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Abstract: To increase combustion efficiency and reduce pollutant emissions, this study presents an
online closed-loop optimization method and its application in a boiler combustion system. To begin
with, three adaptive dynamic models are established to predict NOx emission, the carbon content
of fly ash (Cfh), and exhaust gas temperature (Teg), respectively. In these models, the orders of the
input variables are considered to enable them to reflect the dynamics of the combustion system under
load changes. Meanwhile, an adaptive least squares support vector machine (ALSSVM) algorithm
is adopted to cope with the nonlinearity and the time-varying characteristics of the combustion
system. Subsequently, based on the established models, an economic model predictive control
(EMPC) problem is formulated and solved by a sequential quadratic programming (SQP) algorithm
to calculate the optimal control variables satisfying the constraints on the control and control moves.
The closed-loop optimization system is applied on a 600 MW boiler, and the performance analysis
is conducted based on the operation data. The results show that the system can effectively increase
boiler efficiency by about 0.5%.

Keywords: combustion optimization; adaptive least squares support vector machine (ALSSVM);
dynamic model; industrial application

1. Introduction

As the main primary energy source of power generation in China, coal will remain
dominant for the near future [1]. However, with increasing operating costs and environ-
mental concern, it is necessary for coal-fired power plants to increase combustion efficiency
and reduce NOx emission. Against this background, optimizing the combustion conditions
of boilers has become a research hotspot.

In recent years, the methodology combining data-driven modeling and optimization
algorithms has seized a dominant position in the field of combustion optimization, along
with the development of artificial intelligence techniques [2]. The common steps are, firstly,
establishing the model of a combustion process, then constructing a performance index
related to boiler efficiency or NOx emission, and lastly optimizing the control variables
using optimization algorithms. In recent years, many researchers have focused their ef-
forts on the modeling methods [3–7] and optimization algorithms [8–12] of combustion
optimization systems. Shi et al. [3] developed artificial neural network (ANN) models of
NOx emission and boiler efficiency, and the genetic algorithm (GA) was used to search
the optimal control variables. The training samples of the models were obtained by com-
putational fluid dynamics (CFD) simulation and historical operating data. Wang et al. [4]
implemented two Gaussian process (GP) models of NOx emission with different numbers
of inputs, and then determined the model inputs by comparing the performance of the two
models. The optimization of the operation parameters was accomplished via the genetic
algorithm (GA).
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Li et al. [5] integrated load balance and coal qualities into a support vector machine
(SVM) model of NOx emission. The results showed that the optimization based on the
new model could provide lower NOx emission and meet load demand at the same time.
Tan et al. [6] established a novel extreme learning machine (ELM) model of NOx emission
based on the historical data of a 700 MW opposed wall-fired boiler, and harmony search
(HS) was exploited to realize NOx emission reduction. Fan et al. [7] presented a novel
deep structure using a continuous restricted Boltzmann machine (CRBM) with SVM and
kernel principal component analysis (KPCA) was applied to identify steady-state samples.
Li et al. [8] proposed a novel Lévy flight vortex search algorithm to tune the adjustable
parameters of a boiler to achieve combustion optimization. Zhang et al. [9] developed
least squares support vector machine (LSSVM) models for boiler efficiency, NOx emission,
and SO2 emission, and used the fruit fly optimization algorithm (FOA) to obtain optimal
operation parameters by integrating three objectives into a single performance index func-
tion. Zheng et al. [10] applied LSSVM to establish the models of NOx emission and boiler
efficiency, and then the utilized multi-objective particle swarm optimization (MO-PSO)
algorithm to calculate the optimal solutions. Gu et al. [11] applied integrated clustering
based on a K-prototype algorithm for multi-objective optimization in boilers. Niu et al. [12]
proposed a case-based reasoning optimization method based on grey relational theory
(GR-CBR) and LSSVM models.

In these studies, the models of combustion system were all built offline based on
historical data. Although good results have been achieved in short-term simulation tests,
the prediction accuracy will decrease over time in field applications because of the time-
varying characteristics of the combustion process. Due to unavoidable changes in coal
quality and the fouling of heating surfaces, the original fixed models will deviate from the
actual characteristics of the combustion process, therefore undermining the effectiveness of
the optimization results.

To track the time-varying characteristics of the combustion process, an adaptive model
is essential. Smrekar et al. [13] proposed an adaptive modeling method based on forgetting
factors and established an auto-regressive model with external inputs for NOx emission.
Zhao et al. [14] proposed an online prediction algorithm based on LSSVM. New samples
were continuously added and weighted to varying degrees with sampling time during the
online operation. On this basis, Gu et al. [15] proposed an adaptive update algorithm for the
LSSVM model, i.e., the adaptive least squares support vector machine (ALSSVM), which
can incrementally replace old samples and improve the model performance adaptively.
The effectiveness of the adaptive modeling algorithm was verified by testing the model
of exhaust temperatures over a long period of time. Lv et al. [16] divided the process
variations into irreversible and reversible types and then applied ALSSVM to predict the
NOx emission. The results showed that the adaptive modeling method could cope with
the irreversible model changes that traditional methods cannot solve while maintaining
the accuracy of the model for a long time. Zhai et al. [17] combined ALSSVM with the
forgotten factor and iterative algorithm, which improved the performance of the prediction
model of NOx emission in terms of long-term prediction. However, the above models are
static models, which can only reflect the relation between the inputs and the outputs of
a combustion system under a steady state, because the time lags from the inputs to the
outputs are not considered in these models.

In view of the dynamic modeling of boiler systems, Lu et al. [18] established a dynamic
back propagation neural network (BPNN) model using two-step historical values as part of
the model inputs. Lv et al. [19] developed a dynamic LSSVM model by considering the
current and past values of independent variables as model inputs. The comparison results
showed that the dynamic model had a higher prediction accuracy than the steady model in
describing the dynamic characteristics of the boiler systems. Some other studies [20–22]
established dynamic NOx emission models based on the long short-term memory network
(LSTM) and achieved dynamic series prediction by retaining the information from previous
series. It should be noted that the above dynamic models do not consider adaptive updating,
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and their prediction accuracy will gradually decrease with the passage of time. Therefore,
time-varying and dynamic characteristics must be taken into account simultaneously when
establishing a boiler combustion process model, but there is little related work at present.

On the other hand, from the perspective of industrial application, the previous studies
are almost in the simulation stage, and some of the systems that have been put into use
are mostly open-loop guidance systems. As these systems often need frequent manual
operation, it is often unrealistic and difficult to achieve practical results. Therefore, it is
necessary to develop a closed-loop combustion optimization control system, combined
with the existing combustion control system in the distributed control system (DCS), to
automatically adjust combustion according to the current load and coal quality [21].

In this paper, to address the above-mentioned weaknesses, a closed-loop combus-
tion optimization control method is proposed by combining adaptive dynamic models
of combustion systems and economic model predictive control (EMPC). Moreover, the
proposed method is successfully applied to a 600 MW opposed wall-fired boiler. The rest
of this paper is organized as follows. In Section 2, three ALSSVM models of NOx emission,
carbon content of fly ash (Cfh), and exhaust gas temperature (Teg) are established. The pro-
posed closed-loop combustion optimization control method based on EMPC is presented
in Section 3. Section 4 gives the application results and the performance is analyzed based
on the operation data. Conclusions are drawn in Section 5.

2. Dynamic and Adaptive Modeling of the Combustion Process
2.1. Boiler Description

The object of this study is a 600 MW opposed wall-fired ultra-supercritical boiler. A
schematic diagram of this HG-1987/25.4-YM1 boiler is shown in Figure 1.
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Figure 1. Schematic diagram of the boiler and arrangement of the air dampers.

A total of thirty-two center-feed low NOx swirl burners were equipped on the front
and back walls of the furnace (four on the front wall and four on the back wall at the same
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height). The innermost layer of the burner was the primary air mixed with pulverized coal,
and the secondary air was distributed concentrically outside of the primary air. Above
the uppermost layer of the burner, one layer of over fire air (OFA) dampers was divided
into two groups, with seven on each wall. This boiler was equipped with four double-inlet
and double-outlet steel ball mills. Under the boiler maximum continuous rating (BMCR)
condition, all four coal mills were put into operation. Each coal mill supplied pulverized
coal to eight burners on the same layer. The main design parameters of the boiler are listed
in Table 1. The mixture of anthracite and bituminous coal was combusted in this plant, and
the properties of the coal are shown in Table 2.

Table 1. Main design parameters of the boiler.

Parameter Name Unit BMCR

Main steam flow t/h 1987
Main steam pressure MPa(g) 25.4

Main steam temperature ◦C 543
Reheat steam flow t/h 1616

Reheat steam pressure (inlet/outlet) MPa(g) 4.87/4.68
Reheat steam temperature (inlet/outlet) ◦C 304.5/569

Feed water temperature ◦C 290.0
Primary air temperature at air preheater outlet ◦C 319

Secondary air temperature at air preheater outlet ◦C 334
Gas temperature at furnace outlet ◦C 1026

Table 2. Analysis of the combusted coal.

Ultimate Analysis (%) Proximate Analysis (%) Qnet, ar
(kJ/kg)Car Har Oar Nar Sar Mt Mar Aar Vdaf

48 3.7 7.1 0.8 0.6 8.8 2.3 37 26 16,221

In order to evaluate the combustion situation more comprehensively and minimize
the heat loss due to unburned carbon (q4) during optimization, the boiler was equipped
with a real-time measurement device for the carbon content of fly ash. The device was
installed in the tail flue of the boiler. In each operating cycle, the sampling system took a
fixed mass of ash sample, and the weighing, burning, cooling, and discharging operations
were performed to calculate the carbon content in the ash sample. The entire sampling and
analysis process took about thirty minutes; thus, the measured value of carbon content in
fly ash could be obtained every thirty minutes.

2.2. Data Preparation

More than 80,000 sets of historical operation data, spanning 20 days, were acquired
from the supervisory information system (SIS) with sampling intervals of 20 s. Eleven
variables were employed as the model inputs according to the practical condition of this
boiler, including ten control variables (four offset values of coal-feed rate, four layers of
secondary air damper opening, one layer of OFA damper opening and oxygen content
setpoint after the economizer), and one state variable (unit load). Several indicator pa-
rameters were obtained to calculate boiler efficiency in real time based on the Chinese
GB10184-88 standard, as shown in the Appendix A. After eliminating noise and the outliers,
the final dataset was obtained. The data regarding unit load and boiler efficiency are shown
in Figure 2.
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Figure 2. Load and efficiency of the boiler in the final dataset.

2.3. Modeling of Boiler Combustion System

Three models were established to characterize the combustion state of the boiler,
including NOx emission, exhaust gas temperature (Teg), and carbon content of fly ash (Cfh).
Unlike the common structure of combustion models, dynamic modeling and adaptive
update methodologies were considered.

Firstly, the current values and previous sequences of the selected variables were
considered as the model inputs to describe the dynamic characteristics of the combustion
process. Then, three ALSSVM models were established between inputs and three outputs,
and the boiler efficiency was calculated by the formula introduced in the Appendix A. The
parameters of each model were adaptively updated according to the newly acquired data
during operation.

2.3.1. Dynamic Model Structure

As a complex nonlinear dynamic system with heavy response delays, the output
parameters of the boiler combustion system will go through a relatively long transient
process to reach a new stable state after the manipulated variables are changed. Thus, this
paper employs dynamic modeling to improve the model accuracy during load variation by
considering the delay orders of the input and output variables.

The model structure of the boiler combustion system is shown in Figure 3. The NOx
emission model can be described by (1), and the other two models are similar.

Ŷ(t) = fNOx(x(t))
x(t) = [Ucoal(t− 1), . . . , Ucoal(t− ncoal),

Usec(t− 1), . . . , Usec(t− nsec),
Uofa(t− 1), . . . , Uofa(t− nofa),
Uo2(t− 1), . . . , Uo2(t− no2),
Uload(t− 1),
Y(t− 1), . . . , Y(t− nNOx)]

(1)

where t is the current moment; fNOx(·) is the LSSVM regression function of NOx emission;
Ŷ(·) is the predictive output by the function; Y(·) is the historical value of the output;
Ucoal(·), Usec(·), Uofa(·), Uo2(·), Uload(·) represent the values of coal feed rate offset, sec-
ondary air damper opening, OFA damper opening, oxygen content after the economizer
and unit load at a given moment, respectively; ncoal, nsec, nofa, no2, nload denote the delay or-
der of these input variables; and nNOx, nTeg, nCfh are the delay orders of the output variables
including NOx emission, Teg and Cfh.
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2.3.2. Combustion Process Modeling Using ALSSVM

The model inputs x and corresponding outputs Y at the same moment form the set of a train-
ing sample. Then, the training dataset can be expressed as T = {(x1, Y1), . . . , (xl , Yl)}, which
consists of l samples with d-dimension inputs xi ∈ Rd and outputs Yi ∈ R, i = 1, 2, . . . , l. The
decision function f (x) of the LSSVM regression model can be obtained by the Lagrangian
multiplier method, as follows:

f (x) =
l

∑
k=1

αkK(xk, x) + b (2)

where αk is the Lagrangian multiplier corresponding to the kth training sample xk; K(·, ·) is
the radial basis kernel function (RBF); and b is a bias. The above model parameters can be
obtained by (3). {

α = H-1Y-H−1e · eTH−1Y
eTH−1e

b = eTH−1Y
eTH−1e

(3)

where α is denoted as α = [α1, α2, . . . , αl ]
T Y is the output vector of the training dataset

denoted as Y = [Y1, Y2, . . . , Yl ]
T ; e is an l-dimension identity column vector; and H is the

feature matrix of the LSSVM which is written as (4) and satisfies the equation relationship
shown in (5).

H =


K(x1, x1) +

1
2c K(x1, x2) · · · K(x1, xl)

K(x2, x1) K(x2, x2) +
1
2c · · · K(x2, xl)

...
...

. . .
...

K(xl , x1) K(xl , x2) · · · K(xl , xl) +
1
2c

 (4)

H ·


b
α1
α2
...

αl

 =


0

Y1
Y2
...

Yl

 (5)
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where c is the penalty parameter, and the RBF kernel function K(·, ·) can be expressed
as follows:

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2δ2

)
(6)

where δ is the kernel parameter.
Through the above calculations, the original training of the LSSVM model can be

accomplished. Furthermore, when the accuracy of the regression model is unsatisfied, the
initial support vectors should be replaced with newly obtained operating data and updated
model parameters [15]. The updating process is introduced as follows:

First, find the ith sample (xi, Yi) in the original training dataset which is closest to the
new operating data (xnew, Ynew), as shown in (7):

i = arg
(

min
k=1,...l

‖xnew − xk‖
)

(7)

Then, exchange the components between the ith and the lth line of H and then between
the ith and the lth row. After that, a new matrix H1 is obtained as follows:

H1 = IRi↔RlHILi↔Ll

=



K(x1, x1) +
1
2c · · · K(x1, xl) · · · K(x1, xi)

...
. . .

...
. . .

...
K(xl , x1) · · · K(xl , xl) +

1
2c · · · K(xl , xi)

...
. . .

...
. . .

...
K(xi, x1) · · · K(xi, xl) · · · K(xi, xi) +

1
2c


(8)

where IRi↔Rl is obtained by interchanging components between the ith and the lth line
of an identity matrix, and ILi↔Ll is obtained by the same interchanging but between the
row components. In terms of matrix theory, the transformation from H to H1 can be
accomplished by pre-multiplying IRi↔Rl and post-multiplying ILi↔Ll .

For partition H1 in (9), where G is composed of the first l − 1 lines and l − 1 rows of
H1, the column vector gi is composed of the first l − 1 rows in the last line of H1.

H1 =

[
G gi
gT

i
K(xi, xi) +

1
2c

]
(9)

The inverse of matrix H1 can be calculated as

H−1
1 =

[
h11 h12
h21 h22

]
= IRi↔RlH

−1ILi↔Ll (10)

Accordingly, the inverse of the new feature matrix H2 should be computed as

H-1
2 =

[
G-1+G-1gnewr−1

newgT
newG-1 -G-1gnewr−1

new
-r−1

newgT
newG-1 r−1

new

]
(11)

where the inverse of G is calculated by (15), and the denotations of gnew, knew, rnew are
shown in (12)–(14), respectively.

gnew = [K(x1, xnew), . . . , K(xi−1, xnew), K(xl , xnew),
K(xi+1, xnew), . . . , K(xl−1, xnew)]

T
l×1

(12)

knew = K(xnew, xnew) +
1
2c

(13)

rnew = knew − gnew
TG-1gnew (14)
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G−1 = h11 − h12h−1
22 h21 (15)

Then, the new model parameters α∗ and b∗ can be determined using (16), where
Y∗ = [Y1, . . . , Yi−1, Yl , Yi+1, . . . Yl−1, Ynew]

T is the new output vector of the model learning
dataset, which is obtained by replacing the ith element Yi in the original output vector with
the lth one Yl and the lth element Yl with the output Ynew of the new operating data.

α∗ = H-1
2 Y∗-H-1

2 e · eTH-1
2 Y∗

eTH-1
2 e

b∗ = eTH-1
2 Y*

eTH-1
2 e

(16)

2.4. Model Parameter Determination

The basic method of modeling is shown in the previous section. After that, two types
of model parameters need to be determined.

The first type are the hyper-parameters of the ALSSVM models, including the kernel
parameter δ and penalty parameter c. Ten-flod cross-validation can be used to determine
these parameters. The training dataset is divided into 10 subsets equally. Each of these
subsets are removed in turn from the complete training data and the model is trained based
on the remaining data. The removed subset is used as testing data. The model accuracy is
measured by the root mean square error (RMSE) index (17).

RMSE =

√√√√ 1
N

N

∑
k=1

(y− ỹ)2 (17)

where y and ỹ are the actual and predictive values, and N is the number of data samples.
For each value of [δ, c] in the search scope, a 10-fold cross-validation is performed

to calculate the average value of RMSE. The parameters corresponding to the minimal
average value of RMSE were finally used to construct the combustion models.

The second type of parameters are the delay orders of the model inputs. For each
model, there are six kinds of delay orders to be determined: ncoal, nsec, nofa, no2, nload and
the output order nNOx, nTeg or nCfh. Actually, the best way to acquire this type of parameter
is to perform a single-variable disturbance experiment on the boiler. However, this is
very time-consuming, and will affect the normal operation of the boiler. Thus, 10-fold
cross-validation is also used to find the combination of delay orders in this paper.

3. Closed-Loop Combustion Optimization Based on Economic Model
Predictive Control

The overall structure of the closed-loop system is shown in Figure 4. On the basis of
the above models, an economic model predictive control (EMPC) problem is formulated,
as shown in (18), which aims to improve boiler efficiency while reducing NOx emission in
a future period.

min
U(t)

J = w1 ·
P

∑
i=1

ŶNOx(t + i|t)− w2 ·
P

∑
i=1

Ŷeff(t + i|t) (18)

s.t.minU ≤ U(t) ≤ maxU, ∀t (19)

min∆U ≤ ∆U(t) ≤ max∆U, ∀t (20)

sum(Ucoal(t)) = 0, ∀t (21)

where w1 and w2 are the weighting coefficients of NOx emission and boiler efficiency
representing the focus of the optimization; t is the current moment and t + i is the future ith
moment; ŶNOx(t + i|t) and Ŷeff(t + i|t) are the predictive sequences of outputs in the range
of prediction horizon P; and U(t) is the vector of control variables with a control horizon
M, which contains four kinds of model inputs, as shown in (22). The magnitude and rate
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constraints of the control inputs are considered in (19) and (20), respectively. The equality
constraint (21) on coal feed rate is set to avoid the impact on unit load when optimizing the
combustion. Thus, the four offsets of the coal feed rate should add up to zero.

U(t) =
[
UT

coal(t|t), . . . , UT
coal(t + M− 1|t),

UT
sec(t|t), . . . , UT

sec(t + M− 1|t),
Uofa(t|t), . . . , Uofa(t + M− 1|t),
Uo2(t|t), . . . , Uo2(t + M− 1|t)]T

(22)
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The process of predicting outputs is shown as the dotted box in Figure 4. The estab-
lished ALSSVM prediction models are used to forecast the future P-step outputs of the
combustion system. The predicted sequence of outputs Ŷ(t + i|t), i = 1, 2, . . . , P depends
on the input and output values at current time t, and on the set of future control variables
U(t). Taking the model of NOx emission, for example, the multi-step-ahead sequence of
outputs can be predicted using (23).

Ŷ(t + i|t) = fNOx

[
^
x(t + i− 1|t)

]
, 1 ≤ i ≤ P

^
x(t + i− 1|t) = [Ucoal(t + i− 1|t), . . . , Ucoal(t + i− ncoal|t),

Usec(t + i− 1|t), . . . , Usec(t + i− nsec|t),
Uofa(t + i− 1|t), . . . , Uofa(t + i− nofa|t),
Uo2(t + i− 1|t), . . . , Uo2(t + i− no2|t)
Uload(t− 1),
Ŷ(t + i− 1|t), . . . , Ŷ(t + i− nNOx|t)

]
(23)

where fNOx(.) represents the ALSSVM model of NOx emission. Likewise, it is also possible
to perform multi-step prediction of the other two outputs.

The optimization problem (18) is solved in a receding horizon manner by using the
sequential quadratic programming (SQP) algorithm. The SQP algorithm decomposes
the original problem into a series of sub-problems which can be solved by quadratic
programming, so it is very effective for nonlinear constraint optimization problems [23,24].
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This closed-loop combustion optimization method can cope well with load and coal
quality variations, as the developed ALSSVM prediction models can be updated auto-
matically based on prediction errors. The advantage is that no new online coal quality
measurement equipment is required (online coal quality measurement is currently techni-
cally difficult) and the disadvantage is that there is a certain lag in combustion adjustment.

4. Application Results

Based on the above methodology, a combustion optimization system was designed
and put into operation in a 600 MW coal-fired boiler. Considering the characteristics of the
combustion system and the time required for adaptive the update, the calculation interval
was set to 20 s. A large amount of data were recorded during operation. The modeling and
optimization performance can be evaluated with these operating data.

4.1. Modeling Results
4.1.1. Combustion Process Modeling Using ALSSVM

As described above, there are three dynamic models established in this work based on
LSSVM. One thousand sets of samples, which uniformly covered all operating conditions
of the boiler, were selected as the training dataset after normalization and centralization.
Based on the training dataset, two types of model parameters could be determined by the
process introduced in Section 2.4.

The kernel parameter and penalty parameter were searched in the ranges of [0.1, 3]
and [100, 5000]. The final parameters are shown in Table 3.

Table 3. Hyper-parameters of the LSSVM models.

Model Kernel Parameter Penalty Parameter Maximum Permissible Error

NOx emission 2.2 500 5 mg/m3

Exhaust gas temperature 2.5 1000 0.05 ◦C
Carbon content of fly ash 1.6 2000 0.05%

The search scope of delay orders was [1, 6]. The input orders of the three models were
optimized and the results are shown in Table 4.

Table 4. Delay orders of the dynamic models.

Variables NOx Emission
Model

Exhaust Gas Temperature
Model

Carbon Content of Fly Ash
Model

Coal feed rate offset 4 3 3
Secondary air damper opening 4 3 3

OFA damper opening 3 3 3
Oxygen content after economizer 2 1 1

Unit load 1 1 1
Historical output 2 1 1

Taking the NOx model as an example, incremental analyses of the single variables
were conducted to verify the effect of order optimization. We changed the order of
one variable at a time and fixed the order of other variables to 1. The analysis result
of ncoal, nsec, nofa, no2, nload is shown in Figure 5a and the delay order of each variable
corresponding to the minimum average RMSE is consistent with Table 4.
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ncoal, nsec, nofa, no2, nload; (b) analysis result of the historical output nNOx.

In particular, an incremental analysis was performed on the historical output nNOx,
and the results are shown in Figure 5b. The zero order represents the steady-state model
that no historical output was added to for the model input. It can be seen that the accuracy
of the model was greatly improved after taking the historical outputs as the model inputs
in the dynamic modeling of the boiler combustion process.

4.1.2. Model Prediction Accuracy

The predictive models with the above parameters were verified by the actual operation
data. Figure 6a–c show the prediction accuracy of the three models over a long period
of time. It can be seen from the figures that the trends of the predicted values of the
three models were consistent with the actual values, and most of the prediction errors
were within three small ranges of ±10 mg/m3, ±0.1 ◦C, and ±0.3%, respectively. The
results indicate that the three models have high accuracy and can correctly reflect the
characteristics of boiler combustion systems.

4.1.3. Verification of Dynamic and Adaptive Modeling Methodology

Furthermore, several simulation experiments were conducted to verify the effective-
ness of the dynamic modeling and adaptive update methodology.

Taking the model of NOx emission as an example, four models were established by
different modeling methods based on the same training dataset, i.e., Model 1 (dynamic +
ALSSVM), Model 2 (dynamic + LSSVM), Model 3 (steady-state + ALSSVM), and Model 4
(steady-state + LSSVM). The operation data shown in Figure 6 were used to test the model
performance. The comparison results are shown in Figure 7. It is clear that Model 1 had
the highest accuracy compared with the other three models. The absolute prediction error
of Model 1 was within a range of [0, 9] mg/m3. Its variation was also obviously smaller
than that of the other three models. These results show that modeling accuracy can be
significantly improved by considering the dynamic and time-varying characteristics of the
boiler combustion process.
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4.2. Industrial Application

The proposed closed-loop combustion optimization system was applied to a
600 MW boiler.

Figure 8 gives the results after the combustion optimization system was put into
operation under a steady load of 290 MW at the time of 01:23. It can be seen from the figure
that the boiler efficiency improved by about 0.5%. The improvement was mainly owing to
the decrease in the carbon content of fly ash and the exhaust temperature. Meanwhile, the
NOx emission was reduced by about 100 mg/m3.
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5. Conclusions

Considering the dynamic and time-varying characteristics of the boiler combustion
process, the combustion system model established in this paper is presented with two
main improvements compared with other related work: dynamic modeling and adaptive
update methodologies.

First, the current values and previous sequences of the selected variables were con-
sidered as the model inputs to describe the dynamic characteristics of the combustion
process. Second, ALSSVM models were updated adaptively based on the operating data,
and proved to be more accurate over a long period of operation time.

The effectiveness of the optimization system, which was designed based on the es-
tablished models, was proven by the closed-loop operation in a 600 MW unit. The actual
operation data prove that the system can effectively improve boiler combustion condition
and increase efficiency by about 0.5%.

The new closed-loop combustion optimization control system based on the ALSSVM
models enables boiler combustion to automatically adapt to changes in load and coal
quality, improving boiler efficiency and reducing the workload of operators. It should
be noted that although this research is aimed at opposed wall-fired boilers, it can easily
be extended to other furnace types, such as tangentially fired boilers, with appropriate
modifications to the input variables.
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Nomenclature

Y output variable
U input variable
t current moment
f regression function
n delay order of input variable
H feature matrix
b regression model bias parameter
K radial basis kernel function
x input vector
c penalty parameter
w weighting coefficient
P prediction horizon
M control horizon
Subscripts
coal coal feed rate offset
sec secondary air damper opening
ofa over fire air damper opening
o2 oxygen content after economizer
load unit load
NOx NOx emission
Teg exhaust gas temperature
Cfh carbon content of fly ash
eff boiler efficiency
Greek symbols
α Lagrangian multiplier
σ kernel parameter
η boiler efficiency
Abbreviations
EMPC economic model predictive control
SQP sequential quadratic programming
RBF radial basis kernel function
ALSSVM adaptive least square support vector machine
RMSE root mean square error

Appendix A

In order to calculate the boiler efficiency, the anti-heat balance method was used
here as:

η = 100− (q2 + q3 + q4 + q5 + q6) (A1)

where η represents the boiler efficiency and q2, q3, . . . , q6 are the five parts of heat loss,
which are introduced as follows:

(a) q2: heat loss due to exhaust gas.

q2 =
Qgy

2 + QH2O
2

Qnet,ar
× 100 (A2)
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where Qgy
2 is the sensible heat loss of dry gas loss calculated by (A3); QH2O

2 is the sensible
heat loss of vapor calculated by (A8); and Qnet,ar is the net calorific value as the received
basis shown in Table 2.

Qgy
2 = Vgy · Cp.gy

(
Teg − T0

)
=
(

V0
gy + (β− 1)V0

gk

)
· Cp.gy

(
Teg − T0

) (A3)

In (A3), Vgy is the dry flue gas volume produced per kilogram of fuel, which is
calculated by theoretical dry air volume V0

gk, theoretical dry flue gas volume V0
gy and excess

air coefficient β, as shown in (A4)–(A6) respectively. Teg is the exhaust gas temperature
and T0 is the ambient temperature. Cp.gy represents the average specific heat of dry flue
gas at constant pressure, which can be estimated by (A7).

[
CP.CO2 , CP.O2 , CP.CO, CP.N2

]
and

[CO2, O2, CO, N2] are the specific heat and volume fractions of the corresponding gases in
the exhaust gas, respectively.

V0
gk = 0.089(Car + 0.375Sar) + 0.265Har − 0.0333Oar (A4)

V0
gy = 1.866× C + 0.375Sar

100
+ 0.79V0

gk + 0.8
Nar

100
(A5)

β =
21

21−O2
(A6)

Cp.gy =
CP.CO2 · CO2 + CP.O2 ·O2 + CP.CO · CO + CP.N2 · N2

100
(A7)

QH2O
2 = VH2O · Cp.H2O

(
Teg − T0

)
(A8)

In (A8), VH2O is the vapor volume produced per kilogram of fuel, which is obtained
by (A9). Cp.H2O is the specific heat of vapor at constant pressure.

VH2O = 1.24
(

9Har + Mar

100
+ 1.293βV0

gkdk

)
(A9)

where Har, Mar are the coal parameters listed in Table 2 and dk is the absolute humidity of
the air, which can be set to a constant value according to the local weather condition.

(b) q3: heat loss due to unburned gases.

q3 =
Vgy × 126.36× CO

Qnet,ar
× 100 (A10)

where CO is the volume fraction of CO in the exhaust gas.

(c) q4: heat loss due to unburned carbon.

q4 =
337.27× Aar

Qnet,ar
· Cfh

100− Cfh
(A11)

where Qnet,ar and Aar are the coal parameters. Cfh is the carbon content of fly ash value
measured by the real-time measurement device.

(d) q5: heat loss due to radiation.

Take the constant value 0.3% according to the boiler instructions.

(e) q6: heat loss due to sensible heat in ash.

q6 =
Aar

Qnet,ar

(
Teg − T0

) Cfh
100− Cp.fh

(A12)

where Cp.fh is the specific heat of fly ash.
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