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Abstract: The photovoltaic (PV) module is a key technological advancement in renewable energy.
When the PV modules fail, the overall generating efficiency will decrease, and the power system’s
operation will be influenced. Hence, detecting the fault type when the PV modules are failing
becomes important. This study proposed a hybrid algorithm by combining the symmetrized dot
pattern (SDP) with a convolutional neural network (CNN) for PV module fault recognition. Three
common faults are discussed, including poor welding, breakage, and bypass diode failure. Moreover,
a fault-free module was added to the experiment for comparison. First, a high-frequency square
signal was imported into the PV module, and the original signal was captured by the NI PXI-5105
high-speed data acquisition (DAQ) card for the hardware architecture. Afterward, the signal was
imported into the SDP for calculation to create a snowflake image as the image feature for fault
diagnosis. Finally, the PV module fault recognition was performed using CNN. There were 3200 test
data records in this study, and 800 data records (200 data records of each fault) were used as test
samples. The test results show that the recognition accuracy was as high as 99.88%. It is better than
the traditional ENN algorithm, having an accuracy of 91.75%. Therefore, while capturing the fault
signals effectively and displaying them in images, the proposed method accurately recognizes the PV
modules’ fault types.

Keywords: photovoltaic module; symmetrized dot pattern; convolutional neural network

1. Introduction

The global energy demand has increased in recent years. Renewable energy sources
(RESs) have been the future trend of power generation [1–3]. PV is one of the key techno-
logical advancements. It has been accepted and used worldwide [4]. The PV panel may be
damaged during manufacturing, construction, transportation, and improper installation.
These damages can lead to faults [5]. The common fault types in many PV accident reports
include poor welding [6], breakage [7], bypass diode failure [8], line-to-ground (L-G) and
line-to-line (L-L) faults [9,10], partial shading and short-circuit of bypass diodes faults [11],
and arc faults [12]. Many experts propose using machine learning and deep learning for PV
module fault diagnosis [13–20]. Ref. [13] proposed a PV bypass diode detection algorithm
and used three series-connected PV modules and nine bypass diodes for experimental
evaluation. The accuracy varied with time, but in mismatched conditions, e.g., shadow, hot
spot, welding, or stratification, the values of Isc and Vmpp decreased. Ref. [14] introduced
the support vector machine (SVM) classifier to PV module defective parts including parallel
cracks, series cracks, bypass diode failure, and defective-free from electroluminescence
(EL) images. The results showed that the method had an accuracy of 97.5%. However,
the method only focused on the bypass diode and the PV module with parallel and series
cracks faults. Additionally, the EL equipment needed to be used first to obtain the images
for the feature extraction procedures. Ref. [15] proposed a random forest algorithm for
PV module fault diagnosis, including five fault types. These five fault types include open
circuit, short circuit, hot spot, aging, and partial shading. The experimental results showed
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that the accuracy ranged from 60% to 80%. The method is effective in PV module fault
diagnosis. Ref. [16] proposed a method based on ENN and the chaos synchronization detec-
tion method (CSDM) and constructed three common fault types, including PV component
damage, PV component aging, and PV component bypass diode fault. The recognition
accuracy was as high as 87.5%. The method is characterized by compressing Big Data
and extracting effective feature values. The trained ENN is used for identifying the fault
type. Ref. [17] proposed a hybrid algorithm of CSDM and CNN and used four common
PV component states, including normal PV component, component damage, component
contact defect, and module bypass diode fault for experimental evaluation. The recognition
accuracy was as high as 99.5%. The method uses CSDM to reduce a large number of original
measured data. Subtle changes in output signals are displayed in the image effectively so
the CNN can accurately identify the PV component fault state. Ref. [18] proposed a fully
convolutional network (FCN) method, especially for detecting bird’s drops on the surface
of PV modules. A multi-copter for autonomous aerial monitoring of PV plants also was
used to obtain the images of the PV modules. The results showed that the proposed method
can detect pixels covered by bird’s drops with an average accuracy of 93%. However,
the method only focused on the visible failures of PV modules. The multi-copter also
needed to be utilized for screening the feature images of PV plants. It really depends
on the professional operation to control the multi-copter for receiving suitable images.
Ref. [19] introduced the principal component analysis (PCA) algorithm with a support
vector machine (SVM) based on an I-V curve of solar cells for short circuit and shading
faults. The method identified only two types of PV fault and needed information on the
I-V curve of PV. Ref. [20] conducted an artificial neural network to detect the DC side of
PV faults with an accuracy of 83%. The fault types included partial shading, L-L, open
circuit, degradation, bypass diode, and bridge faults. However, the method is only used
for a simulation model rather than the real PV systems. The above-mentioned references
for different methods, PV fault types, and performances are listed in Table 1.

Table 1. Literature review of fault detection method and accuracy rate for PV system.

Methods
Fault Types

Cracks Bypass Diode
Failure

Aging Open
Circuit

Short
Circuit

Hot Spot Partial
Shading

Accuracy
Rate (%)

SVM [14] 4 4 95

Random forest [15] 4 4 4 4 4 60~80

CSDM + ENN [16] 4 4 4 87.5

CSDM + CNN [17] 4 4 4 99.5

FCN [18] 4 93

SVM [19] 4 4 4 90

ANN [20] 4 4 4 95

While most studies focus on the PV modules and bypass diode faults using neural
network-related methods, there has been limited literature proposed using CNN with
SDP (the feature extraction method). Therefore, a hybrid algorithm proposed in this study
combines SDP and CNN for PV module fault diagnosis. The PV module fault models were
constructed based on the normal state (Type 1) and three common fault types, including
poor welding of a PV module (Type 2), a PV module breakage (Type 3), and a PV module
diode bypass failure (Type 4). This study built an intelligent deep learning method detection
system for PV modules based on CNN combined with SDP for identifying PV faults and
used 800 samples for the experiment. First, the high-frequency signal was imported into
the PV module to capture the original output signal, which led to the SDP obtaining
a snowflake image as a feature map [21,22]. Then, the fault type was identified using
CNN [23]. The proposed SDP is highly sensitive to input signals. As a result, if the input
signal changes slightly, the image output result will show the differences, which is favorable
for extracting meaningful feature values from the fault signals.
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2. Architecture and Design of the Research System

Two main parts, including the overall system detection process architecture, a fault
testing platform, and the PV module fault-type construction, are discussed in this chapter.
First, the overall system detection process contains waveform generators, DAQ equipment,
various PV modules, and the proposed method. Second, the fault-testing platform and
how to build up the failure of PV modules are detailed discussion as follows.

2.1. The Overall System Detection Process Architecture

The detection system developed in this study can analyze signals in different PV fault
conditions by combining SDP with CNN for diagnosis. Figure 1 shows the overall system
detection process architecture. A high-frequency voltage was imported into the different
fault models, and the original signal was captured by a PXI high-speed DAQ card from the
output signal waveform as the data analysis source of fault diagnosis. SDP then converted
the failure data into a snowflake image, and the fault type was identified using CNN.
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Figure 1. The overall system detection process architecture.

2.2. A Fault-Testing Platform and PV Module Fault-Type Construction

The PV module fault detection testing platform built in this study is shown in Figure 2.
The waveform generator (Agilent 33220A) was used as a signal source. A 250 kHz square
wave was imported via the anode and cathode of the PV module. The test data were
captured by PXI-5105 and fed into the algorithm for fault recognition.
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Four common PV module fault-state models were built in this study, as shown in Table 2,
including normal module (Type 1), poor welding (Type 2), module breakage (Type 3), and
diode bypass failure (Type 4). The different signal results of the PV modules measured in
different fault conditions were discussed. Then, the image feature map was generated by
SDP and identified by CNN.

Table 2. The fault-state models of a PV module.

PV module types

Normal PV module (Type 1)

Poor connection of PV module (Type 2)

PV module breakage (Type 3)

Bypass diode failure (Type 4)

2.2.1. Normal PV Module (Type 1)

This study used a 20 W monocrystalline silicon PV module, as shown in Figure 3, in
the standard test condition (the irradiance level at 1000 W/m2, the mass of atmosphere
at air mass 1.5, and the temperature at 25 ◦C). The rated voltage, rated current, open-
circuit voltage, and short-circuit current of the PV module were 18.2 V, 1.10 A, 22.4 V, and
1.19 A, respectively.
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2.2.2. Poor Connection on a PV Module (Type 2)

As the electrical equipment runs for a long time or the ambient temperature changes,
the type of material or the installed structure may loosen the screws or pressure connection
terminals of a power circuit, leading to safety problems. According to [24], the primary
cause of electrical equipment aging or failure is the loosening of welding adhesive or
grid-line interface breakage. This study added an electronic load to the PV module, and
additional loads of 2 Ω and 10 Ω were applied to study the poor connection. The resistance
was divided into ten equal parts and was adjusted from 1 Ω to 10 Ω to construct the aging
fault type, as shown in Figure 4.
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2.2.3. PV Module Breakage (Type 3)

This study used severe and light damage models to study the broken module, as shown
in Figures 5 and 6. According to [25], the structure of a module varies with environmental
factors. The faults were divided into safety and performance faults. The PV module
breakage was a safety fault. This study used an external force for impact damage to the full
set of PV modules to simulate the PV module damage induced by human stepping and
foreign object damage during construction. The damage extended from the knocking point
to the periphery to induce the loss of normal function in other silicon wafers.
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2.2.4. Bypass Diode Failure (Type 4)

The PV module is inevitably influenced by external factors in the course of PV conver-
sion, and the electricity generation is reduced [26]. The damaged battery or the shielded
module area begins to heat up, and the bypass diode exerts a significant effect. The current
can pass by the shaded PV module to reduce the hot spot effect. The bypass diode of the
normal PV module was shorted in this study. A conductor was welded to short the bypass
diode, and the anode of the diode was cut, as shown in Figures 7 and 8.
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3. Research Methods

This study aims at PV module fault diagnosis. First, a 250 kHz and 20 Vp-p high-
frequency square-wave signal was imported. The data were captured by PXI 5105 to
read the measured signal of the PV module fault type. SDP converted the time domain
waveform signals into a polar-coordinate symmetrized snowflake image, and the fault type
was identified by CNN. The analysis process is shown in Figure 9. The SDP and CNN are
described below.
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3.1. SDP

The SDP converts the original signal of PV into a snowflake image as the feature map.
Different snowflake images are generated as the PV module fault signal changes. Figure 10
shows the snowflake image of a normal PV module.
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The SDP uses a data acquisition system to convert the data of time-domain square-
wave signals into a polar-coordinate feature image. Figure 11 shows the principle of the
method, where (i) is the radius of the polar coordinates in the snowflake image; θcw (i) is
the clockwise rotation angle of the x-axis; θccw (i) is the counterclockwise rotation angle of
the x-axis. In the square-wave data sampling of the PV module state signals, the signal
sampling point xi is the ith sampling point of signal x, the signal sampling point xi+τ is the
sampling point at No. i + τ time of signal x. These are substituted in Equations (1)–(3). The
point of the converted polar coordinate space is O(r(i),θcw (i),θccw (i)). The PV module state
signal can be generated by changing the initial rotation angle to form the symmetric image
of point coordinates.

r(i) =
xi − xmin

xmax − xmin
(1)

θcw (i) = θ− xi+τ − xmin
xmax − xmin

S (2)

θccw (i) = θ +
xi+τ − xmin
xmax − xmin

S (3)
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The xmax in Equations (1)–(3) is the maximum value of the original signal; xmin is the
minimum value of the original signal; τ is the signal interval time parameter (1 ≤ τ ≤ 10);
θ is the initial deflection angle of the x-axis; S is the amplification coefficient of the rotation
angle (S ≤ θ). The test result shows that the feature map parameters suitable for PV module
fault recognition analysis were θ = 60◦, τ = 3, and S = 3.

3.2. Convolutional Neural Networks (CNN)

By using SDP in this study, the time-domain waveform was converted into a polar
image so that the feature image could be led in the CNN for PV module fault model
recognition. The CNN converts and extracts useful feature maps. It is one of the most used
methods and is mostly used for image identification functions, e.g., mechanical vibration
fault diagnosis monitoring [27] and PV array fault classification [28,29].

The CNN architecture is shown in Figure 12. CNN is a neural network architecture
that uses the convolution layer and the pooling layer to extract features from the input
image. The feature picture can be extracted by multiple cyclical steps of convolution and
pooling layers. The feature map is handed to the fully connected layer for classification,
and the output result is obtained at last.
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3.2.1. Function of Convolution Layer

The convolution layer acts as the image feature extractor in the CNN. This layer uses
a convolution kernel or a filter of different sizes for the convolution layer operation. The
image feature value access or feature optimization is performed by spatial filtering factors.
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Specifically, a convolution kernel of 3 × 3 is usually taken as an example and stacked on a
6 × 6 image. Two corresponding cells are multiplied, and the numerical results of
9 products are added to obtain new image values. The unit of each move is one stride, and
the whole 6 × 6 image is scanned to obtain the feature map, expressed as Equation (4). The
convolution operation mode is shown in Figure 13 [30].

xl
j = f

 ∑
i∈Mj

xl−1
j .W l

ij + bl
j

 (4)
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In the mathematical expression, xl
j is No. j element of layer 1; Mj is No. j convolution

region of l − 1 layer feature image; xl−1
j is the element therein; W l

ij is the weighting matrix

corresponding to the convolution kernel; bl
j is the deviation; f (.) is in the activation function.

The ReLU activation function was used in this study and expressed in Equations (5) and (6).

f (x) = max(0, x) (5)

f (x) =
{

x, i f x ≥ 0
0, i f x ≤ 0

(6)

3.2.2. Function of the Pooling Layer

The pooling layer also has a filter to scan the whole image. The pooling layer is divided
into two parts: max pooling and average pooling. This process aims to further compress
the image data, with the most excellent characteristic of the feature map being reflected.
The 4 × 4 image feature, obtained after the convolution layer operation, is cut up into
2 × 2 parts. The maximum value and the average value of the segmented part are extracted
and placed in the 2 × 2 matrix of max pooling and average pooling. The data after pooling
maintain the essential features of the original image. Figure 14 shows the operation mode
of the pooling layer.
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As shown in Equation (7), down(·) is the downsampling function; it often has max
pooling, average pooling, and general pooling. This study took max pooling and average
pooling as the examples. The featured image exported to the convolution layer was pooled
in each n × n nonoverlapping area. A maximum value in each area was selected, and the
size of the final output image was reduced n times.

xl
j =

(
down

(
xl−1

j

)
wl

j + bl
j

)
(7)

3.2.3. Function of Fully Connected Layer

The fully connected layer covers the most fundamental neural network, composed of
the flatten layer, hidden layer, and output layer. It convolves and pools the feature map
derived from the original image through a series of processing. As the obtained feature
map is a 2D image, the flatten layer is required to convert 2D into a 1D array. Finally, the
image prediction and classification results are flattened. Figure 15 shows the operation
flow of a fully connected layer.

Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 15. Computing architecture of the fully connected layer. 

4. Experimental Results 
This study had four types of PV modules, including a normal module, a poor con-

nection on the module, module breakage, and bypass diode failure. Four kinds of square-
wave output signals measured by this system are shown in Figures 16–19. First, a high-
frequency 250 kHz signal was imported with the input voltage of a 20 Vape–p high-fre-
quency square-wave signal. The data sampling time was 40 μs, totaling ten periods. The 
failure data of 3200 points were sampled. As four state models were built, 200 samples of 
data were extracted from each model, totaling 800 samples for the experiment. 

First, the normal signal of a module in Figure 16 was observed. The output voltage 
waveform showed the peak voltage drop resulting from the component voltage drop in 
the PV module. There was no noticeable change in the negative half-cycle. The positive 
half-cycle had a micro fluctuation between 0 V and 5 V, and the variation can be used as 
a recognition signal. As the variation was insignificant, it was unlikely to be observed in 
the waveform, and the main features could be displayed using SDP. Afterward, the signal 
of a poor connection on a module was observed, as shown in Figure 17. In comparison to 
normal signals from a PV module, the peak-to-peak value of the voltage was a little lower 
than the characteristic of normal signals. As shown in Figure 18, when observing the mod-
ule breakage signals, apparent fluctuations were observed between −10 V and 5 V in com-
parison to the normal signals of a PV module. Finally, the diode bypass failure signal was 
observed, as shown in Figure 19. The output waveform was approximate to the normal 
signal of a PV module. The voltage difference required observation for an extended pe-
riod. 

 

Figure 15. Computing architecture of the fully connected layer.

As shown in Equation (8), x is the input of a fully connected layer; h(·) is the output
of a fully connected layer; w is the weight; b is the additive deviation; f (·) is the activation
function.

h(x) = f (wx + b) (8)



Energies 2022, 15, 6449 11 of 17

4. Experimental Results

This study had four types of PV modules, including a normal module, a poor connec-
tion on the module, module breakage, and bypass diode failure. Four kinds of square-wave
output signals measured by this system are shown in Figures 16–19. First, a high-frequency
250 kHz signal was imported with the input voltage of a 20 Vape–p high-frequency square-
wave signal. The data sampling time was 40 µs, totaling ten periods. The failure data
of 3200 points were sampled. As four state models were built, 200 samples of data were
extracted from each model, totaling 800 samples for the experiment.
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First, the normal signal of a module in Figure 16 was observed. The output voltage
waveform showed the peak voltage drop resulting from the component voltage drop in
the PV module. There was no noticeable change in the negative half-cycle. The positive
half-cycle had a micro fluctuation between 0 V and 5 V, and the variation can be used as
a recognition signal. As the variation was insignificant, it was unlikely to be observed in
the waveform, and the main features could be displayed using SDP. Afterward, the signal
of a poor connection on a module was observed, as shown in Figure 17. In comparison
to normal signals from a PV module, the peak-to-peak value of the voltage was a little
lower than the characteristic of normal signals. As shown in Figure 18, when observing
the module breakage signals, apparent fluctuations were observed between −10 V and
5 V in comparison to the normal signals of a PV module. Finally, the diode bypass failure
signal was observed, as shown in Figure 19. The output waveform was approximate to
the normal signal of a PV module. The voltage difference required observation for an
extended period.

The data were extracted by the data processing unit and imported into the SDP. Four
snowflake feature maps of different states can be drawn, as shown in Figures 20–23. The
CNN used them for image recognition to diagnose the PV module fault type.
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Figure 23. A PV module diode bypass failure.

Recognition Result

The CNN recognition model used in this study comprised three convolution layers,
three pooling layers, and one fully connected layer. The model used a convolution kernel
of 3 × 3 and ReLU as an activation function. The filter of the pooling layer of max pooling
is shown in Figure 24.
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Figure 24. CNN model architecture.

The simulation results are shown in Table 3, with the SDP + CNN having the highest
recognition accuracy of 99.88% and the accuracy of SDP + HOG + ENN being 91.75%.
The training learning accuracy of CNN was 100%, and that of ENN was only 96.31%. In
terms of training and recognition time, the SDP + HOG + ENN needs 3518 s, which is
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very time-consuming for training, with an accuracy of 100% and 1.63 s for recognition. In
contrast, the proposed method (SDP + CNN) only needs 181 s for training with an accuracy
of 96.31% and 0.24 s for recognition.

Table 3. Comparison of CNN and ENN recognition results.

Algorithm Training
Time (s)

Testing
Time (s) Epoch Training

Rate (%)
Accuracy
Rate (%) Ranking

SDP + CNN 181 0.24 100 100 99.88 1

SDP + HOG + ENN 3518 1.63 100 96.31 91.75 2

Additionally, the recognition result of the PV modules was displayed in the confusion
matrix, as shown in Figure 25. The x-axis is the actual fault type, and the y-axis is the
predicted fault type. The green and red grids in the confusion matrix represent the number
of accurate recognitions and the number of misrecognitions, respectively. The recognition
accuracy and misrecognition rate of the specific fault types are the green and red values
in the x-axis light gray grids. The overall recognition accuracy and misrecognition rate
are the green and red values in the lower rightmost dark gray grids of the confusion
matrix. The overall recognition accuracy is the total value of green grids divided by the
total value of green and red grids. Taking Type 2 in Figure 25 as an example, the proposed
method correctly identified 199 of 200 test data records with a recognition accuracy of
99.5%. Similarly, the Type 1, Type 3, and Type 4 recognition was 100%. Finally, the total
value of the green grids was divided by the total value of green and red grids to obtain the
total recognition accuracy rate of 99.88%.
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5. Conclusions

This study successfully combined SDP with CNN to develop a PV module fault
diagnosis system for the common fault types of PV modules. The snowflake image was
used as a feature and combined with CNN for PV module state analyses. Based on the
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actual measurements, the diagnosis algorithm proposed in this study is better than ENN
and has a good diagnostic accuracy. Its recognition accuracy is 99.88%, proving that the
proposed method is effective in the fault detection on PV modules. The proposed method
captures the fault signals effectively, displays them in images, and accurately identifies the
PV module fault type. The proposed method can be used in other domains concerning
electricity and energy in the future, such as generators, power capacitors, and wind-power
generation systems.
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to the published version of the manuscript.
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Nomenclature

ISC Short circuit current
Vmpp Voltage at maximum power point
ENN Extension neural network
CSDM Chaos synchronization detection method
Vp-p Voltage peak to peak value
r(i) Radius of polar coordinates in the snowflake image
θcw (i) Clockwise rotation angle of the x-axis
θccw (i) Counterclockwise rotation angle of the x-axis
xi ith sampling point of signal x
xi+τ Sampling point at No. i + τ time of signal x
xmax Maximum value of the original signal
xmin Minimum value of the original signal
τ Signal interval time parameter
θ Initial deflection angle of the x-axis
S Amplification coefficient of rotation angle
xl

j No. j element of layer 1
Mj No. j convolution region of l − 1 layer feature image
W l

ij Weighting matrix corresponding to the convolution kernel
bl

j Deviation
h(·) Output of a fully connected layer
X Input of a fully connected layer
b Additive deviation
f (·) Activation function
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