm is to search the multi-
dimensional component space through various optimization algorithms to find the optimal
component combination that minimizes the objective function [34,35].

Based on the above literature, the main research gaps are as follows: rule-based
EMS are usually determined according to application-specific scenarios. When the system
dynamics change, the same set of rules may not apply. Global Optimization-based EMS
operate under known working conditions, which makes it difficult to be directly applied in
real time control, but it can provide reference standards for the control sequences obtained
by other EMS. DP is a common method used in global optimization. However, the DP-
based EMS of fuel cell hybrid vehicles generally only uses a single state variable, and the
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idealized internal resistance model is used in the modeling of the battery. Therefore, the
calculation accuracy can be further improved.

To solve the above problems, the main contributions of this paper are as follows: an
energy management strategy based on multi-dimensional dynamic programming (MDDP)
is proposed. In this strategy, the more accurate Thevenin model, which can reflect the po-
larization characteristics of the battery in higher accuracy [36], is used for battery modeling,
and battery state of charge (BSOC) and polarization voltage are used as state variables.
In the reverse solving process of MDDP, dimension reduction is carried out to avoid a
dimension disaster problem and improve computational efficiency. Finally, aiming at
improving the fuel economy and durability, the energy management strategy is applied to
the component sizing of a commercial vehicle.

This paper is organized as follows. Section 2 describes the topology of a fuel cell
hybrid powertrain and presents the model regarding fuel economy and system durability.
Section 3 introduces the MDDP-based EMS method. Section 4 applies the proposed method
to a component sizing problem. Section 5 presents the simulation results and discussion.
The conclusion is given in Section 6.

2. Modeling of Powertrain
2.1. Powertrain Structure

According to the comparative analysis of different configurations of hybrid power-
train [12], this study utilized a semi-active hybrid powertrain configuration. The topology
is shown in Figure 1. The fuel cell is connected to the DC bus via a DC/DC converter, and
the battery pack is directly connected to the DC bus. This structural system is stable and
easier to control.
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2.2. Fuel Cell Model

In this study, a proton electrolyte membrane fuel cell (PEMFC) is used as the main
power source. In general, there are three types of voltage loss of the PEMFC output voltage,
such as Equation (1) [37].

Ecell = ENernst −Vact −Vohm −Vco (1)

where Ecell denotes the single PEMFC output voltage, ENernst denotes the thermodynamic
electromotive force, Vact is the activation voltage loss, Vohm is the ohmic voltage loss and
Vco denotes the concentration voltage loss.

The thermodynamic electromotive force can be expressed as Equation (2).

ENernst = 1.229− 8.5× 10−4 × (T − 298.15) + 4.308× 10−5 × T ×
(
ln
(

PH2

)
+ 0.5 ln

(
PO2

))
(2)

where PH2 the partial pressure of hydrogen at the anode catalyst–gas interface, PO2 is the
partial pressure of oxygen at the cathode catalyst–gas interface and T represents the cell
temperature.

The activation voltage loss can be expressed as

Vact = ξ1 + ξ2 + ξ3 × T × ln
(
CO2

)
+ ξ4 × T × ln(Ifc) (3)
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where ξ1, ξ2, ξ3 and ξ4 are empirical parameters whose values are determined by the
theoretical balance among kinetics, thermodynamics and electrochemistry. Ifc denotes the
current of the PEMFC. CO2 is the oxygen concentration at the cathode catalyst–gas interface,
and it can be expressed by Henry’s law as follows:

CO2 =
PO2

5.08× 106 × exp(−498/T)
(4)

The ohmic voltage loss can be expressed as

Vohm = I × Rohm = Ifc × (Rm + Rc) (5)

where Rm is the equivalent membrane resistance of the proton exchange membrane and Rc
is the membrane resistance to the proton flow. Rm can be expressed by

Rm =
rM × l

A
(6)

rM =

181.6×
(

1 + 0.03J + 0.062×
(

T
303

)2
× J2.5

)
(λ− 0.634− 3× J)× exp

(
4.18×

(
T−303

T

)) (7)

where rM is the membrane impedance rate, l is Proton exchange membrane thickness, A is
the Activation area, λ Membrane water content and J denotes current density.

The concentration voltage loss can be expressed as

Uco = −B× ln
(

1− J
Jmax

)
(8)

where B represents the fuel cell performance coefficient and Jmax represents maximum
current density. The parameters of the fuel cell model are shown in Table 1 [38].

Table 1. Parameters of the fuel cell model.

Parameter Value

Partial pressure of hydrogen PH2 (atm) 0.5
Partial pressure of oxygen PH2 (atm) 0.5

Empirical coefficient ξ1 −0.9514
Empirical coefficient ξ2 0.00312
Empirical coefficient ξ3 7.4 × 10−5

Empirical coefficient ξ4 1.87 × 10−4

Proton exchange membrane thickness l (µm) 20
Activation area A (cm2) 150

Membrane water content λ 20
Fuel cell performance coefficient B 0.016

2.3. Battery Model

The Thevenin model can not only reflect the battery’s response and follow ability to
the load, but also describe the polarization characteristics of the battery. Therefore, in this
study, the Thevenin model depicted in Figure 2 is used as the equivalent circuit of the
battery. The parameters of a single battery are listed in Table 2. A battery pack consists of
several single batteries in series and parallel.
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Table 2. Battery parameters.

Parameter Value

Nominal voltage (V) 3.6
Nominal capacity (Ah) 37

End-of-Charge Voltage (V) 4.2
End-of-discharge Voltage (V) 3

According to the Kirchhoff’s law, the electrical behavior of the Thevenin circuit can be
expressed as 

Vb = Vocv −Vp − Ib × R0.
Vp = − Vp

Rp×Cp
+ Ib

Cp

Pb = Ib ×Vb

(9)

where Vocv, Vp and Vb represent the battery open circuit voltage, instantaneous polarization
voltage and output voltage, respectively. Ib is battery current, and Pb is the output power.
R0, Rp and Cp denote battery ohm resistance, polarization resistance and polarization
capacitance, respectively. The BOSC is obtained via ampere-hour integration [24]:

BSOC(t) = BSOC(t0)−
∫

Ib(t)dt
Qbat

(10)

where BSOC(t0) is the initial state of charge of the battery and Qbat is the battery capacity.
In this paper, the nonlinear relationship between the open circuit voltage (OCV) and the
BSOC is obtained via a battery performance test, as illustrated in Figure 3 [39].
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The hybrid pulse power characterization (HPPC) test was used to acquire the data to
identify the parameters of polarization capacitance, charge and discharge resistance, which
is shown in Figure 4.
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2.4. Fuel Economy and Durability Model
2.4.1. Fuel Economy Model

The fuel economy of the fuel cell vehicle is evaluated based on the total equivalent
hydrogen consumption during operation. The power consumption from the battery can be
equal to the chemical energy from the hydrogen. The instantaneous hydrogen consumption
is composed of direct hydrogen consumption by the fuel cell and indirect equivalent
hydrogen consumption by the battery [40]:

mH2equ = mFC + k×mBat (11)

where mFC is direct hydrogen consumption, mBat is indirect equivalent hydrogen consump-
tion by the battery, and they can be calculated by{

.
mFC =

MH2×Ncell×Ifc(t)
2×F

mFC =
∫ .

mFCdt
(12)

{ .
mBat = PBat × δ×

.
mFC,avg
Pf c,avg

mBat =
∫ .

mBatdt
(13)
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where
.

mFC and
.

mFC,avg are the fuel cell hydrogen consumption rate and average consump-
tion rate, respectively, Pf c,avg is the fuel cell average output power, MH2 is the molar mass
of hydrogen,

.
mBat is the equivalent hydrogen consumption rate by the battery and δ can be

calculated by [41]:

δ =

{
1

ηcha,avg×ηdis
Pbat ≥ 0

ηdis,avg × ηcha Pbat< 0
(14)

 ηdis =
(

1 +
√

1− 4× Rdis × Pbat/V2
ocv

)
/2

ηcha = 2/
(

1 +
√

1− 4× Rcha × Pbat/V2
ocv

) (15)

where ηdis and ηcha is the discharging/charging efficiency of the battery, ηdis,avg and ηcha,avg
is the average discharging/charging efficiency of the battery, Rdis and Rcha is the total dis-
charging/charging resistance of the battery, respectively. k denotes the correction coefficient
which can be obtained by

k = 1− 2× µ×
BSOC− 1

2 × (BSOCmax + BSOCmin)

BSOCmax + BSOCmin
(16)

where µ is the balance factor during the cycle, BSOCmax and BSOCmin denote the maximum
BSOC and minimum BSOC, respectively.

2.4.2. Fuel Cell Durability Model

According to the available research, the operating conditions causing fuel cell perfor-
mance degradation are the number of start–stop cycles, duration of load variation, idling
time and duration of high-power operation [42]. The capacity degradation of the fuel cell
during the typical operating condition is calculated by

∆∅FCdegrad = Kp × (k1 × t1 + k2 × t2 + k3 × t3 + k4 × n) (17)

where ∆∅FCdegrad is the capacity degradation rate of the fuel cell due to the disadvantage
operating condition, t1, t2, t3, n denote idling time, duration of significant load variation,
duration of high-power operation and number of start–stop cycles, respectively, k1, k2, k3, k4
are the degradation coefficients of the idle operating, significant load variation, high-power
operation and start–stop cycles, respectively, and Kp is the correction coefficient. The value
of the coefficients in Equation (17) is listed in Table 3.

Table 3. Attenuation model coefficient.

Coefficient Parameter Value

k1 0.00356 (%/h) Power output is less than 10% of the rated power

k2 0.00126 (%/h) Absolute value of the load variation per second
exceeds 10% of the maximum power

k3 0.00147 (%/h) Power output is greater than 90% of the
maximum power

k4 0.00196 (%/cycle) One complete start–stop cycle
Kp 1.47 the correction coefficient

2.4.3. Battery Durability Model

In this study, the ampere-hour throughput (Aheff ) is taken as the service life factor
of the battery. To balance the charge and discharge rate (kb), temperature and depth of
discharge, a penalty factor σ is added to the calculation of Aheff :

Ahe f f (t) =
∫ t f

0
σ(t)× |ib|dt (18)
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{
σ(t) = 1.6

625 × k2
b(t) + 1

kb(t) =
3600×ib(t)

Qbat

(19)

3. Energy Management Strategy Based on Multi-Dimensional Dynamic Programming

Energy management strategies serve a significant function in FCV, which not only
can ensure the normal operation of the vehicle, but also make full use of the advantages
of various power sources to improve the durability and reliability of the power system
and reduce the fuel consumption, thus meeting a better comprehensive performance of the
vehicle. In this study, the EMS of FCV based on MDDP is constructed.

3.1. Optimization Problem Construction Based on MDDP

DP is an effective method for numerical global optimization, which was proposed
by Bellman et al. [43]. It searches all control variables and state grids in detail through a
specific method to obtain the control strategy that maximizes or minimizes the objective
of the problem and obtains the corresponding state variable trajectory. In this section, an
optimization problem of the EMS of FCV is constructed based on MDDP.

3.1.1. Multi-Stage Decision

Multi-stage decision making divides a process into multiple stages requiring decisions,
and the control strategy is a sequence of decisions consisting of all stages. The multi-stage
decision process of EMS is to divide a particular driving cycle into N equal stages, and then
find an optimal control strategy.

In this study, the Thevenin equivalent circuit used in the battery model can reflect the
polarization characteristics of the battery. In the MDDP solution, BSOC and Vp are taken as
state variables, and the computational space range of BSOC and Vp is determined by the
common working interval. Meanwhile, state variables are discretized by the calculation
requirements. The output power of the fuel cell was taken as the control variable, and
the upper limit umax and lower limit umin of the control variable were determined by
analyzing the vehicle driving demand power and vehicle performance indexes, and the
control variables were discretized, as show in Figure 5.
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3.1.2. Stage Transition

Based on the analysis of the Thevenin equivalent circuit model above, the current of
the battery can be calculated as

Ib =
Vocv −Vp −

√(
Vocv −Vp

)2 − 4× Pb × R0

2× R0
(20)
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By discretizing the state space of the continuous system, the state transition equation
Vp and BSOC can be expressed as follows:

Vp(k + 1) = Vp(k)× exp
(
− t(k+1)−t(k)

Rp×Cp

)
+

Vocv,k−Vp,k−
√
(Vocv,k−Vp,k)

2−4×Pb,k×R0,k
2×R0,k

×Rp ×
(

1− exp
(
− t(k+1)−t(k)

Rp×Cp

)) (21)

BSOC(k + 1) = BSOC(k)−
Vocv,k −Vp,k −

√(
Vocv,k −Vp,k

)2
− 4× Pb,k × R0,k

2× R0,k ×Qbat
× [t(k + 1)− t(k)] (22)

where Vp(k + 1) and Vp(k) are Vp in k + 1 stage and k stage, respectively, BSOC(k + 1) and
BSOC(k) are BSOC in k + 1 stage and k stage, respectively. Based on the states in the k stage,
the states’ value in the k + 1 stage can be obtained by the state transition equation.

3.1.3. Cost Function

In this study, the equivalent hydrogen consumption of hybrid powertrain is taken as
the cost function of the DP algorithm. The cumulative equivalent hydrogen consumption
is calculated as Equation (23).

{
J∗N−k [BSOC(k), Vp(k)] = min[L(BSOC(k), Vp(k), u(k))] + J∗N−k−1[BSOC(k + 1), Vp(k + 1)] k = 0, 1, 2 . . . N − 1

J∗N [BSOC(N), Vp(N)] = 0 k = N
(23)

3.1.4. Constraint

Based on the characteristics of each component and in order to shorten the DP op-
eration time, parameters of the powertrain system of FCV should satisfy the following
constraints. 

BSOCmin ≤ BSOC ≤ BSOCmax
Vpmin ≤ Vp ≤ Vpmax
Pf cmin ≤ Pf c ≤ Pf cmax
Ibmin ≤ Ib ≤ Ibmax
I f cmin ≤ I f c ≤ I f cmax

(24)

3.2. Optimal Solution of Energy Management Based on MDDP Algorithm

EMS for compound energy sources based on MDDP mainly includes four parts:
decision process, dimension reduction, reverse solution and forward derivation.

3.2.1. Decision Process

Considering that the service life of the fuel cell will be greatly affected by high-power
operation and low-power operation, the fuel cell output mode can be divided into three
modes: high power demand, normal demand and steady output, as shown in Table 4. In
the decision process, the fuel cell working mode is determined based on the power demand,
and the corresponding range of control variables in different modes are traversed to find
the optimal decision.

Table 4. Fuel cell working mode.

Power Demand Mode Range of Control Variables

Pd > 90%Pf cmax high power demand 50%Pf cmax ≤ u ≤ 90%Pf cmax
Pd < 10%Pf crated normal power demand 10%Pf crated ≤ u ≤ 90%Pd/ηDC/DC
Pd < 10%Pf crated steady output u = 10%Pf crated

3.2.2. Dimension Reduction

In order to ensure the accuracy of the algorithm and shorten the calculation time, in
this paper, the state variables are divided into primary and secondary, BSOC is taken as the
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primary state variable and Vp as the secondary state variable, and the optimal cost obtained
from the same BSOC and different Vp constituent states is compared, and the optimal
value V∗p is selected to represent the corresponding cost of the primary state variable as
illustrated in Figure 6. After dimension reducing, the corresponding relationship between
state variables and optimal cost is changed from three-dimensional to two-dimensional,
which reduces the complexity of reverse solution and shortens the calculation time of
the program.
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3.2.3. Reverse Solution

The solving process of DP initiates from the last stage and reversely solves the optimal
cumulative cost and optimal control sequence in each stage under each group of states.
In stage k, m BSOC and m1 Vp are obtained by discretization of state variables, denoted

as BSOCi
k, i = 1, 2, . . . , m and Vp

j
k, j = 1, 2, . . . , m1 respectively. According to the decision

process, the fuel cell output mode is determined, and n feasible control variables is obtained
through discretization, denotes as up

k , p = 1, 2, . . . , n. Substitute BSOCi
k, Vp

j
k, up

k into the
state transition equation and cost function to work out BSOC∗k+1 and optimal cost at
k + 1 stage. If BSOC∗k+1 is not on the state variable grid, the optimal cumulative cost
corresponding to BSOC∗k+1 can be obtained by interpolation. The cumulative cost function
JN−K determined by the current state variable group and control variable in k stage can
be obtained by superposition of the instantaneous cost value in k stage and the optimal
cumulative cost value in k + 1 stage.

JN−k = L
(

BSOCi
k, Vp

j
k, up

k

)
+ J∗N−k−1 (25)

After traversing all the control variables under the state variable group, the optimal
value of the cumulative cost function of the state variable group in the current stage can be
calculated as

Ji,j
N−k = min

(
L
(

BSOCi
k, Vp

j
k, up

k

)
+ J∗N−k−1

)
(26)

BSOCi
k was taken as the primary state variable, and the cumulative cost function

values corresponding to Vp
j
k were traversed, and the optimal value was selected as the

optimal cumulative cost function value corresponding to the BSOCi
k in this stage.

J∗N−K = min
(

L
(

BSOCi
k, Vp

∗
k , u∗k

)
+ J∗N−k−1

)
(27)
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The optimal cumulative cost and control variable sequence corresponding to all BSOC
at this stage are calculated by the above method, and the reverse solution was carried out
by the same method until the optimal solution matrix of cost function and control variable
in all stages were obtained.

The calculation of each state in each stage is independent of each other, and the solving
order between state variables has no influence on the optimization result in the current
stage. Therefore, the independence of state variables in each stage of DP can be used to
deal with the state cycles in traditional DP with a piecewise parallel computing way so as
to improve the solving efficiency and shorten the calculation time.

3.2.4. Forward Solution

According to the optimal control variable and cost function matrix, the optimal control
sequence and the trajectory of the optimal state variable in each stage can be deduced by
substituting the state value in the initial stage. The solution method of MDDP based on
parallel computing is illustrated in Figure 7.
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4. Application of MDDP in Component Sizing

In this section, the MDDP algorithm is applied to component sizing. A component
sizing solution process considering multiple objectives was designed, and the optimal
component sizing space was obtained according to the solution results of analytical MDDP.
The application object is a fuel cell commercial vehicle, the basic parameters of which are
shown in Tables 5 and 6.

Table 5. Vehicle parameters.

Parameter Value

Length (mm) 6130
Width (mm) 2495
Height (mm) 2960

Whole-vehicle curb weight (kg) 5900
Total weight (t) 18

Rotational resistance factor, f 0.02
Transmission efficiency ηt 0.9

Air resistance coefficient CD 0.7
Frontal area A (m2) 7.4
Rolling radius (m) 0.512
Final drive ratio i0 4.875

Table 6. Motor parameters.

Parameter Value

Peak power (kW) 380
Rated power (kW) 190
Peak torque (Nm) 6600
Rated torque (Nm) 3300
Peak speed (r/m) 2600
Rated speed (r/m) 1100
Rated voltage (V) 408

Efficiency 0.92

In order to ensure that the power battery pack has a stable voltage and sufficient
capacity to maintain the stable output of the fuel cell, the series and parallel number of the
individual battery is determined. According to the rated voltage of the motor, the number
of batteries in series is 145. The number of batteries in parallel depend on the component
matching result.

In this study, simulations were conducted using MATLAB on the basis of the afore-
mentioned energy management strategy under the C-WTCV working conditions. Figure 8
shows the C-WLVC working conditions. The power demand of a simulated vehicle driving
under C-WTVC working conditions is shown in Figure 9.
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Multi-objective optimization problem is an optimization problem in which two or more
objective functions can obtain the optimal solution simultaneously. The multi-objective com-
ponent sizing optimization problem of fuel cell composite energy source can be defined as

min
→
x

J = [JEF, JDE] (28)

→
x =

(
Pf cmax, np

)T
∈ U (29)

U =


(

Pf cmax, np

)
|Pf cmax ∈


150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260,
270, 280, 290, 300, 310, 320,
330, 340, 350, 360, 370

kw,

np ∈ {50, 70, 80, 90, 100, 110, 120}

 (30)

where J is multi-objective optimization function, JEF is the economic index of fuel cell
vehicles which is expressed by equivalent hydrogen consumption (mH2equ). JDE is the
durability index of fuel cell composite energy source system which is expressed by the
capacity degradation of the fuel cell (∆∅FCdegrad) and the ampere-hour throughput (Aheff )

of the battery.
→
x is the optimized vector, including the maximum power of fuel cell (Pf cmax)

and the number of batteries in parallel (np). U is the optimization space. The optimization
process framework based on MDDP is shown in Figure 10.
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According to the optimization space, 184 combinations can be matched by Pf cmax and
np. The EMS based on MDDP for each combination is simulated. The minimum equivalent
hydrogen consumption for each combination is obtained. The capacity degradation of the
fuel cell (∆∅FCdegrad) and the ampere-hour throughput (Aheff ) is calculated based on the
optimal state and the trajectory of control variables.

5. Results and Discussion

In the following paragraphs, simulations for each parameter vector
→
x are carried out

with MDDP. Fuel economy and system durability for 184 combinations of the component
are analyzed and compared.

5.1. Fuel Economy

Figure 11 illustrates the relationship of Pf cmax and np to the fuel cell direct hydrogen
consumption under the C-WTCV working conditions. The simulation results show that
the actual hydrogen consumption decreases with the increase of Pf cmax under the same np.
When Pf cmax > 250 kW, the decrease in hydrogen consumption is gentle. Figure 12 shows
the output power variation curve of fuel cell with different Pf cmax (180–280 kW, 10 kW
interval) when np is 100. It shown the output of fuel cell needs to switch between three
modes: high-power demand mode, normal demand mode and steady output mode, when
equipped with low-power fuel cell stack. When the system is equipped with a high-power
fuel cell stack, the fuel cell operating in normal power demand and smooth output mode
is sufficient to provide the required power for driving, and the excess power is used to
charge the battery. Because the battery does not maintain a strict constant charge, the direct
hydrogen consumption of fuel cell cannot reflect the economic level of fuel cell vehicles,
and the equivalent hydrogen consumption of the system is more suitable to evaluate the
economy of the vehicle.
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Figure 13 illustrates the relationship of Pfcmax and np to the fuel cell equivalent hydro-
gen consumption. As shown in Figure 13a, with the increase of Pfcmax, the equivalent hy-
drogen consumption gradually decreases, and with the increase of the parallel number, the
equivalent hydrogen consumption curve will move downward. Figure 13b shows that the
sensitivity of equivalent hydrogen consumption to the np decreases when Pf cmax > 300 kW.
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5.2. System Durability

Figure 14 shows the relationship of Pfcmax and np to the fuel cell capacity degradation
rate. It shows the fuel cell capacity degradation rate varies greatly with the number of
batteries in parallel (np) when Pfcmax is low. When Pfcmax > 300 kW, the fuel cell capacity
degradation rate is maintained at a relatively low level. This phenomenon is because the
output of high-power fuel cell is relatively stable, while the output power of low-power
fuel cell fluctuates greatly, as illustrated in Figure 12. The result of the battery lifetime index
in Figure 15 shows that Aheff increases linearly with Pfcmax and np. At a certain required
power, with the increase of Pfcmax, the frequency of high-current charging of the fuel cell
will increase, as illustrated in Figure 16 (Pfcmax = 270–370 kW, 20 kW interval, np = 80),
which leads to the increase of the ampere-hour throughput of the battery, thus reducing the
equivalent cycle life of the battery.
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5.3. Discussion

According to the fuel economic analysis, the equivalent hydrogen consumption of
the fuel cell when Pf cmax > 300 kW is at a low level and decreases with the increase of np.
The system durability simulation results show that increasing np does not improve the
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durability of the fuel cell when Pf cmax > 300 kW, and the battery Aheff increases linearly
with Pf cmax in each np.

According to the simulation of different combinations, the combination with the
optimal comprehensive performance is selected as the component sizing result. When
Pf cmax > 300, increasing Pf cmax has little effect on the fuel economy and durability of the
fuel cell, but will increase Aheff. Therefore, Pf cmax is set to 300 kW, and to ensure that the
battery has sufficient capacity to maintain the stable output of the fuel cell, np is set to 100.
In this combination, the three objective values of a C-WTVC cycle are mH2equ = 1864.9 g,
Aheff = 45.581 Ah and ∆∅FCdegrad = 0.002882410%, respectively.

To prove the necessity of the proposed EMS, Table 7 shows the comparison of the
MDDP-based EMS over the DP-based EMS under the selected combination.

Table 7. Comparison between DP-based EMS and MDDP-based EMS.

DP MDDP Improvement

mH2equ 1922.8 g 1864.9 g 3.10%
Aheff 46.074 Ah 45.581 Ah 1.08%

∆∅FCdegrad 0.00288265% 0.002882410% 0.13%

The comparison result shows that, compared with the DP-based EMS, the MDDP-
based EMS reached a higher global optimization accuracy in which the improvement of
fuel economy is most obvious, with a reduction of 3.10%.

6. Conclusions

This study proposed a MDDP-based EMS for the fuel cell hybrid vehicle, considering
the polarization characteristics in the course of battery operation and taking the Thevenin
model as the battery equivalent circuit. BSOC and battery polarization voltage were
selected as state variables. In the reverse solution process, dimension reduction is carried
out to solve the problem of computational complexity increasing brought on by multiple
state variables, so that the solution process can ensure accuracy and reduce the calculation
time. A component sizing solution process considering multiple objectives was designed,
and MDDP is used to solve the EMS for the combination of different components. The
simulation of a fuel cell commercial vehicle was carried out under the C-WTVC cycle. By
analyzing the fuel economy and system durability, the optimal component combination of
the object vehicle is obtained in which Pf cmax is 300 kW and np is 100. Compared with the
DP-based EMS, the accuracy of the proposed method is improved. Future research will
focus on the improvement of the proposed EMS to be adapted for various objectives.
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