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Abstract: There are several methods for estimating the SoC of lithium-ion batteries that use electro-
chemical battery models or artificial intelligence and intelligent algorithms. These methods have
numerous advantages but are complex and computationally intensive. This paper presents a new
method for estimating the SoC of lithium-ion batteries based on identifying the transfer function of
the measured battery voltage response to the charging current pulse. It is assumed that the transfer
function of the battery changes with the state of charge. In the learning phase, a reference table of
known SoCs and associated transfer functions is created. The parameters of these transfer functions
form the reference points in hyperspace. In the phase of determining the unknown SoC of the battery,
the parameters of the measured transfer function form a point in hyperspace that is compared with
the reference points of the transfer functions for known SoCs. The unknown SoC of the battery at the
particular measurement time is obtained by finding the two reference points closest to the point of
unknown SoC using the Euclidean distance and a linear interpolation based on this distance. The
method is simple, computationally undemanding, insensitive to measurement noise, and has high
accuracy in SoC estimation.

Keywords: lithium-ion batteries; estimating the SoC of battery; battery’s equivalent circuit model;
transfer function of battery; Euclidean hyperspace of transfer function parameters

1. Introduction

As electricity generation from renewable energy sources has increased, so has the use of
energy storage systems. Specific energy, specific power, lifetime, and reliability are among
the most important criteria considered when selecting a storage system. There are various
electrical energy storage systems, among which the systems of lithium-ion batteries stand out
due to their high energy density and acceptable lifetime [1]. The safe, reliable, and efficient
operation of batteries requires a battery management system (BMS) that monitors, diagnoses,
and keeps the battery in operation. The main parameters monitored and diagnosed by the
BMS are state of charge (SoC), state of health (SoH), and battery temperature.

There are different definitions of battery capacity and SoC. According to [2], SoC is
defined as the ratio of the charge difference of a fully charged battery CN and the amount
of discharged charge Qb with respect to the amount of charge of a fully charged battery:

SoC =
CN −Qb

CN
(1)

where:

• CN—charge of the fully charged battery, [Ah],
• Qb—amount of discharge charge of battery, [Ah].

According to this definition, a full state of charge is reached when the battery current
does not change within 2 h at constant charge voltage and temperature. Estimating the SoC
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is not a simple task because the SoC depends on the capacity, temperature, and internal
resistance of the battery. It is desirable to keep SoC of batteries within reasonable and safe
limits such as 20% ≤ SoC% ≤ 95% [3].

The SoC of a battery cannot be measured directly, but it can be estimated using various
methods [4]. Two typical SoC evaluation methods are the open circuit voltage (OCV)
method and the coulomb method, i.e., the ampere-hour or coulomb counting method. The
OCV method estimates SoC indirectly by measuring the open-circuit voltage of the battery
and using tables with a predetermined SoC–OCV relationship. Despite its reliability, this
method is not practical in online applications because the battery must be relaxed for a
period of time for the open-circuit voltage to reach a steady state. This method is also
not suitable for batteries where the open-circuit voltage changes little with changes in the
state of charge (flat OCV curve) [5,6]. The coulomb counting method is easy to implement
due to its low computational cost, and it is based on numerical integration of the current
over time. However, this method requires knowledge of the initial state of charge and is
sensitive to the accuracy of the sensor measurements. Additionally, possible sources of
error in this method are the reduction of capacity over time and self-discharge [7]. The
internal resistance of the battery can also be used to estimate the SoC. However, the irregular
correlation between the internal resistance and SoC is not suitable for the reliable estimation
of SoC [8].

In addition to the previously mentioned SoC evaluation methods, there are also
methods that use algorithms based on the battery model. Electrochemical models (EM) are
commonly used for SoC estimation [9,10]. EM use partial differential equations to model
the physics of the battery. To achieve a good balance between computational cost and
accuracy, a low-complexity SoC prediction method uses a simplified electrochemical model.
The battery model can be used to calculate the battery voltage based on the known input
current, temperature, and SoC. Assuming that the battery model is correct, the calculated
voltage would be equal to the measured voltage. Any discrepancy between the battery
voltage calculated by the model and the measured voltage can be used to correct the SoC
at any point during calculation over time. In general, model-based methods such as the
Kalman filter (KF), extended Kalman filter (EKF) [11,12], unscented Kalman filter (UKF) [13],
H infinite filter (H∞), sliding mode observer [14], and others [15–17] are insensitive to the
value of the initial SoC due to the internal closed-loop structure and have high accuracy
and excellent stability. However, an accurate battery model is required for accurate SoC
estimation since it is not possible to correct for modeling errors. Several other variants
of the Kalman filter, e.g., sigma-point KF [18], adaptive KF [19], and derivative KF [20],
have also been used for SoC battery estimation. However, further improvements to the
algorithm lead to increased computational costs and implementation difficulties.

With the development of computers and artificial intelligence, intelligent algorithms
such as support vector machine (SVM), fuzzy logic, and neural networks (NN) are increas-
ingly used in SoC evaluation. Without any information about the internal structure of the
battery and the initial SoC, these algorithms explore the relationship between the SoC and
measured variables such as battery voltage, current, and temperature according to the
learning data [21–26]. However, the algorithms require a large memory to store the amount
of data required for learning, which consequently burdens the entire system and results in
long-term procedures and difficulties in implementation.

This paper describes a method for estimating the SoC based on the battery model
and the relationship between the SoC and the dynamic response of the battery, i.e., the
battery transfer function. It is assumed that the voltage response function to the current
pulse is a nonlinear function of the SoC. By determining the transfer function of the voltage
response to the current pulse at a particular point of the SoC, the parameters of the transfer
function that depend on the SoC are obtained. The parameters of the transfer function can
be considered as the coordinates of the hyperspace point for the corresponding SoC. In the
learning phase of this method, a map was created to establish a link between the SoC and
the corresponding transfer functions. The algorithm of the method starts with the online
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measurement of the voltage response of the battery to the corresponding current pulse and
proceeds with the calculation of the parameters of the transfer function. The parameters
of the transfer function for the unknown SoC form a new point of hyperspace from which
the SoC of the battery is determined by interpolation from the Euclidean distance to the
nearest points. The application of the method is illustrated by the SoC assessment of a
high-capacity lithium-nickel-manganese-cobalt-oxide (LiNiCoMnO2) battery cell.

The novelty of the method is the estimation of the SoC based on the position in hyper-
space of the point defined by the parameters of the transfer function and the determination
of the parameters of the function by optimization from the time response of the battery
voltage to the current pulse. The use of the optimization method to determine the param-
eters of the transfer function ensures insensitivity to measurement noise and is not very
computationally demanding. The method is suitable for determining the SoC when the
initial SoC is not known and has the potential for application to various battery chemistries.

What is special about this method is that it does not require a permanent measurement
of the voltage and current at the battery but only the response of the voltage to a current
pulse of about 3 s duration. This is especially important when the algorithm is not applied
in the battery BMS but in a charging station for light electric vehicle batteries, which have
no communication between the vehicle battery BMS and the station.

Methods based on Kalman filters require constant measurement of voltage and current
and execution of an algorithm with a specific sampling time, making them suitable for use
in BMSs where the BMS computer continuously executes algorithms for voltage monitoring
and balancing, battery protection, and state of charge estimation. The algorithm described
in this paper does not require the entire algorithm to be executed in real time.

The battery charging station for light electric vehicles can use its own converter to
generate a current pulse, record the battery’s current and voltage signals, and send the
recorded information packet to the monitoring computer in the station. After that, the
converter is free to perform the battery charging function. A monitoring computer, which
has no time-critical control functions, can perform the battery SoC estimation. In this way,
the real-time converter controller is not burdened with complex mathematical estimation
functions, while the data transmission to the monitoring computer is not time-critical
because it is not part of the control loop.

The effectiveness of the proposed method was tested by simulation and experiments.
In the second chapter of the paper, the used model of the lithium-ion battery is described;
thus, the form of the transfer function is determined. The third chapter describes the
principle of the new SoC estimation method. The fourth chapter describes the algorithm
used in the learning phase, i.e., the formation of the reference base of SoCs and associated
transfer functions, the laboratory setup used, and the results of the learning process. In
the fifth chapter, the results of the determination of the unknown SoC using the proposed
method are presented, followed by the conclusion.

2. Lithium-Ion Battery

Among several electrical models of the battery, to evaluate the SoC, the equivalent
circuit model (ECM) is used in this paper. The reasons for using this model are the
good balance between accuracy and simplicity of the model. A basic ECM consists of an
ideal voltage source, an internal resistance, and an RC circuit that represents the dynamic
characteristics of the battery. The reason for the dynamic behavior of batteries is the
polarization and diffusion between the battery electrodes.

However, to reliably determine the SoC of the battery, it is necessary to extend the
basic ECM with another RC circuit [27]. The electrolyte inside the battery separates the
battery’s electrodes, prevents short circuit, and allows ion flow between the electrodes. The
properties of the electrolyte degrade over time, so the electrolyte particles eventually bind
to the anode and form a second layer called the solid electrolyte interphase (SEI). As the
battery ages, the impact of SEI on battery performance and dynamic behavior becomes
more apparent. The basic ECM is extended by an additional RC circuit that models this
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influence (see Figure 1). The time constant R1C1 influences the transfer function of the
extended ECM model; however, it was not investigated how this constant, by itself, affects
the SoC. This influence will be determined in the continuation of the research.
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resistance [Ω]; C1—SEI layer capacity [F]; R2—battery element resistance [Ω]; C2—internal battery
capacity [F]; Uoc—battery open circuit voltage [V].

The voltage changes as a function of the current change at the operating point de-
termined by the SoC, and the voltage Uoc for the ECM from Figure 1 is determined by a
second-order transfer function:

G(s) = K
b2s2 + b1s + b0

a2s2 + a1s + 1
, (2)

where:

• K is the gain of the transfer function.
• bi ∀ i = 0, . . . 2—nominator parameters of the transfer function.
• ai ∀ i = 0, . . . 2—denominator parameters of the transfer function.

The battery voltage in the Laplace domain is determined by the expression:

u(s) = UOC + G(s)i(s), (3)

where:

• G(s) is the battery transfer function.
• i(s) is the battery current in the Laplace domain [A].
• u(s) is the battery voltage in the Laplace domain [V].

The transfer function (2) contains two zeros and two poles. However, the non-
dominant zero and the non-dominant pole have less influence on the response and are very
sensitive to measurement noise in the estimation. For this purpose, the estimation requires
an equivalent transfer function Ge(s) containing one zero and two poles of the form:

Ge(s) =
b1s + b0

a2s2 + a1s + 1
, (4)

u(s) = UOC(s) + Ge(s)I(s), (5)

Estimation determines the parameters of the transfer function that give the response
closest to the measured one.

3. Transfer-Function-Based Method for SoC Estimation

The proposed method estimates the unknown SoC by comparing the parameters of
the transfer function of the battery voltage response to the current pulse determined for
this SoC with the parameters of the reference transfer functions previously determined at
different states of charge in the learning process. The current pulse that excites the voltage
response must have a small value to remain in the same operating point. The learning
process begins with measurements of the voltage response to the corresponding current



Energies 2022, 15, 6495 5 of 14

pulse, i.e., determining the parameters of transfer functions of the form (4) and (5) for
several different and known battery SoCs. The following parameters are extracted from the
estimated transfer function for each SoC and used in the recognition process:

• Open circuit voltage (UOC).
• The gain of the transfer function (b0).
• The dominant pole of the transfer function.
• Zero of the transfer function (−b0/b1).

At the end of the learning process, the extracted parameters of the transfer functions
are grouped with the corresponding SoCs and stored in the corresponding table of reference
values. The evaluation of the unknown SoC of the battery starts with sending the same
current pulse as in the learning process, measuring the voltage response and estimating
the transfer function parameters. From the estimated transfer function, the parameters for
recognition are determined in the same way as in the learning process. These parameters
are then compared to the parameters in the reference table to determine the data set from
the table that has the most similar parameter values to the currently determined parameters
for the unknown SoC. By comparing the estimated parameters with the known parameters
from the database, it is possible to uniquely determine the state of charge of the battery.

4. Learning Process

During the learning phase, measurements were taken for nine known SoCs, starting
with an empty battery and ending with a full battery in 12.5% increments. To verify battery
capacity, the battery was first discharged to the cutoff voltage and then charged to the
allowable voltage using a constant current/constant voltage method with a charge current
equal to 50% of the nominal charge current. The energy delivered was measured using
the ampere-counting method. When the charging current dropped to 5% of the nominal
charging current, the charging process was complete. This method establishes a relationship
between the SoC of the battery and the amount of energy stored. The learning process itself
began by discharging the battery again and by measuring the voltage response to a small
current pulse for each desired point of the SoC to establish a table of reference values. For
each reference point, the corresponding transfer function and certain parameters to be used
for recognition were estimated.

4.1. Learning Algorithm

The learning algorithm is shown in the flowchart in Figure 2. Measurements of
the voltage response to a small current pulse were made at the values of stored energy
corresponding to the following SoC (%) values: [0, 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, 100].

The measurement of stored energy to determine the reference point of charge was
performed using the ampere-counting method.

At each of the reference points of the SoC, the voltage response to a small current
pulse was recorded. The recorded current and voltage signals were stored with the corre-
sponding SoC of the battery. The procedure for estimating the transfer function parameters
for each SoC was performed by optimizing the parameters of the model determined by
Equations (4) and (5).The parameters were optimized using the Nelder–Mead simplex
method implemented in MATLAB according to the minimum of the ISE criterion defined
by the equation:

ISE =
∫ T

0
[u(t)− um(t)]

2dt (6)

where:

- u(t) is the measured battery voltage response signal to the current pulse.
- um(t) is the voltage response signal of the battery model to the measured current pulse signal.
- T is the duration of the simulation.
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In the estimation, the calculation of the criteria was performed during the entire time
of the signal measurement, i.e., until the battery voltage stabilizes after the current pulse
drops to zero.

For this purpose, the MATLAB/Simulink battery voltage model is defined according
to Equations (4) and (5), as shown in Figure 3.
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The transfer function of the dynamic part of the model in block Ge is described by
Equation (4).

The parameter in block Uoc was determined before optimization as the average of the
voltage signal before exposure to the current pulse, while the transfer function parameters
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were determined by optimization with the simplex method using the MATLAB fminsearch
function from the optimization toolbox.

The vector of optimization parameters is defined by the expression:

x = [ b1 b0 a2 a1] (7)

The estimated transfer function is not limited to the aperiodic response of the voltage
to the current pulse but also includes transient responses with overshoot.

From the estimated parameters of the transfer function Ge, the parameters of the
reference table are determined for each SoC:

xR = [Uoc K z p] (8)

z = − b0

b1
(9)

K = b0 (10)

The dominant pole, i.e., the root of the denominator of the transfer function, is defined
as the root of the denominator whose real part is closest to the origin. This was performed
with MATLAB functions:

Ge = t f ([b1 b0], [a2 a1 1]) (11)

p = pole(Ge) (12)

i = f ind(abs(real(p)) = min(abs(real(p)))) (13)

p = real(p(i)) (14)

For each SoC measured in this way, a reference vector xR is determined, which can be
represented by a point in four-dimensional Cartesian hyperspace.

To increase the accuracy of learning, it is possible to perform multiple measurements
and estimations of transfer functions for the same SoC to obtain more associated vectors,
i.e., points of the hyperspace for one SoC. In this case, the points form a cloud for the corre-
sponding SoC, and the reference point to which the reference vector belongs is calculated
as the centroid of the cloud points for each SoC.

The table of SoCs and associated vectors xR defines a piecewise linear function of the
dependence of the SoC on the vector xR. Based on this, the determination of the unknown
SoC can be carried out from the estimated values of the associated vector xR by finding
two points with the smallest Euclidean distance from the point with the unknown SoC and
determining the SoC by linear interpolation.

4.2. Experimental Setup for Learning

The experimental part of the research in the learning phase consisted of several charg-
ing and discharging cycles of the battery to determine the voltage profile, battery capacity,
and the effects of charging power on battery temperature. The following equipment was
used for the experiment:

• Battery—SAMSUNG ICR 18,650—26 J M
• Current sensor—HY 5-P,48,275, JP2
• Current source—Magna—Power electronics, XR 50-40, 2 kW
• Current pulse source—Iskra Power Supply (IPS), MA 4171, 1 A, 25 V
• Laboratory Power Supply (LPS), PS—24,030, 0–40 V, 0.01–3 A
• Electronic load—Hewlett Packard—6050a
• Microcomputer for measurement and control—dSPACE—MicroLabBox
• MATLAB/Simulink package on the PC computer

Battery specifications are given in Table 1.
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Table 1. Battery specifications.

Item Specification

Nominal Capacity 2600 mAh (0.2 C, 2.75 V discharge)
Charging Voltage 4.2 ± 0.05 V
Nominal Voltage 3.63 V

Standard Charging Current 1300 mA
Charging Time 3 h

Max. Charge Current 2600 mA (ambient temperature 25 ◦C)
Max. Discharge Current 5200 mA (ambient temperature 25 ◦C)

Discharge Cut-off Voltage 2.75 V
Cathode LiNi1/3Co1/3Mn1/3O2
Anode Graphite

The equivalent electrical diagram of the laboratory setup is shown in Figure 4, while
the actual appearance of the laboratory setup is shown in Figure 5.
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A MATLAB script and real-time toolbox were used to control the dSpace microcom-
puter to synchronize controllable sources and measurements. Measurements and recording
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of measurement results were performed using dSPACE MicroLabBox. The sampling time
was set to 100 µs to record the dynamic voltage response. All further data processing and pa-
rameter estimation were performed offline from the measured data in MATLAB/Simulink
using the optimization toolbox, as described in the previous chapter.

4.3. Experimental Results of the Learning Phase

In the learning process, the battery for a given SoC is excited by a current pulse, as
shown in Figure 6.
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Figure 6. Current pulse.

Nine SoC reference points were selected, evenly distributed in the range from
0 to 100%. Experiments have shown that nine points provide estimation accuracy with
an error below 5%. For each state of charge (%) (0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100), multiple
voltage responses are measured for identical current pulses. The transfer function parameters
are calculated from each voltage response through an optimization process to obtain parameters
for which the error in voltage estimation is minimal according to the ISE criterion.

Figure 7 shows the measured voltage response to the current pulse and the Simulink
model voltage with estimated parameters for the reference point SoC = 50%. The difference
between the signals is caused by noise. When this learning process is completed for all
reference points, i.e., SoCs, the vector of transfer function coefficients xR is stored in the
reference table with the corresponding SoC. This completes the learning phase. The matrix
of learned values for the battery SAMSUNG ICR 18650–26J M is shown in Table 2.
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Table 2. Reference table of learned values.

SoC [%] UOC [V] K z p

0 2.7353 0.4236 −0.1220 −0.0332
12.5 3.4466 0.1090 −0.0412 −0.0392
25 3.5750 0.1090 −0.0412 −0.0392

37.5 3.6795 0.1201 −0.0584 −0.0500
50 3.7980 0.1251 −0.0664 −0.0530

62.5 3.9068 0.1206 −0.0647 −0.0512
75 4.0276 0.1240 −0.0469 −0.0381

87.5 4.1228 0.1005 −0.0510 −0.0519
100 4.1697 0.1587 −0.0544 −0.0347

5. Estimation of the Unknown SoC

The process of SoC estimation consists of three phases: (i) measurements of the voltage
response to the current pulse at the studied SoC, (ii) estimation of the vector x = [UOC K z p]
in the same way as in the learning processes, and (iii) localization of the point in hyperspace
determined by the test vector. The process of estimating the unknown SoC is represented
by the flowchart in the Figure 8.
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The evaluation of the SoC starts with the measurement of the voltage response of the
battery to the current pulse with similar characteristics as in the learning phase.

The voltage response is used to calculate the UOC and the coefficients of the transfer
function of the battery at the tested state of charge. The test vector xT is determined from
the estimated parameters. The test vector xT determines a single point in hyperspace.

By determining its distance to the nearest reference points from the reference table,
the corresponding SoC is estimated by interpolation.

The estimation of the corresponding SoC for the point determined by the vector xT is
performed in two steps. First, the value of the parameter UOC is used to determine whether the
vector belongs to one of the three ranges of SoC: [SoC < 25%, 25%≤ SoC≤75%, SoC > 75%].

In this way, the UOC has the greatest weight in determining the range. Then, the
two points of the reference table closest to the point determined by the vector xT for the
unknown SoC within the specified range are found.

For the localization of the test vector in hyperspace, the distance between two points
is calculated based on the Euclidean norm according to the following equation:

d =

√(
Ktest − Kre f

)2
+
(

ptest − pre f

)2
+
(

UOC, test −UOC,re f

)2
+
(

ztest − zre f

)2
(15)

where:

• K is the system gain for measured and reference SoC.
• p is the dominant pole of transfer function for measured and reference SoC.
• UOC is the open-circuit battery voltage before current impulse for the measured and

the reference SoC.
• z is the zero of the transfer function for the measured and reference SoC.

The index test defines the membership of the parameter to the xT vector, and the ref
index defines the parameter membership to the xR vector of the reference table.

In estimating the unknown SoC, a linear change in the SoC between two reference
points is assumed, proportional to the distance between them.

Using the Euclidean norm, the two distances d1 and d2 corresponding to the two
closest points of the reference table within the defined area of the SoC are determined. The
distance d1 is the distance to the point with the lower SoC, while d2 is the distance to the
point with the higher SoC.

The unknown SoC represented by the vector xT is determined by interpolation accord-
ing to the equation:

SoCest = SoClow +
SoChigh − SoClow

d1 + d2
∗ d1 , (16)

where:

• d1 is the distance from the point of the unknown SoC determined by the vector xT to
the point SoClow.

• d2 is the distance from the point of unknown SoC determined by the vector xT to the
point SoChigh.

• SoClow, SoChigh are the two points closest to the point of the unknown SoC determined
by the xT vector.

5.1. Experimental Results of the SoC Estimation

In order to verify the success of the estimation algorithm, it is necessary to run it at
points other than the reference points, since the error at the reference points is negligible.
Since the state-of-charge estimation algorithm determines the closest SoC reference points
to the SoC being estimated and performs linear interpolation based on the distance to the
reference points, the largest error is expected to occur at the SoC farthest from the reference
points. The reference points define eight intermediate intervals, and the SoCs farthest
from the reference points are in the middle of the intervals. Therefore, to examine the
worst-case estimation, eight test points located at the halves of the intervals defined by
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the reference points were selected. Thus, the test procedure for the SoC (%) assessment
algorithm includes eight points (6.25, 18.75, 31.25, 43.75, 56.25, 68.75, 81.25, 93.75). The
evaluation results for eight test points are shown in Table 3.

Table 3. Results of SoC estimates.

True SoC [%] Lower Bound
for SoC [%]

Upper Bound
for SoC [%]

Estimated SoC
[%]

Relative Error
[%]

6.25 0.00 12.50 5.61 9.57
18.75 12.50 25.00 18.46 1.58
31.25 25.00 37.50 31.42 0.55
43.75 37.50 50.00 43.72 0.08
56.25 50.00 62.50 56.21 0.07
68.75 62.50 75.00 69.03 0.41
81.25 75.00 87.50 81.06 0.23
93.75 87.50 100.00 93.49 0.28

5.2. Analysis of the Results of the SoC Estimation

The first column of Table 3 shows the actual SoC obtained by applying the coulomb
counting method, in percent. The second and third columns show between which two
reference points the unknown SoC is located. The fourth column shows the estimated SoC
value based on Equation (16). The last column shows the relative estimation error, which is
calculated as the ratio of the difference between the actual SoC value and the estimated SoC
value relative to the reference SoC value. From Table 3, it can be seen that each test point
is accurately located, and the estimated SoC value is very close to the actual value. The
relative error is less than 2% in most cases. The only exception is 6.25%, where the relative
error is almost 10%. Generally, at low states of charge, the nonlinearity of the battery is more
pronounced, so the linear interpolation increases the estimation error. This will always be
the case because with more pronounced nonlinearity, the interpolation method deviates
more and more from the exact solution. Nonetheless, we can be certain that the battery is
at low states of charge, which can be used to protect a battery from over-discharging. In
this case, the estimated SoC of 5.61% is below the true SoC value of 6.25%.

6. Conclusions

The problem of estimating the SoC of lithium-ion batteries is complex, and solutions
vary depending on the accuracy and speed requirements of the estimation and the resources
used to implement the algorithm. In this paper, we propose an estimation of the SoC that
does not require knowledge of the initial SoC and charging history and is based on the
analysis of the estimated coefficients of the transfer function measured at the unknown
SoC. The transfer function coefficients are estimated by an optimization procedure, i.e., by
minimizing the error between the measured signal and the battery model response. The
method is accurate in estimating the coefficients but requires high accuracy of the measured
data to capture the full dynamics of the battery voltage response. The learning algorithm
for determining the matrix of reference values used to estimate the SoC is presented. The
learning algorithm requires a certain number of measurements to define the matrix of
reference values, but once defined, it is usable for all battery cells of the same chemistry
and nominal voltage. It is possible to redefine the reference data for a different nominal
voltage by changing the existing values. The detection is performed in three phases:
(i) measurement of the voltage response to a standardized current pulse, (ii) estimation of
the value of the coefficients of the measured transfer function at the unknown SoC, and
(iii) localization of the point defined by the estimated coefficients of the obtained transfer
function according to the measured data in hyperspace and calculation of the unknown
SoC by interpolation relative to two nearest reference points.

The method is designed for real-time operation where time is not an issue, as the
estimation takes an average of 80 s to compute the coefficients of the transfer function and
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calculate the SoC. Computation was performed on a computer with an Intel(R) Core(TM)
i5-8300H processor CPU @ 2.30 GHz and 8 GB of RAM (7.88 GB usable). Using a reference
table with nine learned points, an error of less than 2% was obtained, except in the SoC
range between 0 and 12.5%, where the error is significantly higher. Initial tests show that
by increasing the number of reference points, especially in the higher error range, the SoC
estimation error can be reduced to less than 1% of the SoC over the entire range.
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