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Abstract: Due to a high operating voltage and theoretical capacity, P2-type layered Mn-based metal
oxides are considered to be promising cathodes in sodium-ion batteries, but their poor structural
stability in the process of Na+ insertion/deinsertion severely hinders their practical application.
Here, an interesting K+ pre-intercalation is used to expand the interlayer distance and enhance the
electrochemical reversibility of KsFexAlyMnzO2. With a suitable K+ content, the optimized electrode
shows a high specific capacity of 135 mAh g−1 at 0.1 C, a good rate capability of 80 mAh g−1 at 5 C
and an excellent cycling performance of 76.4% capacity retention after 200 cycles at a high rate of 5 C.
This work proves the feasibility of a K+ pre-intercalation strategy in a P2-type layered cathode.

Keywords: layered K0.37Fe0.04Al0.07Mn0.89O2 cathode; expanded interlayer spacing; good structural
stability; sol–gel method; sodium-ion batteries

1. Introduction

Sodium-ion batteries (SIBs) are widely considered to be one of the most significant
potential next-generation energy storage devices due to their similar working principle
to lithium ion batteries, high safety and low cost [1–7]. Outstanding cathode materials
with an excellent working voltage, a high specific capacity and good structural stability are
key for the commercial application of SIBs [8–11]. Among the reported cathode materials,
P2-type layered Mn-based metal oxides have had great attention from researchers because
of their high operating voltage. However, a low discharge capacity and an unfavorable
P2–O2 phase transition at a high voltage severely hinder their practical application [12–15].

To enhance the electrochemical properties of P2-type layered Mn-based metal oxides,
many methods have been tested such as surface modifications and metal-ion doping [16–18].
Vanaphuti and coworkers designed a highly sustainable cobalt-free P2 Na0.72Mn0.75Li0.24X0.01O2
(X = Ti/Si) cathode, where Ti worked as a protective layer and alleviated the side reactions in
a carbonate-based electrolyte and Si regulated the local electronic structure and suppressed
the oxygen redox activities, leading to good electrochemical properties [19]. Hwang
et al. reported a Cu-doped Mn-based P2-type Na0.67Cu0.125Fe0.375Mn0.5O2 cathode; the
introduction of Cu generated electron holes above the Fermi level in the electronic structure
and suppressed the phase transition from the P2 to the Z phase, which resulted in an
improved structural stability [20]. Alkali site doping is also an effective method as well
as Mn site doping; both methods have recently gained attention. Chen and coworkers
prepared a novel layered K0.7Mn0.7Ni0.3O2 cathode with interlayer spacing of 0.69 nm,
which was higher than that of a Na0.7Mn0.7Ni0.3O2 cathode (0.563 nm); thus, it showed
a high reversible capacity of 161.8 mAh g−1 at 0.1 A g−1, a superior rate capability of
71.1 mAh g−1 at 5 A g−1 and a long-term cycling performance of 500 cycles [21]. Wang
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et al. reported K0.4Ni0.2Mn0.8O2 with a “pillar-beam” structure and freely diffused Na+ in an
interlayer; excellent electrochemical properties were obtained due to multiple advantages [22].
The above works reflect the feasibility and advantage of a K+ pre-intercalation strategy.

Mn-based metal oxides undergo severe phase transitions because of the Jahn–Teller
distortion induced by Mn3+, resulting in distinct capacity fading. To improve stability, the
partial substitution of manganese by electrochemically active and/or inactive transition
metals such as Fe, Ni and Mg is considered to be an effective method. Among these metals,
the introduction of Fe and Al is beneficial to suppresses the Jahn–Teller distortion. The
simultaneous introduction of Fe and Al may prompt an excellent structural stability, which
is rarely reported.

In this work, novel P2-type KsFexAlyMnzO2 layered cathodes are prepared by a sol–
gel method followed by high-temperature calcination. By adjusting the content of K+, the
structural stability and diffusion rate are optimized. Thus, the K0.37Fe0.04Al0.07Mn0.89O2
cathode shows a high reversible capacity, an excellent rate capability and a long cyclic
life. This work proves the feasibility of a K+ pre-intercalation strategy in P2-type layered
Mn-based metal oxides.

2. Materials and Methods
2.1. Material Preparation

KsFexAlyMnzO2 was synthesized by the sol–gel method followed by calcination
in air. Typically, 8.2/9.0/10.1 mmol CH3COOK, 0.8 mmol Fe(NO3)3·9H2O, 0.8 mmol
Al(NO3)3·9H2O and 13.5 mmol (CH3COO)2Mn were dissolved in distilled water then
37.5 mmol citric acid was added to the solution with continuous stirring. The solution
was kept in an oven at 90 ◦C for 12 h to obtain a fluffy porous substance. After grinding,
the precursor was calcined at 350 ◦C in air for 5 h and cooled down to room temperature.
The obtained material was ground and finally annealed at 900 ◦C for 10 h to obtain the
target product. The products were denoted as KFAM-1, KFAM-2 and KFAM-3, which
corresponded with 8.2, 9.0 and 10.1 mmol CH3COOK in the raw materials, respectively.

2.2. Characterization

The morphologies of the materials were viewed using a scanning electron microscope
(SEM, S4800, Hitachi, Japan). The crystal structure and compositions of the materials were
studied using X-ray diffraction (XRD, D-MAX 2200 VPC, Rigaku, Japan).

2.3. Electrochemical Tests

The electrochemical performances of the KFAM-X were tested by CR2032 coin-type
cells using Na foil as working and reference electrodes. Whatman glass fiber (GF/D) acted
as a membrane. The electrolyte consisted of 1 mol L−1 NaClO4 in ethylene carbonate (EC)
and diethyl carbonate (DEC) (1:1 in volume) with the addition of 5 vol.% fluoroethylene
carbonate (FEC). The charge and discharge tests were performed by an Arbin BT2000
system at 25 ◦C. The positive electrode consisted of 80 wt.% active materials, 10 wt.%
conductive carbon (super P) and 10 wt.% polyvinylidene fluoride (PVDF) binder. A ball
mill was used to mix the materials and was rotated at 700 rpm for 30 min. The obtained
slurry was cast onto an Al foil and dried at 90 ◦C overnight in a vacuum drying oven. The
mass loading was about 1.5 mg cm−2.

3. Results and Discussion

The X-ray diffractometry (XRD) pattern was collected to analyze the crystal structure of
the KFAM-X (Figure 1). The characteristic peaks of the KFAM-X were similar to previously
reported K0.7Mn0.7Ni0.3O2. Its peaks at 12.8◦, 25.8◦, 36.6◦, 37.2◦, 47.8◦, 51.1◦ and 57.7◦

were assigned to (003), (006), (101), (102), (105), (107) and (108) planes, which indicated
the layered structure of the KFAM-X [21,22]. Its d-spacing was 6.95 Å, distinctly higher
than the diameter of Na+. We noted that the peaks of KFAM-2 were stronger than those of
KFAM-1. There were several impurity peaks of K2O (JCPDS no. 77-2176) and K(H2O)OH
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(JCPDS no. 77-1221) for KFAM-3, reflecting that excessive K+ could not intercalate to the
interlayer (Figure S1). Thus, all potassium ions of KFAM-1 and KFAM-2 were included
in the P2 structure; a part of K+ in KFAM-3 was not included in the P2 structure. The
results of XRD indicated that the P2-type KFAM-2 layered cathode could show a good
electrochemical performance.
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Figure 1. XRD patterns of KFAM-X.

The morphology of the KFAM-X was studied by scanning electron microscope (SEM)
images. As shown in Figure 2, the KFAM-X consisted of many nanoparticles with an
irregular shape and a size of 300–500 nm. There were no obvious differences between
the KFAM-X samples with different K+ contents. To further determine the compositions
of the KFAM-X, energy dispersive X-ray (EDX) spectra and elemental mapping were
collected (Figure 3, Figures S2 and S3). The EDX spectra proved the presence of elemental
K, Fe, Al, Mn and O (Figure 3b, Figures S2b and S3b). According to the elemental ratios,
the chemical formulas of the KFAM-X were determined to be K0.34Fe0.04Al0.07Mn0.89O2,
K0.37Fe0.04Al0.07Mn0.89O2 and K0.42Fe0.04Al0.07Mn0.89O2. The elemental mapping showed
the uniform distribution of K, Fe, Al, Mn and O, even reflecting K+ pre-intercalation
(Figure 3c, Figures S2c and S3c).
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The electrochemical properties of the KFAM-X were tested in a 2020 coin-type cell.
The electrochemical impedance spectra (EIS) were then compared (Figure 4a). The charge
transfer and interfacial resistances could not be separated; thus, they were denoted as
Rct+int. The ohmic resistance (Ro) and Rct+int of KFAM-2 were 16 and 440 Ω, respectively,
smaller than those of KFAM-1 (21 and 710 Ω, respectively) and KFAM-3 (35 and 570 Ω,
respectively). The slope of the line at the low-frequency area of KFAM-2 was also larger
than that of KFAM-1 and KFAM-3, indicating the fastest Na+ transfer rate of KFAM-2
from the electrolyte to the electrode surface. The excellent conductivity of KFAM-2 was
attributed to its high crystallinity and purity. Figure 4b–d exhibits the charge–discharge
curves of the KFAM-X and their curves showed a similar shape. The 1st and 2nd discharge
capacities of KFAM-2 were 61 and 141 mAh g−1, respectively, larger than those of KFAM-1
(59 and 113 mAh g−1, respectively) and KFAM-3 (60 and 113 mAh g−1, respectively).
Previous studies have found that sodium ions enter the structure of KFAM-X by both an ion
exchange and electrochemical intercalation during the 1st discharge process and Na+ can
be extracted after the 1st charge process, which leaves a greater number of vacancies for the
next discharge [21,22]. The EDX spectra of the KFAM-X after cycling were collected (Figures
S4–S6). Both Na and K elements could be found, proving the above-mentioned mechanism.
The cyclic life of the KFAM-X was further compared. At a current density of 0.1 C, KFAM-2
displayed a good coulombic efficiency and the highest discharge capacity (Figure 4e). After
50 cycles, the discharge capacity of KFAM-2 was 124 mAh g−1, higher than that of KFAM-1
(114 mAh g−1) and KFAM-3 (83 mAh g−1). Furthermore, a cyclic life at 2 C was performed.
After 200 cycles, the capacity retention of KFAM-2 (78%) was obviously higher than that
of KFAM-1 (58%) and KFAM-3 (26%) (Figure 4f). At the beginning of cycling, a part of K+
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escapes from the interlayer and results in a greater number of active sites for Na+ storage,
which leads to an initial capacity increase [22].
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The electrochemical properties of KFAM-2 were surveyed further. The 1st–3rd cyclic
voltammetry (CV) curves are exhibited in Figure 5a. Two pairs of main redox peaks at
2.1/2.7 and 3.1/3.5 V could be seen, reflecting a stepwise Na+ insertion/deinsertion. The
charge–discharge curves at different densities showed a similar shape, suggesting the
outstanding electrochemical dynamics of KFAM-2 (Figure 5b). At current densities of 0.1,
0.2, 0.5, 1, 2 and 5 C, the discharge capacities were 135, 129, 116, 107, 96 and 80 mAh g−1,
respectively. The cyclic life of KFAM-2 at a large current density of 5 C was tested to
prove its superiority (Figure 5c). After 200 cycles, a high capacity retention of 72% was
obtained. To calculate the diffusion coefficient of Na+, the CV curves at scan rates from
0.2 to 2 mV s−1 were collected (Figure 5d). The diffusion coefficient was counted by the
following Equation (1) [23]:

Ip = 2.69 × 105n3/2ADNa
1/2CNaV1/2 (1)

where Ip, n, A, DNa, CNa and V are the peak current, the number of electron transfers in
the redox process, the contact area between the electrolyte and the active substance, the
diffusion coefficient, the concentration of sodium ions in the lattice and the scan rate. It
could be simplified to: Ip = 6487.6DNa

1/2V1/2. Figure 5e,f were obtained according to the
reduction and oxidation peaks at different scan rates. According the plots of Ip–V1/2, the
diffusion coefficients were 3.68 × 10−11 and 4.69 × 10−11 cm2 s−1, respectively, reflecting
the fast charge transfer and storage of KFAM-2.

The XRD patterns of the KFAM-X after 50 cycles at 1 C were tested to detect their struc-
tural stability, as shown in Figure S7. There were no obvious changes for the characteristic
peaks of KFAM-1 and KFAM-2, reflecting their good structural stability. A few peaks of
NasFexAlyMnzO2 could be found in KFAM-2, revealing its poor structural stability and
phase transformation.
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4. Conclusions

In summary, novel P2-type KxFe0.04Al0.07Mn0.89O2 layered cathodes were designed
by the high-temperature calcination of a precursor obtained by a sol–gel method. The
inactive K+ enlarged the interlayer spacing to expand the diffusion channels and hindered
an adverse P2–O2 phase transition. With a suitable K+ content, the structural stability
and diffusion rate were improved. Thus, a K0.37Fe0.04Al0.07Mn0.89O2 cathode with a large
interlayer distance showed a high specific capacity of 135 mAh g−1 at 0.1 C, a good rate
capability of 80 mAh g−1 at 5 C and an excellent cycling performance of 76.4% capacity
retention after 200 cycles at a high rate of 5 C. In this work, we prove the feasibility of a
K+ pre-intercalation strategy and provide a new way of designing a layered cathode in a
sodium-ion battery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15155659/s1, Figure S1: XRD pattern of KFAM-3; Figure S2:
Elemental analysis of KFAM-1; Figure S3: Elemental analysis of KFAM-3; Figure S4: Elemental
analysis of KFAM-1 after cycling; Figure S5: Elemental analysis of KFAM-2 after cycling; Figure S6:
Elemental analysis of KFAM-3 after cycling; Figure S7: XRD patterns of KFAM-X after cycling.
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