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Abstract: Lignocellulosic biomass is an abundant resource that can be valorized for the production
of bioenergy. However, studies aiming to quantify the amount of biogas production potential per
km forest road are scarce in the literature. In this study, fresh pine needles, pine needle litter,
pine branches, and pine bark were digested in batch reactors under mesophilic conditions after a
grinding/milling pre-treatment. All samples were collected from a low-altitude Mediterranean Pinus
forest (North Greece) adjacent to a category G forest road with a gentle slope. The methane yield of
fresh pine needles was between 115 and 164 NmL g−1 volatile solids (VS), depending on the Pinus tree
size. Pine needle litter produced a significantly lower methane yield (between 58 and 77 NmL g−1

VS), followed by pine bark (85 NmL g−1 VS) and pine branches (138 NmL g−1 VS). Considering the
quantity of pine needle litter accumulated on adjacent forest roads (600 ± 200 g m−2), it was possible
to calculate the biomethane production potential per km of forest road (up to 500 Nm3 km−1) if
the biomass collected was disposed of at an anaerobic digestion facility. The results of the study
demonstrate that residual forest biomass represents an additional resource for bioenergy production.
Moreover, harvesting residual forest biomass can decrease the incidence of devastating summer forest
fires and their disastrous consequences for the environment, the economy, and the local populations.

Keywords: anaerobic digestion; biogas; pine needles; pine bark; pine branch; forest biomass; forest
road; lignocellulosic biomass; forest fires

1. Introduction

Lignocellulosic biomass is a natural resource that can contribute to the European
Union’s (EU) energy neutrality/independency targets. Lignocellulose is abundant, with
an estimated global production of 200 bil tn yr−1, but only 10% of this yield is harvested
from agricultural, grass, and forest land [1,2]. Agricultural residues (straw, stover, bagasse,
cobs, stalks, etc.), municipal waste (paper, kitchen waste, garden residues, etc.), woodland
trees (Eucalyptus, Populus, etc.), and dry energy grasses (Perennial, Napier, etc.) are the most
common lignocellulosic biomasses used for bioenergy production [3]. Bioenergy from
lignocellulosic biomass is currently produced by thermochemical conversions, such as
gasification and pyrolysis [4–7].

Biogas production from lignocellulosic substrates remains largely unexploited; how-
ever, co-digestion with manure seems to be an attractive solution: for instance, in Denmark,
it is expected to double biomethane production by 2030 [8]. In most anaerobic digestion
studies, methane yield from lignocellulosic biomass was <250 NmL g−1 volatile solids (VS).
The highest methane yield values (between 100 and 250 NmL g−1 VS) have been reported
for leaves (e.g., fagus, oak, and phoenix tree) and wood samples (birch and poplar) [9–14].
Other biomass samples, such as those originating from maple wood, spruce, and pine
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bark and leaf litter [14–17] have been found to produce low methane (between 20 and
80 NmL g−1 VS). As expected, lignocellulose is resistant to degradation; consequently, ad-
ditional pre-treatment may significantly increase methane yield and optimize the anaerobic
digestion process [18,19].

Global warming adversely affects the frequency and severity of forest fires. The
biomass accumulated on adjacent forest roads constitutes a major fuel source for summer
wildfires. In Europe, about 65,000 fires occur annually, resulting in the conflagration
of around 500,000 ha of forest and wildland, while 85% of the latter is located in the
Mediterranean [20]. Harvesting residual biomass is vital to decreasing the incidence of
wildfires. Simultaneously, the collected material can be valorized for fuel production, such
as biogas, methane, or liquid biofuels [21]. Removal of lowland vegetation (e.g., shrubs
and leaf litter) and tree pruning up to 3 m above ground are typical biomass harvesting
activities. The collected material, however, is often disposed of in areas adjacent to the
collection site rather than valorized (see Figure 1).
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Figure 1. (a) Map of Greece showing the location of the study site, (b) aerial overview of the Pinus 
forest, and (c) current practices of forest residual biomass disposal on forest roads. 
Figure 1. (a) Map of Greece showing the location of the study site, (b) aerial overview of the Pinus
forest, and (c) current practices of forest residual biomass disposal on forest roads.

The aim of this study was to evaluate the type and quantities of forest biomass
accumulated in various points of the road network of a Mediterranean low-altitude Pinus
forest, evaluate their biogas production potential, and calculate the biogas yield per km
forest road, since relevant data were not found in the literature. Samples of fresh pine
needles from different diameter trees, pine needle litter, and pine branches and bark were
digested under mesophilic conditions after a grinding/milling pre-treatment. Data from
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both field and laboratory studies were used to calculate the biogas production potential per
km of forest road if the collected material was disposed of at an anaerobic digestion facility.
Finally, the experimental data were compared with similar results found in the literature.

2. Materials and Methods
2.1. Site and Field Work

The study site consisted of a low-altitude Mediterranean Pinus forest located in North
Greece (Xanthi) (41◦7′48” N, 24◦53′11” E) (see Figure 1). Field campaigns were performed
during the summer season aiming to quantify (a) the amount of pine needle litter accumu-
lated on the forest floor and (b) the quantity of fresh pine needles and branches collected
during tree-pruning operations (up to 3 m above ground) from different diameter trees
(<10, 10–20, 20–30, 30–40, 40–50, and >50 cm). All samples were gathered on an adjacent
Category G forest road, whose total length measured 5.0 km, deck width 7.95 m, and mean
slope 9%. The material collected was transported to the laboratory for further examination.

2.2. Forest Biomass Samples and Pre-Treatment

Forest biomass samples collected during the study consisted of (a) fresh pine needles
from different diameter trees (see above), (b) pine needle litter, and (c) pine branches/bark.
Prior to the anaerobic digestion, pine needles (fresh or littered) were ground using a kitchen
blender at 3000 rpm, while pine branches were milled using an industrial mill (Retsch
SM 100). The size of ground or milled biomass samples used for the anaerobic digestion
experiments was <10 mm (Figure 2). The samples were characterized in terms of moisture
content, total solids (TS), volatile solids (VS), and hexane extractable organics (HEO). All
analyses were performed according to the Standard Methods [22].
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2.3. Batch Anaerobic Digestion Assays

Batch anaerobic digestion of forest biomass samples was performed in 150 mL work-
ing volume reactors incubated in a water bath at 38 ◦C (Figure 2). The inoculum for
the anaerobic digestion experiments was obtained from a full-scale digester treating
agro-industrial wastes and energy crops. It was characterized by pH = 7.8, electrical
conductivity (EC) = 22.7 mS cm−1, TS = 34.9 g L−1, VS = 22.3 g L−1, ammonia nitrogen
(NH4-N) = 2411 mg L−1, and orthophosphates (PO4-P) = 83 mg L−1. The initial concentra-
tion of forest biomass VS was equal to 3 g VS L−1 corresponding to a substrate to inoculum
ratio (SI) between 0.12 and 0.15 (VS basis). The batch reactors were initially flushed with
nitrogen to remove oxygen from the headspace. Batch reactors were mixed manually once
per day during the incubation period. Biogas production was recorded using a digital
pressure meter (WIKA, Germany), while the biogas methane content was determined using
an alkaline trap according to Eftaxias et al. [23]. Finally, the cumulative methane yield was
fitted to a first-order kinetic model according to the following equation:

rS = K S (1)

where

rS = substrate consumption rate (kg VS m−3 d−1)
K = first-order kinetic constant (d−1)
S = substrate concentration (kg VS m−3)

3. Results

The quantity of fresh pine needles collected during tree-pruning operations was
relatively constant at 2.62 ± 0.81 kg per pine tree independently of the tree diameter
(see Figure 3b). By contrast, the quantity of branches increased from 4 to 31 kg per tree
with increasing pine tree diameter (see Figure 3b). Under these conditions, pine branches
represented 61 to 95% of the biomass fresh weight. The quantity of pine needle litter
accumulated on the forest floor varied between 200 and 1000 g m−2 with an average value
of 600 ± 200 g m−2 (see Figure 3a). Table 1 shows the composition of different forest
biomass samples in terms of moisture content, volatile solids, and hexane extractable
organics. Since sampling was performed during the summer season, pine needle litter was
characterized by low moisture content (11% of fresh matter, FM). However, samples from
the humified layer were moderately moist (45% FM). Fresh pine needles had an average
moisture of 50.9 + 2.6% FM and VS content 95.9 + 0.5% TS. The HEO content of fresh pine
needles was on average 6.0 + 1.1% VS. Pine bark was characterized by low moisture content
(16.5% FM) and high HEO (7.8% VS).

Table 1. Physicochemical properties of fresh pine needles from different diameter trees, pine needle
litter, pine branches, and pine bark.

Pine Tree Diameter (cm) Moisture (% FM) TS (g kg−1 FM) VS (g kg−1 FM) VS (% TS) HEO (% VS)

Fresh pine needles
<10 55.1 449 430 95.8 5.3

10–20 47.5 525 507 96.6 7.7
20–30 49.4 506 484 95.7 4.5
30–40 50.8 492 474 96.3 5.7
40–50 50.7 493 471 95.5 6.4
>50 52.0 480 457 95.2 6.6

Pine needle litter
Dry litter 11.5 885 863 97.5 2.7

Moist litter 42.9 571 539 94.4 3.0
Pine branch 22.7 773 730 94.4 5.5

Pine bark 16.5 835 822 98.4 7.8

TS: total solids; VS: volatile solids; FM: fresh matter; HEO: hexane extractable organics.
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Figure 4 illustrates the cumulative biogas yield during mesophilic anaerobic digestion
of different forest biomass samples after the grinding/milling pre-treatment. The biogas
yield varied between 190 and 280 mL g−1 VS for fresh pine needles and between 100
and 120 mL g−1 VS for pine needle litter. Biogas yield from fresh pine needles increased
with increasing pine tree diameter. Pine branches produced high biogas yield values
(230 mL g−1 VS), similar to fresh pine needles. Unlike pine branches, pine bark samples
displayed low biodegradability, as demonstrated by the respective biogas yield (130 mL g−1

VS) and the first-order kinetic constant (0.071 d−1) (see Table 2). Based on the above, the
biogas yield per kg of forest biomass fresh matter (FM) was estimated around 100 m3 tn−1

FM (see Figure 5). The biogas methane content ranged from 59 to 66% in all experiments.

Energies 2022, 15, 5233 7 of 12 
 

 

 

 
Figure 4. Cumulative biogas yield for (a) fresh pine needles and pine needle litter, and (b) pine 
bark and branches. 

Table 2. First-order kinetic constants and methane yield for fresh pine needles, pine needle litter, 
pine bark, and pine branches. 

Pine Tree Diameter (cm) K (d−1) YCH4/VS (NmL g−1 VS) 
Fresh pine needles   

<10 0.085 130 (±24) 
10–20 0.098 115 (±18) 
20–30 0.103 128 (±6) 
30–40 0.110 145 (±6) 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

Bi
og

as
 y

ie
ld

 (m
L g

-1
VS

)

Days

2–10 cm

10–20 cm

20–30 cm

30–40cm

40–50cm

> 50cm

Litter (dry)

Litter (moist)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Bi
og

as
 y

ie
ld

 (m
L g

-1
VS

)

Days

Bark

Branch

(b)

(a) 

Figure 4. Cumulative biogas yield for (a) fresh pine needles and pine needle litter, and (b) pine bark
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Table 2. First-order kinetic constants and methane yield for fresh pine needles, pine needle litter, pine
bark, and pine branches.

Pine Tree Diameter (cm) K (d−1) YCH4/VS (NmL g−1 VS)

Fresh pine needles
<10 0.085 130 (±24)

10–20 0.098 115 (±18)
20–30 0.103 128 (±6)
30–40 0.110 145 (±6)
40–50 0.092 150 (±8)
>50 0.117 164 (±8)

Pine needle litter
Dry litter 0.080 77 (±6)

Moist litter 0.121 58 (±6)
Pine branch 0.074 138 (±35)

Pine bark 0.071 85 (±4)
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4. Discussion

The genus Pinus (family Pinaceae) is the most popular species in the Northern Hemi-
sphere, with around 111 different sub-species [24]. It represents 10% of the total forest
cover in the Mediterranean basin [25]. The southernmost European natural and planted
pine forests are among the most vulnerable to warming-induced drought decline [26–28].
Furthermore, climate models forecast an increase in the intensity and frequency of extreme
climate events, such as droughts [28].

Harvesting residual forest biomass can decrease the incidence of devastating summer
forest fires and their disastrous consequences for the environment, the economy, and the
local populations [21,29]. To mitigate the potential for wildfires, measures include thinning
of existing plantation, reducing fuel plants, and creating fire safety zones [30]. It is common
practice, however, especially in regions that do not have a strong woody biomass market,
to dispose of forest residues unutilized on forest roads [31]. This practice can contribute
to the creation of an excessive fuel load on the forest floor, thereby increasing the risk of
fire [31].

Forest biomass residues, such as limbs, tops, and small non-commercial trees removed
during forest management activities represent an additional source of woody biomass for
bioenergy production [32]. Table 3 shows the methane yield of different forest biomass
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samples based on a literature review. The data were selected from mesophilic anaerobic
digestion studies involving a grinding or milling pre-treatment. The results demonstrate
a wide range of methane yield values from 17 to 230 NmL g−1 VS, i.e., within the same
range as the results from this work. The highest methane yield values were recorded for
birch wood samples and different types of leaves (phoenix tree, oak leaves, pine needles).
Low methane yield values were reported for spruce wood samples and wood bark samples
(pine, spruce, maple). The first-order kinetic constants ranged between 0.07 and 0.12 d−1

for all substrates examined, similar to fallen leaves, yard wastes, maple wood, pine wood,
and poplar residues (0.04 to 0.09 d−1) found in the literature [14,15].

Table 3. Physicochemical properties, reactor operating conditions and Biochemical Methane Potential
(BMP) of forest biomass samples after grinding/milling pre-treatment.

Sample Pre-Treatment
(Particle Size) TS (% FM) VS (% TS) Digestion Time (d) Temperature (◦C) BMP (NmL g−1 VS) Reference

Yard waste Drying and grinding
(5–12 mm) NR 82.4 35 35 245 [33]

Pine needles Milling (<0.5 mm) NR NR 45 37 213 [17]

Pine needles Milling (<0.5 mm) NR NR 25 37 152 [17]

Birch wood
without bark

Drying and milling
(<10 mm) 92.9 NR 46 37 205 [13]

Fresh fagus
leaves Grinding (<20 mm) 45.3 94.4 30 38 158 [12]

Fallen oak leaves Grinding and milling
(<2 mm) 86.5 81.2 40 38 151 [10]

Fallen leaves Drying and milling
(1–2 mm) 87.1 96.4 30 36 134 [9]

Phoenix tree
leaves

Drying and
pulverization

(<0.8 mm)
NR NR 52 37 133 [11]

Poplar wood
processing waste Milling (6–12 mm) 84.8 91.2 70 35 100 [14]

Fallen tree leaves Drying and milling
(<5 mm) 90.0 86.9 30 37 81 [15]

Fagus leaves
litter Grinding (<20 mm) 89.5 82.0 30 38 80 [12]

Poplar wood
processing waste Milling (6–12 mm) 83.6 89.8 30 35 60 [34]

Yard waste
(leaves/tree
branches)

Drying and milling
(<5 mm) 94.3 91.7 30 37 60 [15]

Maple wood
with bark

Drying and milling
(<5 mm) 93.0 90.5 30 37 57 [15]

Pine wood with
bark

Drying and milling
(<5 mm) 93.6 92.2 30 37 54 [15]

Pine bark Milling (size not
reported) NR NR 42 37 53 [16]

Spruce bark Milling (size not
reported) NR NR 42 37 46 [16]

Pine branches Milling (<0.5 mm) NR NR 45 37 36 [17]

Pine bark Milling (<0.5 mm) NR NR 45 37 33 [17]

Pine branches Milling (<10 mm) 77.3 94.4 30 38 138 This study

Fresh pine
needles Grinding (<10 mm) 49.1 95.9 26 38 115–164 This study

Pine bark Milling (<10 mm) 83.5 98.4 30 38 85 This study

Pine needle litter Grinding (<10 mm) 88.5 97.5 26 38 58–77 This study

Considering the data obtained from the laboratory and field studies, it was possible to
calculate the amount of biomethane generated per km of forest road, when the biomass
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was disposed of in an anaerobic digestion facility. The following equation was used for the
pine needle litter [12]:

YCH4/km = 1000 × YCH4/VS × vs. × d × w, (2)

where

YCH4/km = methane yield per km of forest road (Nm3 km−1)
YCH4/VS = methane yield per kg VS of pine needle litter (Nm3 kg−1 VS)
VS = pine needle litter VS content (kg VS kg−1 FM)
d = pine needle litter bulk density (kg m−2)
w = vertical distance of pine needle litter accumulation on adjacent forest road (m)

Figure 6 shows the methane yield per km of forest road as a function of the vertical
distance of pine needle litter collection on adjacent forest road and the litter bulk density.
The data demonstrate that it is possible to recover up to 500 Nm3 of methane for each
km of forest road. Considering that methane is used for electricity production, the eco-
nomic benefit can be calculated equal to (500 Nm3 CH4 km−1) × (4 kWh m−3 CH4) ×
(0.20 € kWh−1) = 400 € km−1 forest road. In a similar study, Kantartzis et al. [12] reported
that the quantity of methane recovered per km of forest road for a Fagus Sylvatica forest
amounted to 1000 Nm3 km−1. In this case, Fagus leaf litter had an increased bulk density
(1200 to 1600 g m−2) and generated a higher methane yield (80 NmL g−1 VS) compared to
pine needles. Biogas recovery per km of forest road, however, can be further increased if
tree pruning and low vegetation biomass (such as bushes and shrubs) are also included. For
an objective assessment, nonetheless, one should consider the costs for biomass collection,
pre-treatment and transportation, as well as the depreciation and operational expenses of
the anaerobic digestion facility [35,36].
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Figure 6. Methane yield per km of forest road as a function of the vertical distance (w) of pine needle
litter collection on adjacent forest road and for different pine needle litter bulk densities.

5. Conclusions

The results of this study demonstrate that forest biomass can be valorized in anaer-
obic digestion facilities for the production of biogas. The highest biogas yield values
were recorded for fresh pine needles and pine branches. Pine bark samples displayed
low biodegradability, on a par with pine needle litter. The quantity of pine needle litter
accumulated on the forest floor was significant and could contribute to the recovery of up



Energies 2022, 15, 5233 10 of 11

to 500 Nm3 methane per km of forest road, if the material was disposed of at an anaerobic
digestion facility. A side benefit of this approach would be the reduction or elimination of
the risk of forest fires.
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