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Abstract: The United Arab Emirates is moving towards the use of renewable energy for many
reasons, including the country’s high energy consumption, unstable oil prices, and increasing carbon
dioxide emissions. The usage of electric vehicles can improve public health and reduce emissions that
contribute to climate change. Thus, the usage of renewable energy resources to meet the demands
of electric vehicles is the major challenge influencing the development of an optimal smart system
that can satisfy energy requirements, enhance sustainability and reduce negative environmental
impacts. The objective of this study was to examine different configurations of hybrid renewable
energy systems for electric vehicle charging in Abu Dhabi city, UAE. A comprehensive study was
conducted to investigate previous electric vehicle charging approaches and formulate the problem
accordingly. Subsequently, methods for acquiring data with respect to the energy input and load
profiles were determined, and a techno-economic analysis was performed using Hybrid Optimization
of Multiple Energy Resources (HOMER) software. The results demonstrated that the optimal electric
vehicle charging model comprising solar photovoltaics, wind turbines, batteries and a distribution
grid was superior to the other studied configurations from the technical, economic and environmental
perspectives. An optimal model could produce excess electricity of 22,006 kWh/year with an
energy cost of 0.06743 USD/kWh. Furthermore, the proposed battery–grid–solar photovoltaics–wind
turbine system had the highest renewable penetration and thus reduced carbon dioxide emissions by
384 tons/year. The results also indicated that the carbon credits associated with this system could
result in savings of 8786.8 USD/year. This study provides new guidelines and identifies the best
indicators for electric vehicle charging systems that will positively influence the trend in carbon
dioxide emissions and achieve sustainable electricity generation. This study also provides a valid
financial assessment for investors looking to encourage the use of renewable energy.

Keywords: electric vehicles; renewable energy; hybrid systems; carbon credits

1. Introduction

The United Arab Emirates (UAE) is one of the most rapidly developing countries in the
gulf region. Its capital city of Abu Dhabi accounts for 90% of the country’s oil and natural
gas consumption [1,2]. Since the end of the 20th century, the increase in carbon dioxide
(CO2) emissions, oil-price instability, and oil embargos have led the government to seek

Energies 2022, 15, 6621. https://doi.org/10.3390/en15186621 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15186621
https://doi.org/10.3390/en15186621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6951-3064
https://orcid.org/0000-0002-7742-8596
https://orcid.org/0000-0003-3482-609X
https://doi.org/10.3390/en15186621
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15186621?type=check_update&version=2


Energies 2022, 15, 6621 2 of 20

cleaner and more sustainable resources and technologies to meet the economic-growth de-
mands of the country. According to the Abu Dhabi Statistics Centre, the electricity demand
of Abu Dhabi increased from 58,735,825 MWH in 2015 to 62,681,608 MWH in 2019 [3]. Fur-
thermore, the total emissions of air pollutants by the water and electricity sectors exceeded
10,000 tons over the past five years [4].

Therefore, the UAE formulated a visionary plan to meet 7% of energy requirements
using renewable energy sources (RESs) by 2020. This target was the driving factor for
promising projects, such as the Masdar initiative, Noor 1 and Shams 1, all of which em-
ployed RESs such as solar photovoltaics (PVs), wind and solar power [5]. The Masdar
initiative was considered a remarkable economic development program that aimed to
improve Abu Dhabi in terms of its financial resources and energy diversification by de-
veloping innovative solutions for obtaining cleaner energy, apart from oil and gas, and
decreasing CO2 emissions. The city of Abu Dhabi depends on PVs to generate electricity
up to a capacity of 10 MW [6]. In addition, Abu Dhabi’s annual production of renewable
energy reached 2,163,799 MWH in 2019 [3]. In line with the implementation of serious
steps to reduce pollution and increase sustainability, the usage of electric vehicles (EVs) has
considerably evolved in the UAE. Researchers are playing an integral part in this evolution
by utilizing clean technology for EV charging. The Dubai Autonomous Transportation
Strategy 2030 is an excellent example of how the UAE is planning to be more ecofriendly as
it aims to transfer 25% of the total transport in Dubai to autonomous means by 2030. This
strategy will save 1.5 billion AED by reducing environmental pollution by 12% [7].

In this paper we present a techno-economic assessment of a hybrid renewable energy
system designed for charging EVs in the United Arab Emirates. The paper is structured as
follows. Section 2 provides a literature review relevant to the investigated topic. Section 3
highlights the contributions of this work. Section 4 describes the methodology applied to
the case study. Section 5 presents the simulation results, focusing on the technical analysis,
economic analysis, emission analysis and sensitivity analysis. Section 6 concludes the paper
and provides policy implications.

2. Literature Review

Various approaches and studies, conducted throughout the world to employ renew-
able energy systems for EV charging, are introduced in this section. Then, the problem
statement and objectives of this study are presented. Several countries have investigated the
installation of renewable energy systems to supply energy to EV charging stations [8–26].
A summary of such studies is presented below.

The authors of a previous study [8] conducted in Egypt proposed an energy man-
agement system (EMS) to control the power flow from RESs to EVs. The study achieved
good results with respect to the electrical performance. Another study [9] evaluated the
use of an EV charging system, optimizing the sizing and power flow control of the grid-
connected multisource power converter system by conducting a cost–benefit analysis. The
performance of the charging system was enhanced, and an optimal output was obtained.
Furthermore, the capital requirements decreased considerably. Another study, conducted
in China [10], discussed charging EVs and streetlights through a group of smart hybrid
poles using renewable energy. Thus, high efficiency and power output could be obtained.
Muhammed et al. [11] investigated the optimal sizing of hybrid power for EV charging in
Indonesia, specifically in rural areas such as Labuan Bajo. The obtained results provided
the optimal configuration of different hybrid systems for charging stations. In addition,
an economic analysis was presented, including only the operating cost, net present cost
(NPC) and initial capital cost. Some researchers in Japan [12] explored priority charging to
control the EV charging stations in park-and-ride areas when using renewable energy and
energy storage systems. They implemented their approach via the mixed-integer linear
programming (MILP) approach, and the results showed a large reduction in equipment
costs. In addition, policymakers play integral roles in increasing the capacity of RESs
for EV charging. Furthermore, some guidelines for charging service providers in terms
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of appropriate charging prices and electricity management had been proposed [13]. The
optimal pricing and electricity procurement policies were determined using the stochastic
dynamic programming (SDP) algorithm and a greedy algorithm (benchmark algorithm).
The obtained results indicated that the SDP algorithm could achieve a profit gain of up
to 7%. In another study [14], a pricing methodology was proposed for charging stations
located in wealthy areas. This study indicated reduced traffic jams, improved renewable
energy consumption and load-balanced traffic flow. In another study [15], the authors
attempted to reduce the impact of EV charging in university campuses by considering
two configurations with respect to the orientation of the panels and the usage of storage
systems based on the effects on the levelized cost of energy (COE). Their results indi-
cated that a system with directional PVs was economically superior to a storage system.
Tongpong et al. [16] used the MERIT simulation program to optimize the performance of
the renewable energy system supplying energy to the EV charging stations. The outcomes
indicated considerable potential in meeting the load demand and the authors provided a
brief analysis with respect to the capital cost and surplus energy. One study [17] utilized
an integer linear programming (ILP)-based centralized system intended to minimize the
charging price per EV. The objective of this study was achieved because faster charging
could be achieved at the lowest possible price. The study in [18] on the charging of EVs at
office buildings and workplaces used two algorithms to estimate the EV charging demands
and annual cost reductions. The results showed that the algorithms were computationally
efficient and suitable for real-time operation. In addition, they reduced the cost by 7.2%
and 6.9% on average. Lili et al., in [19], presented an EV charging strategy for improv-
ing power consumption and reducing charging costs. Based on the optimal results, the
charging costs could be reduced by 7.6% and 10.3% in winter and summer, respectively.
Xinyi et al. [20] proposed the optimal scheduling of a DC microgrid integrated with RESs
for EV charging using NSGA-II software that resulted in reduced electricity purchasing
costs and enhanced energy circulation. Another research group, as per [21], proposed a
design for home-based EV charging stations relying on PV and wind energy generation.
The obtained results demonstrated that the energy requirements of the charging station
were satisfied in different operation modes. Murat et al., in [22], presented an EMS for
the charging of EVs in industrial areas in Turkey to provide the EV load with optimal cost
based on Monte Carlo simulations. Their results indicated that the charging demands of
EVs could be met in different time periods. Yaqin et al. [23] presented an optimization
model for the charging of EVs that was able to meet changing requirements and minimize
electricity costs. Novotny et al. [24] proposed a concept called ALISE, which aimed to
encourage the further uptake of EVs and reduce construction costs. Fei et al. conducted a
technical review on some approaches for managing the charging demands of EVs [25]. This
review indicated the potential of the proposed approaches in minimizing the system’s cost
and enhancing the power quality. The effect of the integration of renewable energy with the
charging systems of EVs through the Balmorel model was explored previously [26]. Based
on that study, the load demands could be met, CO2 emissions could be reduced, and system
costs could be minimized. Another study [27] investigated a different aspect by focusing
on the use of tariffs for coordinating EV aggregators. In [28], energy management was
the focus of the work to optimally coordinate the demand response and EV aggregators.
In [29], driving conditions were considered to attain a strategy for managing the energy
for EVs. The authors in [30] provided a review for integration the transport and smart
grid sectors through looking at the management of EVs. In [31] the authors focused on a
power system reschedule approach taking into consideration EVs and renewable energy.
On the other hand, [32] considered energy storage in addition to renewable energy and
EVs and targeted home energy management rather than the commercial sector. In [33], a
techno-economic study was presented for the case of Pakistan. That study focused on the
use of HOMER Pro software for the design of a rural energy system including renewable
resources without the involvement of EVs. Table 1 provides a summary of the literature
and their corresponding results and gaps.
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Table 1. Summary of previous approaches dedicated to EV charging research.

Ref. Year Place Objective Algorithm/Software Results Gaps

[20] 2014 China

Optimal scheduling
of a DC microgrid

integrated with RESs
for EVC stations

NSGA-II

(1) Reducing the cost of
electricity purchase;

(2) enhancing energy
circulation

No environmental
analysis

[9] 2015 -

(1) EV charging
system optimal
sizing charging

system via power
flow control,

(2) cost–benefit
analysis

Numerical method-
MATLAB/Simulink

(1) Enhanced charging
system performance;

(2) capital costs reduction

(1) No detailed
economic analalysis;
(2) no environmental

analysis

[15] 2016 Italy
Reducing the impact

of EVC in
universities

Examining 2
configurations based
on panel orientations

and the usage of
storage systems

System with directional
PV is better from an

economic perspective

No environmental
analysis

[16] 2016 Thailand

Optimizing system
performance of

renewable energy
system supplying

energy to EVC
stations

MERIT simulation
program

Potential in meeting load
demand and informing

on capital cost and
surplus energy

No environmental
analysis

[18] 2017 -
Employs office
buildings and

workplaces for EVC

Two algorithms to
meet EVC demand and

obtain annual cost
reductions.

(1) Computationally
efficient;

(2) suitable for real-time
operation;

(3) average cost
reductions of 7.2%

and 6.9%

No environmental
analysis

[10] 2018 China

Charging EV and
streetlights via a
group of smart

hybrid poles

Efficiency model High efficiency and
power output

(1) No financial
assessment;

(2) no environmental
analysis

[11] 2018 Indonesia
Optimal sizing of

hybrid power for EV
charging

HOMER software

(1) Optimal
configuration for
different systems;
(2) cost reductions

(1) No environmental
analysis;

(2) no detailed
economic analysis

(only operating, net
present and initial

capital costs)

[13] 2018 China

Guidelines for
charging service

providers for proper
charging prices and

electricity
management

2 algorithms:
(1) stochastic dynamic

programming;
(2) greedy algorithm

(benchmark)

SDP can achieve up to
7% profit gain

No environmental
analysis

[23] 2019 - Optimization model
for EV charging MATLAB

Meets EVC requirements
and minimizes electricity

cost

No environmental
analysis
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Table 1. Cont.

Ref. Year Place Objective Algorithm/Software Results Gaps

[8] 2019 Egypt
EMS to control

power flow from
RESs to EVs

MATLAB/Simulink

Good results in terms of
electrical performance

and meeting load
demand

(1) No financial
assessment;

(2) no environmental
analysis

[26] 2019 Denmark
Effect of integrating

RES with EVC
system

Balmorel model

(1) Meeting load
demand;

(2) reducing CO2
emissions;

(3) cutting system costs

No detailed
environmental

analysis (CO2 only).

[14] 2020 China

Pricing method
considering charging
facility service ratio,
traffic flow and RES

generation in
wealthy areas

Pricing methodology

(1) Reducing traffic jams;
(2) facilitating renewable

consumption;
(3) balancing traffic flow

(1) No financial
assessment;

(2) no environmental
analysis

[12] 2020 Japan

Priority charging to
control EV charging

(EVC) station in park
and ride areas

Mixed-integer linear
programming

High reduction in
equipment costs

(1) No financial
assessment;

(2) no environmental
analysis

[17] 2020 - Minimizing charging
price per EV

Integer linear
programming-based
centralized system

Faster charging at lowest
possible price

No environmental
analysis

[19] 2020 China

EVC strategy to
improve power

consumption and
reduce charging cost

Optimization Charging cost of EVs can
be reduced

No environmental
analysis

[21] 2020 India Design for EVC
stations in homes Control algorithm

Operation of charging
station is achieved in all

modes

(1) No financial
assessment;

(2) no environmental
analysis

[22] 2020 Turkey
EMS for EVC

installed in industrial
areas

Monte Carlo
simulation

Demands of EVCs can be
met in different time

periods

(1) No financial
assessment;

(2) no environmental
analysis

[32] 2022 France Home energy
management Matlab

Advantages for the
integration of EVs,
covering aspects of

optimal sizing, energy
autonomy and limiting

grid power supply

No coverage of
commercial sector

Current
Study - UAE Optimal sizing of

EVC via RESs HOMER software

(1) Meeting load
demand;

(2) increasing RES
capacity;

(3) cost-effective system;
(4) reducing ecological

damage and GHG
emissions;

(5) carbon credits
contributing to system

revenue
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3. Contribution

After reviewing and comparing all similar case studies and evaluating their drawbacks,
especially the lack of environmental analyses and considerations of carbon reductions, the
main contribution of this study is that it connects supplementary systems, such as batteries
and utility grids, with renewable energy sources, such as PVs and wind turbines (WTs), for
the charging of EVs. The main contributions of this paper are described as follows.

First, technical details of the hybrid systems installed in a commercial area are ex-
amined. Second, this study presents an environmental analysis and a carbon reduction
analysis. Third, a detailed economic analysis is presented, and the effect of the carbon
reduction on overall savings is investigated. Furthermore, although it is difficult to deter-
mine exactly which factor (cost, amount of electricity generation or renewable fraction) is
of most importance with respect to the system performance, an attempt has been made in
this paper to answer this question via sensitivity analysis.

4. Methodology Applied to the Case Study

The technical, economic and environmental analyses were conducted using HOMER
software (Homer Pro Version 3.1.4.5, Boulder, CO, USA). Generally, this software is used
to model and design power systems, including those with both on-grid and off-grid
connections to primary and renewable energy resources. HOMER is also used to perform
optimization modeling, simulations and sensitivity assessments [34]. In this section, a case
study is presented along with its input data and the equations considered with respect to
the HOMER software.

4.1. Case Study and Renewable Energy Resources

In this case study we considered Yas Island (Abu Dhabi, UAE) (See Figure 1) as the
point of interest. This location was selected because it is a main hub in the area and has
multiple points of interest, such as shopping malls, sports facilities, transportation services
and hotels. This island is located at 24◦29.8′ N and 54◦36.2′ E, with an area of 25 km2. The
current population of Abu Dhabi is estimated to be more than 1.48 million [35].
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Furthermore, PV represents a high-potential RES for this case study because of the
sunny climate of Abu Dhabi. As shown in Figure 2, the highest daily solar radiation
occurred in June (7.23 kWh/m2/day), whereas the lowest daily radiation occurred in
December (3.78 kWh/m2/day). The wind speed data were also considered in this study.
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As shown in Figure 3, the highest wind speed was recorded in February (5.34 m/s),
whereas the lowest wind speed was recorded in October (3.77 m/s). The data for solar
radiation and wind speed were collected from NASA Surface Meteorology and Solar Energy
using HOMER to determine the output of PVs and wind turbines.
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Figure 3. Average wind speed at Yas Island.

4.2. Load Profile for Yas Island

Figure 4 shows the daily, seasonal and annual load profiles of Yas Island. The project
is installed in a commercial area where EV charging is considered in the load. The hypo-
thetical data used were obtained using HOMER and they exhibited a daily random vari-
ability based on uncertainty. The maximum electricity consumption for EV charging was
3175 kWh/day, and its peak was at 297 kW. This peak can be attributed to the rush hour
and increased human activity between 3:00 p.m. and 5:00 p.m. Table 2 summarizes the
technical information related to the load profile.
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Table 2. Technical information regarding the load profile.

Average (kWh/Day) Average (kW) Peak (kW) Load Factor Average Energy per
Month (kWh)

3175 132.29 297.93 0.44 46,646
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4.3. Studied System

The UAE is investing considerably in ecofriendly cars. Hybrid power systems can
satisfy energy requirements with low costs for any type of load, including commercial,
industrial and residential loads. Therefore, in this study we aimed to develop a cost-
effective, reliable, sustainable and ecofriendly hybrid system based on renewable energy
resources for EV charging in a commercial area. Overall, our aim was to help achieve
the Dubai Autonomous Transportation Strategy 2030 of the UAE. In this study, solar
radiation, wind speed and load demand were the critical input data of the system, on the
basis of which an optimal output could be obtained. Figure 5 presents a schematic of the
proposed system.
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4.4. Modeling of the Hybrid Energy System

HOMER software was used to provide a better understanding regarding the amount
of energy produced by the proposed hybrid system and the manner in which the proposed
system affected the environment in terms of decreasing emissions, while also considering
the economic implications. Furthermore, the concept of optimization was applied in the
proposed system to select and verify the best proposed hybrid system based on the selected
area and available resources. Figure 6 shows the proposed system configuration, involving
a PV, a national grid, a wind turbine, a bi-directional converter, a battery and an electric
load. In the HOMER software, we utilized PV and wind power as the primary energy
sources and the national grid as the secondary energy source. The electricity tariff (grid)
was obtained from electricity providers in the UAE, such as the Dubai Electricity and
Water Authority (DEWA) and the Abu Dhabi Water and Electricity Authority (ADWEA),
with a grid power price of 0.130 USD/kWh. A battery was used as the backup when
insufficient power was procured from these two sources. Table 3 shows the characteristics
of the components used in this study. The battery will be replaced after every 15 years.
The battery charges when there is no excess electricity that is not used by the load. In
addition, EV charging is conducted using the battery if the latter is fully charged. However,
the power required for the load is obtained via PV power generation or from the grid,
depending on the electricity tariff.
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Table 3. Characteristics of the components used in the study.

Component Model Capital Cost
(USD)

Maintenance
Cost (USD/Year)

Rated
Capacity

Lifetime
(Years)

PV Generic 1500 10 20,000 kW 25

Battery Lead Acid 300 10 1 kWh 15

Wind Turbine Generic 50,000 500 10 kW 25

Converter Generic 300 10 1 kW 15

Focusing on the energy deficits in Abu Dhabi, relevant data were collected from the
NASA Surface Meteorology and Solar Energy databases and employed in the HOMER
software. Furthermore, the output of the hybrid system was economically analyzed using
two important parameters: NPC and the levelized COE [36,37].

NPC =
Ctot,annual

CRF
(1)

CRF(i, N) =
i(1 + i)N

(1 + i)N−1 (2)

where Ctot,annual is the total annual cost, CRF is the capital recovery factor, i denotes the
real interest rate calculated based on the nominal discount rate and N is the number of
years. Furthermore,

COE =
Ctot,annual

Eserved
(3)

where Eserved is the energy provided (KWh/year), which can be calculated as follows:

Eserved = Eis + Egrid (4)

where Eis and Egrid denote the electrical energy generated from the microgrid system and
the amount of electricity exported to the main grid, respectively. The salvage value and
return on investment (ROI) are other important economic factors. The salvage value is the
remaining value of power generated by the hybrid system after the project lifetime and can
be given as follows [36]:

Salvage = Cref

Rcomp − [n−Rcomp ∗ INT
(

n
Rcomp

)
Rcomp

(5)
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where Cref denotes the replacement cost of a component and Rcomp denotes the component
lifetime. ROI is defined as the annual cost savings relative to the initial investment. This
value can be obtained using HOMER software as follows [38]:

ROI =
∑n

i=0 Ci,ref − Ci

n
(
Ccap − Ccap,ref

) (6)

where Ci,ref is the system’s reference nominal cash flow, Ci is the system’s annual current
nominal cash flow, Ccap is the current system’s capital cost and Ccap,ref is the capital cost of
a reference system. Furthermore, carbon credits are measures of how the use of renewable
energy can reduce carbon dioxide emissions annually. This study can be beneficial in both
environmental and economic terms. From the environmental perspective, it calculates the
reduction in CO2 emissions and hence its effect on the environment. Similarly, carbon
credits can be sold because of their high potential for revenue generation. Carbon credits
can be can be estimated using Equations (7)–(10) [39–41]. The annual electricity output of
the project can be given as follows:

E = CuF× hours× rating (7)

where CuF indicates the capacity utilization factor of the renewable energy project, which
varies depending on the type of renewable energy source used. The term hours indicates
the number of hours in a year (8760) and rating represents the rating of the renewable
energy project. Then, the annual carbon dioxide emissions can be given as

M = E× Ef (8)

where Ef represents the emission factor, which is zero in the case of renewable energy. The
annual electricity output and carbon dioxide emissions in the case of the studied project
can be easily determined using the HOMER software. The annual baseline emissions can
be estimated as follows:

Base = E× EFelec (9)

where EFelec represents the emission factor of a country in the case of electricity production;
it is 0.0694 tCO2/MWh for the UAE [41]. Finally, the annual emission reduction can be
given as follows:

Red = Base−M (10)

Each carbon credit corresponds to a one-ton reduction in carbon dioxide emissions [39].

5. Results and Discussion

Five different hybrid systems for Yas Island were examined based on the available
technologies to obtain the optimal output with respect to reliability and affordability. As
discussed above, the system components included batteries and a utility grid, combined
with PVs and wind turbines as renewable energy sources to provide electricity for the charg-
ing of EVs. In this section, the simulation results for different hybrid system configurations
are presented and the data are analyzed technically, economically and environmentally.

5.1. Technical Analysis

As EVs are becoming more visible on the UAE’s roads and gaining more recognition
in the country, awareness regarding this technology is growing. This is good because EVs
have great potential in the transportation sector. Because traditional power systems rely on
fossil fuels for power generation, they have harmful effects on the environment. However,
the usage of renewable energy in electrical systems for charging EVs can considerably
reduce emissions.

In this section, a technical analysis of each system and its monthly power production
is presented. Table 4 shows the power generation for each system configuration. Most
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of the configurations feature PVs because of the sunny climate of Abu Dhabi. The load
demand for the charging of EVs in commercial areas was fully satisfied in all scenarios;
however, managing the surplus electricity is a major challenge.

Table 4. Electricity generation with the selected hybrid system configurations for EV charging in a
commercial area.

Supplementary
System

Renewable
System Grid (kW/Year) Battery

(kWh/Year) PV (kWh/Year) WT
(kWh/Year)

Excess Power
(kWh/Year)

Grid PV 559,125 - 1,239,158 - 19,974

Battery–Grid PV 562,116 1 1,211,268 - 22,122

Grid PV–WT 554,093 - 1,229,755 11,041 20,376

Battery–Grid PV–WT 551,260 1 1,257,185 11,041 22,006

Battery–Grid WT 1,147,834 9 - 11,041 0

According to Table 4, when using only the utility grid as the supplementary system,
PV power generation was high and the excess electricity, which represents the electrical
energy not used by the load, was low. This can be attributed to the load demand. The
system should have a higher capacity for renewable energy to supply the load demand,
especially during peak times. When coupling the battery storage with the grid, PV power
generation decreased, and the excess power increased. This can be clearly observed as the
involvement of several primary energy sources provides system flexibility for reacting to
the load demands. In addition, the use of wind turbines increased the capacity of renewable
energy sources by 11,041 kWh/year. The highest electricity excess could be obtained when
all four components (battery–grid–PV–WT system) were combined, providing an output
that was equivalent to 22,006 kWh/year. The battery–grid–PV–WT system increased
the solar panel capacity and renewable energy fraction because of its ability to store PV
power. Figure 7 presents the power generation profiles of hybrid systems with different
combinations of power sources (grid power, solar PV, wind turbines (10 kW)) and batteries.

5.2. Economic Analysis

In this section, a discussion of the economic analysis of the combinations of hybrid
systems selected using HOMER software is presented. NPC and COE are the critical
economic factors that are optimized using HOMER software based on the equations pre-
sented in Section 2. When performing a vital analysis with respect to the lifetime of the
components, other costs such as the initial capital cost, replacement cost and operation
and maintenance (O&M) costs, were considered, along with important economic factors
including the salvage value and ROI.

Table 5 indicates the economic assessment of each scenario. The first scenario (grid–PV)
had the lowest COE value (0.06581 USD/kWh), whereas the proposed battery–grid–PV–
WT system had the highest COE value (0.06743 USD/kWh). Although there was a tradeoff
between cost and other system factors, an investor may decide on what is more preferable
among the economic parameters, i.e., system efficiency (lower losses) or the renewable
fraction (lower emissions). The proposed power system was characterized by a high initial
investment cost (equivalent to 1.29 million USD) but low operating and O&M costs.
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Table 5. Economic assessments of the considered scenarios.

Hybrid System Battery
(kWh)

PV
(kW)

Converter
(kW)

WT
(Unit)

Initial Investment
(USD)

Operating
Cost (USD)

COE
(USD/kWh)

NPC
(USD)

RF
(%)

Grid–PV - 709 515 - 1.22 M 18,810.22 0.06581 1,461,138 67.4

Battery–Grid–PV 1 693 497 - 1.19 M 21,187.81 0.06689 1,463,046 66.8

Grid–PV–WT - 704 509 1 1.26 M 19,451.80 0.06814 1,509,812 67.7

Battery–Grid–
PV–WT 3 719 518 1 1.29 M 17,609.36 0.06743 1,513,066 68.2

Battery–Grid–
WT 9 - 1.10 1 53,031 150,525.90 0.1334 1,998,957 0.953

Based on all the data, using the proposed system with a 719-kW solar panel and a
10-kW wind turbine with three battery units and a utility grid was the most cost-effective
alternative. Furthermore, this system had the highest renewable fraction among all the
scenarios (68.2%), indicating its good environmental performance and producing the
highest electricity surplus (22,006 kWh/year).

Finally, the best ROI was provided by the battery–grid–PV system (6.9%), whereas the
lowest ROI was observed in the case of the battery–grid–WT (−3.7%). Figure 8 summarizes
the costs for all the hybrid systems. This analysis is beneficial because it economically
specifies how the prices of the technologies can be reduced to make them more affordable
and install them in hybrid systems.
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5.3. Emission Analysis

A greenhouse gas (GHG) absorbs and emits radiation in a specific thermal infrared
range. Hence, it plays a major role in ensuring a clean and safe environment. In this section,
an environmental analysis was performed by considering the GHG emissions of different
hybrid power systems.

Table 6 indicates the emissions produced by different hybrid systems. The system
in which only the utility grid was employed exhibited the highest emissions of all GHGs.
However, the emissions were reduced significantly when considering renewable sources
such as PVs and wind turbines. This can be attributed to the installation of a high capacity
of renewable energy systems. Furthermore, the battery–grid–PV–WT scenario exhibited the
lowest emissions of carbon dioxide, sulfur dioxide and nitrogen oxides. This system pro-
duced approximately 1.4% less pollutants than the grid–PV system. From an environmental
perspective, the proposed system was ecofriendly and exhibited the best performance. In
addition, it was the most efficient system in terms of delivering the required power to
the load, along with increasing the system flexibility and enhancing the environmental
performance. The amount of emitted pollutants, including carbon monoxide, unburned
hydrocarbons and particulate matter, was zero for each system because of the absence of
any fossil-fuel-based generator or fuel combustion.

Table 6. Comparison of the GHG emissions produced by each hybrid system.

Hybrid System
Carbon
Dioxide

(Kg/Year)

Carbon
Monoxide
(Kg/Year)

Unburned
Hydrocarbons

(Kg/Year)

Particulate
Matter

(Kg/Year)

Sulfur
Dioxide

(Kg/Year)

Nitrogen
Oxides

(Kg/Year)

Grid 732,409 0 0 0 3175 1553

Grid–PV 353,367 0 0 0 1532 749

Battery–Grid–PV 355,257 0 0 0 1540 753

Grid–PV–WT 350,187 0 0 0 1518 742

Battery–Grid–PV–WT 348,396 0 0 0 1510 739

Battery–Grid–WT 725,431 0 0 0 3145 1538
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Finally, the carbon reductions associated with each system were determined. After
estimating the annual electricity output and carbon dioxide emissions using HOMER
software, the carbon credits were calculated and examined accordingly. Table 7 shows the
carbon credit values for each scenario.

Table 7. Carbon credit analysis.

Hybrid System Annual Electricity
Output (MWh/Year)

Carbon Dioxide
Emissions
(Tons/Year)

Annual Base
Line Emissions

(Tons)

Carbon Credits
per Year (Tons)

Carbon Credits
per Year (USD)

Grid–PV 1798.28 389.52 1248.006 858.48 8584.8

Battery–Grid–PV 1773.38 391.603 1230.72 839.12 8391.2

Grid–PV–WT 1794.89 386.015 1245.65 859.63 8596.3

Battery–Grid–PV–WT 1819.49 384.041 1262.72 878.68 8786.8

Battery–Grid–WT 1158.87 799.651 804.25 4.60 46.04

One carbon credit corresponds to a one-ton reduction in carbon dioxide emission.
According to Table 7, the proposed system exhibited an excellent performance with respect
to carbon dioxide reductions because it provided a reduction of approximately 878.68 tons
per year and up to 21,950 tons over the lifetime of the project (25 years). Furthermore, this
can result in savings that are worth up to 8786.8 USD per year. Figure 9 shows that the
management of carbon credits is necessary to increase profits and decrease CO2 emissions.
Therefore, governments can develop new policies and impose penalties for companies
with high CO2 emissions. Furthermore, companies can buy carbon credits to offset their
remaining emissions.
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5.4. Sensitivity Analysis

In this section, several optimizations determined using HOMER software for a low-
price system are examined, making it easier to understand under which conditions the
optimal model can be obtained and the manner in which the results are affected. First,
the renewable fraction and NPC were assessed with respect to the average solar radiation.
As shown in Figure 10, an increase in solar radiation resulted in an increased renewable
fraction and decreased NPC. However, beyond 7.6 kWh/m2/day, the NPC and renewable
fraction did not change the overall performance of the system.
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In addition, the renewable fraction and CO2 emissions were examined. As can
be observed in Figure 11, increased solar radiation resulted in an increased renewable
fraction, which played a major role in decreasing the CO2 emissions. Furthermore, sur-
plus electricity was considered because an increased solar radiation would result in in-
creased excess electricity owing to the high PV output power under high solar radiation.
Figure 12 shows that CO2 emissions and excess electricity did not change significantly above
7.6 kWh/m2/day solar energy.

The objective of the proposed project was to introduce renewable energy into a com-
mercial area. Based on all previous cases, changing the project location to an area with
a considerably higher solar radiation would result in similar performance. Furthermore,
the cost of the project is the most important factor from the viewpoint of the investor. In
this case, wind turbines can be ignored because wind is not prominent in the area under
study, in addition to the role of infrastructure and buildings, especially those in built-up
commercial areas, in preventing wind power generation.
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6. Conclusions

Since energy crises and environmental problems have raised major concerns for sci-
entists and policymakers around the globe, EVs have high application potential in the
automotive sector because they provide green transportation and reduce the sector’s car-
bon dioxide footprint. Thus, the establishment and deployment of renewable energy
resources for the charging of EVs will promote sustainable electricity, enhance system
reliability, ensure resource diversity and improve ecological performance. The aim of
this study was to conduct a techno-economic analysis of different hybrid systems us-
ing HOMER software. Technically, the proposed system including PVs, wind turbines,
utility grids and batteries could offer benefits in terms of supplying the load demand,
minimizing energy losses and providing surplus electricity (22,006 kWh/year). Economi-
cally, the PV–grid system configuration had the lowest energy cost of 0.06581 USD/kWh.
The addition of a wind turbine and battery storage system increased the energy cost to
0.06743 USD/kWh. The proposed system had the lowest O&M costs. Carbon credits were
also considered because they contributed to the overall profit by approximately 8786.8 USD
per year. Environmentally, the proposed system exhibited the highest renewable fraction,
providing an annual reduction in all emissions and especially in the case of CO2 emissions
by more than 878 tons/year, indicating the positive environmental impact of the system.
Sensitivity analysis results showed that an increase in solar radiation would increase elec-
tricity generation and the renewable fraction and decrease CO2 emissions. On the other
hand, and considering a combined qualitative and quantitative assessment of the study, it
can be concluded that the battery–grid–PV system configuration has potential, and the use
of wind turbines can be neglected because of the low wind speed and urban buildup in
the UAE, preventing wind power generation. From the economic point of view, the study
indicated that the best return on investment would be provided by the battery–grid–PV
system configuration, with an estimated value of 6.9%, indicating an appropriate busi-
ness opportunity in the field of energy and transport sectors. Such a configuration also
produced 1.4% less pollutants in comparison to the grid–PV system, indicating a more
ecofriendly performance configuration. In terms of carbon credits, such a configuration
can attain almost 839.12 carbon credits per year, which is a worth value of 8391.2 USD per
year. Furthermore, we conducted a sensitivity analysis and observed that a solar radiation
level of 7.6 kWh/m2/day would be a threshold beyond which the net present cost and
renewable fraction would not change the overall system performance. This conclusion
also applies to carbon dioxide emissions, with no significant variation above this value. It
can be concluded that the nature of the area under study and the infrastructure of com-
mercial buildings limit the potential of wind energy compared to solar energy and battery
deployment.



Energies 2022, 15, 6621 18 of 20

The study had some limitations due to the lack of real data on EVs’ load profiles in this
area or in similar areas, thus requiring the utilization of hypothetical data. In future studies,
a dynamic load model that accounts for different types of EVs must be considered, along
with different types of EV chargers to realize fast charging. Eventually, variations between
residential, educational and industrial sites must be accounted for in future studies.

Some policy implications exist as some cities in the United Arab Emirates have sug-
gested that a specific percentage of parking lots should be allocated for green vehicles.
However, there is a mandate for the study presented in this paper as it has been recom-
mended that such cities investigate the optimal configuration for the source of power
when charging the EVs. Furthermore, many UAE initiatives have been conducted in order
to encourage the use of electric cars, such as DEWA charging stations of electric cards.
Therefore, this study can help in installing hybrid systems in all public charging stations,
as well as petrol stations, to expedite and enhance the process of charging electric vehicles
and help to make the UAE a global model of a green economy.
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