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Abstract: The virtual synchronous generator (VSG) technique is used to simulate the external charac-
teristics of a synchronous generator (SG) to provide certain damping and inertia to power systems.
However, it may easily cause low-frequency oscillation of the power system. We studied the small-
signal stability of a grid-connected virtual synchronous generator. Firstly, the small-signal models
of single-VSG and multi-VSG grid-connected systems were established. Subsequently, the system
eigenvalues were obtained by solving the state matrix, and the system oscillation modes were ana-
lyzed. The eigenvalue analysis method was used to analyze the impacts of parameter changes, such
as virtual moment of inertia, virtual damping coefficient, line resistance, and line inductance, on
system stability. Finally, our conclusions were verified by numerous simulation models.

Keywords: virtual synchronous generator (VSG); low-frequency oscillation; small-signal model;
stability analysis

1. Introduction

Many new energy units are connected to the power system through inverters, and
the proportion of power electronic devices in the power system has increased rapidly [1].
The operation mode and dynamic characteristics of the power grid have changed gradu-
ally [2–4]. A power system including fewer synchronous generators (SG) and more power
electronic devices cannot provide sufficient physical damping and inertia, which is not
conducive to the stable operation of the power system [5].

To solve the above problems, the virtual synchronous generator (VSG) technique is
proposed [6,7]. The VSG considers the electromechanical and excitation transient charac-
teristics of synchronous generators to provide virtual damping and inertia [8]. However,
although VSG simulates the excellent regulation characteristics of SG, low-frequency oscil-
lation problems will occur and the oscillation mode will be changed [9,10]. Therefore, the
grid-connected stability of VSG needs to be further analyzed. In this regard, single-VSG
and multi-VSG grid-connected stabilities are widely studied.

In the study of single-machine grid connection stability, Reference [11] developed a
double-machine test-bed to analyze the low-frequency oscillation phenomenon after VSG
replaces SG, as well as the characteristics and main modes of low-frequency oscillation,
and evaluated the role of the power system stabilizer in the VSG grid. In [12], the internal
voltage of the inverter was taken as a parameter rather than a state variable, and the voltage
change was introduced into the approximate Lyapunov direct method. The influence of
the reactive power voltage control link and different parameters on the stability of VSG
was analyzed, and it was pointed out that the reactive power control loop will reduce the
stability margin of the VSG power angle. Reference [13] proposed the concepts of virtual
common coupling point and virtual power angle to represent the mathematical model
of a variable cross-section vibration generator with virtual damping and analyzed the
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transient stability of VSG. In [14], a small-signal model of a VSG-SG interconnected system
suitable for studying the low-frequency oscillation damping of the transmission network
is proposed. Through this model, the influence of VSG and SG on the power system is
compared, and the mechanism of VSG’s influence on damping characteristics is revealed.
In [15], the VSG small-signal model of voltage and current double closed loop and active
and reactive power control was established to study the VSG oscillation characteristics.
The analysis showed that the reactive power loop and DQ axis voltage control have a great
impact on the damping of low-frequency oscillation.

In the research on the stability of multi-machine parallel connection, in [16], the VSG-
based active power frequency loop is equivalent to P/ω. The two-terminal-network model
of “admittance” analyzes the three kinds of factors that affect the output power of VSG
and the power frequency oscillation characteristics of the three kinds of factors when
the parameters change. Reference [17] defines the deviation of generator voltage angle
relative to inertia center angle as a tool to evaluate the stability of a multi-VSG microgrid
and optimizes VSG unit parameters through the particle swarm optimization algorithm.
Reference [18] studies a new method to improve the transient stability of a multi-VSG
power grid, which suppresses the oscillation between VSG and the inertial frequency center
of the power grid during short circuit. Reference [19] proposes a fully decentralized mutual
damping method to solve the problem of power oscillation in parallel with multiple VSGs.
By introducing the derivative of local power, the difference between each angular frequency
is obtained indirectly, which effectively suppresses power oscillation. In [20], secondary
frequency control of a distributed VSG for low-bandwidth communication is proposed,
which suppresses oscillation and restores the frequency to the rated value without changing
the virtual inertia provided by VSG.

To summarize, the theory of VSG grid connection stability is gradually maturing,
but the extant literature does not discuss the specific impact of the changes in various
parameters in VSG on the low-frequency oscillation mode of the power system after VSG
grid connection, as well as the dominant factors in the change in oscillation mode. Moreover,
nowadays, the stability research on VSG control mostly adopts the damping torque analysis
method. Although this method is easy to build a complex global model, its stability criteria
are complex and the parameter regions are difficult to identify [21]. The eigenvalue analysis
method in the small-signal analysis method can better analyze the stability of the system
when the parameters change. Therefore, we present here a more in-depth study on the grid
connection stability of a virtual synchronous generator based on the small-signal model
analysis method. The influence of VSG parameters on the stability of a single-machine
grid-connected system and a multi-machine grid-connected system is analyzed through
system eigenvalue trajectories. The main contributions are as follows:

(1) Based on the topology and algorithm of VSG, small-signal modeling is carried out for
a single-machine grid-connected system and a multi-machine parallel grid-connected system.

(2) In the single-machine grid-connected system, the influences of oscillation mode,
control parameters of active power loop, and resistance inductance ratio of connecting line
on eigenvalues are analyzed.

(3) In the multi-machine parallel connected system, the effects of virtual moment of
inertia, damping coefficient, line resistance, and line inductance on the eigenvalues are
analyzed. Finally, the conclusions are verified by numerous simulation models.

2. VSG Control Strategy
2.1. VSG Topology

The topology of the virtual synchronous generator is shown in Figure 1. VSG can be
divided into four layers. The first layer is the power loop controller, which is composed
of an abc/dq transformation link and a power calculation module. The second layer is
the VSG control algorithm, which is used to generate the voltage references. The third
layer is the voltage and current double closed-loop controllers, which consist of voltage
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and current double closed-loop modules and dq/abc transformation. The fourth layer is
sinusoidal pulse width modulation.

Figure 1. Topology diagram of VSG.

In Figure 1, udc is the ideal DC voltage on the DC side, Rf is resistance, Lf is inductance,
and Cf is capacitance. Rc and Lc are the resistance and inductance of the connecting line.
ua, ub, and uc are the output voltage of the inverter. ia, ib, and ic are the output currents of
the inverter. ioa, iob, and ioc are the currents of the line inductance. uoa, uob, and uoc are the
filter capacitor voltages. uga, ugb, and ugc are the AC power grid voltages. Pref is the active
power, and Qref is the reactive power.

2.2. VSG Algorithm
2.2.1. Virtual Power Frequency Controller

To realize the simulation of the synchronous generator governor, the virtual speed
regulator in VSG usually adopts frequency droop control to realize primary frequency
regulation, and its control structure is shown in Figure 2.

Figure 2. Structure block diagram of VSG governor control.

In Figure 2, ωn is the rated angular frequency of VSG, ω is the output virtual angular
frequency, Kd is the active frequency regulation coefficient of the governor, and P0 is the
mechanical power.

As we know, the inertia and damping characteristics are mainly controlled by the
mechanical rotational inertia of the rotor, which are transient regulation characteristics. The
adequate damping can suppress overshoot and oscillations of output. The virtual moment
of inertia control in VSG is shown in Figure 3.

Figure 3. Structure of virtual moment of inertia control.
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In Figure 3, J is the VSG virtual moment of inertia, D is the VSG virtual damping
coefficient, Pe is the electromagnetic power, and θ is the electrical angle.

2.2.2. Virtual Excitation Controller

The virtual excitation regulator in VSG adopts reactive voltage droop control to realize
the voltage regulation characteristics of the excitation system of SG. The block diagram of
VSG virtual excitation control is shown in Figure 4.

Figure 4. The block diagram of virtual excitation control.

In Figure 4, Kq is the reactive voltage regulation coefficient of the excitation controller,
and uref is the reference voltage at the given point.

3. Small-Signal Model of Single-VSG Grid-Connected System
3.1. Small-Signal Model of Filter and Connecting Line

Assuming that the output voltage of the inverter can accurately track the reference,
ignoring the switching delay and loss of power electronic devices, combined with the VSG
topology shown in Figure 1, the state equations of the filter and the connecting line are
obtained according to the basic circuit laws.

did
dt = 1

Lf
(−Rfid + ωLfiq + ud − uod)

diq
dt = 1

Lf
(−Rfiq −ωLfid + uq − uoq)

duod
dt = 1

Cf
(ωCfuoq + id − iod)

duoq
dt = 1

Cf
(−ωCfuod + iq − ioq)

diod
dt = 1

Lc
(ωLcioq + uod − ubd − Rciod)

dioq
dt = 1

Lc
(−ωLciod + uoq − ubq − Rcioq)

, (1)

where ud, uq, id, and iq are dq axis components of output voltages and currents of the
grid-connected inverter; uod and uoq are dq axis components of filter capacitor voltage;
iod and ioq are dq axis components of inductance Lc current; and ugd and ugq are dq axis
components of AC grid voltage.

The small-signal model of the filter and connecting line is:

d
dt

 ∆idq
∆uodq
∆iodq

 = Af

 ∆idq
∆uodq
∆iodq

+ Bf1

[
∆udq

]
+ Bf2

[
∆ugdq

]
+ Bf3[∆ω], (2)

where

Af =



− Rf
Lf

ω0 − 1
Lf

0 0 0
−ω0 − Rf

Lf
0 − 1

Lf
0 0

1
Cf

0 0 ω0 − 1
Cf

0
0 1

Cf
−ω0 0 0 − 1

Cf

0 0 1
Lc

0 Rc
Lc

ω0

0 0 0 1
Lc

−ω0
Rc
Lc


, Bf1 =



− 1
Lf

0
0 − 1

Lf
0 0
0 0
0 0
0 0


, Bf2 =



0 0
0 0
0 0
0 0
− 1

Lc
0

0 − 1
Lc


, Bf3 =



Iq
−Id
Uoq
−Uod

Ioq
−Iod

.
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3.2. Small-Signal Models of Power Calculation and VSG Control Algorithm

The small-signal model of instantaneous power calculation is obtained by (3).{
∆P = 1.5(Iod∆vod + Ioq∆voq + Vod∆iod + Voq∆ioq)
∆Q = 1.5(−Ioq∆vod + Iod∆voq + Voq∆iod −Vod∆ioq)

. (3)

According to the power frequency and the excitation controllers, the state equation of
the VSG control algorithm is shown in (4).{

J d(ωn−ω)
dt = P−Pref−Kd(ωn−ω)

ωn
− D(ωn −ω)

uVSG_d = uref − Kq(Q−Qref)
. (4)

Linearizing Equation (4), the small-signal model of the VSG control algorithm is
obtained by (5). {

d∆ω
dt = −Kd+Dωn

Jωn
∆ω− 1

Jωn
∆P

∆uVSG_d = −Kq∆Q
. (5)

3.3. Small-Signal Model of Voltage and Current Closed Loops

Figure 5 shows the control structure of the voltage outer loop and the current inner
loop. In Figure 5, Kpv, Kiv, Kpc, and Kic are the PI controller parameters of the voltage outer
loop and the current inner loop, respectively.

Figure 5. Block diagram of voltage–current double-loop control.

According to Figure 5, the small-signal model of volage and current closed loops is
expressed by (6).

∆iud = Kiv∆xud + Kpv∆uVSG_d − Kpv∆uod −ωnCf∆uoq
∆iuq = Kiv∆xuq + Kpv∆uVSG_q − Kpv∆uoq + ωnCf∆uod
∆ud = Kic∆xid + Kpc∆iud − Kpc∆id −ωnLf∆iq + ∆uod
∆uq = Kic∆xiq + Kpc∆iuq − Kpc∆iq + ωnLf∆id + ∆uoq

, (6)

where xud, xuq, xid, and xiq are the intermediate state variables to describe the dynamic
characteristics of PI controller in voltage and current closed loops. The corresponding state
equation is calculated by (7). 

dxud
dt = uVSG_d − uod

dxuq
dt = uVSG_q − uoq

dxid
dt = iud − id

dxiq
dt = iuq − iq

. (7)
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The small-signal model is summarized by (8).

d
dt

[
∆xudq
∆xidq

]
= A1

[
∆uodq
∆idq

]
+ B1

[
∆idq ∆uodq ∆iodq

]T , (8)

where

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, B1 =


0 0 −1 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

.

3.4. Small-Signal Model of Power Grid

The grid voltage and frequency are modeled by (9).
ugd = Eg sin δg
ugq = Eg cos δg.
δg = ωg −ω

, (9)

where Eg is the voltage amplitude of the AC power grid, ωg is the angular frequency of the
AC power grid, and δg is the phase difference between the AC grid voltage and the d axis
of the reference coordinate system.

Linearizing Equation (9), the small-signal model of the power grid is shown in (10).
∆ugd = Eg cos δg0∆δg
∆ugq = −Eg sin δg0∆δg

∆
.
δg = −∆ω

. (10)

Based on the above small-signal models, the overall small-signal model of the single
VSG grid-connected system can be obtained by (11).

∆
.
x = A∆x, (11)

where ∆x = [∆x1, ∆δg]T is the system state variable, and ∆x1 = [∆ω, ∆idq, ∆uodq, ∆iodq,
∆xudq, ∆xidq]T.

4. Small-Signal Model of Multi-VSG Grid-Connected System

For a multi-VSG grid-connected system, it is necessary to transform the coordinate
system of all VSGs to a common coordinate system. For the convenience of analysis, the dq
coordinate system of the first VSG is selected as the system common reference coordinate
system, and the transformation diagrams of other VSGs are shown in Figure 6. We assume
that the output voltage of the i-th VSG is ahead of that of the first VSG electrical angle θi, as
shown in (12).

θi =
∫

(ωi −ω1)dt. (12)

The following is the corresponding linearized equation of (12):

∆
.
θi = ∆ωi − ∆ω1. (13)

Thus, the small-signal output current ∆ioDQi of the i-th inverter on the common
coordinate system and the output voltage ∆ubdqi on its own coordinate system can be
obtained by Equations (14) and (15), respectively.

∆ioDQi = Tsi∆iodqi + Tci∆θi. (14)

∆ubdqi = T−1
si ∆ubDQi + T−1

ui ∆θi. (15)
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Figure 6. Schematic diagram of reference coordinate system transformation of multi-VSG system.

According to the transformation of the reference coordinate system, the small-signal
model of the multi-VSG system is expressed by (16).

∆
.
xi = Ai∆xi, (16)

where ∆xi = [∆x1, θ2, ∆x1, . . . , θi, ∆xi, ∆δg]T.

5. Stability Analysis Based on Eigenvalues
5.1. Stability Analysis of Single-VSG Grid-Connected System
5.1.1. Oscillation Mode Analysis of Single-VSG System

According to the single-VSG grid-connected small-signal model in Equation (11), all
eigenvalues of the system are obtained based on the parameters in Tables 1 and 2. Subse-
quently, the oscillation mode of the single-VSG grid-connected system and the influence of
parameter changes at the steady-state operation point on the small-signal stability of the
system are analyzed.

Table 1. Single-VSG system parameters.

Parameter Value Parameter Value

Rf/Ω 0.2 Lc/mH 1.8
Lf/mH 3.2 Pref/kW 10
Cf/µF 100 Qref/var 0
Rc/Ω 0.1 J/kg·m2 10

D/N·m·s·rad−1 70 Kd 30
Kq 0.0005

Table 2. Steady-state operating points of the single-VSG system.

Parameter Value Parameter Value

Id/A 21.27 Iod/A 1.8
Iq/A 11.66 Ioq/A 10

Uod/V 311.3 ω0/rad·s−1 314.2
Uoq/V 4.401

The system eigenvalues are shown in Table 3. The system has twelve eigenvalues,
corresponding to six oscillation modes. The eigenvalues of the system are in the left half
plane of the complex plane, indicating that the system is stable. The distance between the
eigenvalues λ11–12 and the imaginary axis is much greater than other eigenvalues, which
has little influence on the system stability and can be ignored. The eigenvalues λ1–2 have
the smallest oscillation frequency and are closest to the imaginary axis. An oscillation
attenuation mode is presented for the system.

The following mainly considers the influence of active power outer loop controller
parameters and connecting line parameters on system stability, especially the influence of
virtual moment of inertia and virtual damping coefficient on system small-signal stability.
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Table 3. Single-VSG system eigenvalues.

Eigenvalue Real Part Imaginary
Part

Oscillation
Frequency/Hz

Damping
Ratio

Dominant
Related State

Variables

λ1–2 −3.15 ±6.89 1.09 0.42 id, iq, xud, xuq
λ3–4 −30.21 ±22.38 3.56 0.80 id, iq, xid, xiq
λ5–6 −6.84 ±39.03 6.21 0.17 ω, δg,
λ7–8 −418.3 ±349.98 55.73 0.77 iod, ioq
λ9–10 −217.04 ±4797.2 763.89 0.045 id, iq, uod, uoq
λ11–12 −1000 ±5525.8 879.90 0.18 id, iq, uod, uoq

5.1.2. Influence of Active Power Loop Control Parameters on Eigenvalues

The control parameters of active power loop include the virtual moment of inertia
J and the virtual damping coefficient D. The eigenvalue trajectories with the parameter
changes are shown in Figure 7.

Figure 7. The eigenvalue trajectories under different active power control parameters. (a) Eigen-value
trajectories of the system under different inertias. (b) Eigenvalue trajectories of the system under
different damping coefficients.

When the virtual inertia changes J = 3.5→14, other parameters remain unchanged,
and the influence on the eigenvalues λ1–2 of the oscillation attenuation mode is shown
in Figure 7a. With the increase in virtual inertia J, the eigenvalues λ1–2 move rapidly
towards the imaginary axis, the damping ratios of the corresponding oscillation attenuation
mode decrease rapidly, the oscillation frequency decreases slightly, and the system stability
worsens. Shown in Figure 7b is the influence on the eigenvalues λ1–2 of the oscillation
attenuation mode when the virtual damping coefficient changes D = 70→130. With the
increase in virtual damping coefficient D, the eigenvalues λ1–2 move to the left of the
complex plane, and the movement speed away from the imaginary axis is much higher
than that away from the real axis. The damping ratio of the corresponding oscillation
attenuation mode increases, the overshoot will gradually decrease, the oscillation frequency
will increase slightly, and the system stability will be improved.

5.1.3. Influence of Resistance Inductance Ratio of Connecting Line on Eigenvalues

The resistance inductance ratio r of the connecting line on the grid side is defined by (17).

r =
Rc

100πLc
. (17)

The resistance inductance ratio r of the connecting line on the grid side represents the
voltage level of the grid. The influence of voltage level change on the eigenvalues is shown
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in Figure 8. With the increase in r, the speed of the eigenvalues λ1–2 moving to the upper
left of the coordinate system and away from the imaginary axis is much higher than that of
the real axis, and the damping ratio of the system increases.

Figure 8. Eigenvalue trajectories under different resistance inductance ratios of connecting lines.

5.2. Stability Analysis of Multi-VSG System
5.2.1. Oscillation Mode Analysis of Multi-VSG System

To analyze the stability of a multi-VSG system, I = 2 is taken as an example. The
corresponding structure diagram of a two-VSG system is shown in Figure 9.

Figure 9. Structure diagram of a two-VSG system.

The system parameters and steady-state operation points are shown in Tables 4 and 5.
We bring the parameters in Tables 4 and 5 into Equation (16) to obtain all eigenvalues, as
shown in Table 6.

Table 4. Multi-VSG system parameters.

Parameter Value Parameter Value

Rf1,2/Ω 0.2 Pref1/kW 10
Lf1,2/mH 3.2 J1,2 10
Cf1,2/µF 100 D1,2 70
Rc1,2/Ω 0.1 Kd1,2 30

Lc1,2/mH 1.8 Kq1,2 0.0005
Pref2/kW 13 Kpv 2

Kiv 50 Kpc 7
Kic 75

In Table 6, the two-VSG system has 24 eigenvalues, which are distributed in high-,
medium-, and low-frequency bands, corresponding to 12 oscillation modes of the system.
All eigenvalues are in the left half plane of the complex plane. The two-VSG system is
statically stable. Since the eigenvalues λ1–2 are the farthest from the imaginary axis among
all eigenvalues and have the largest damping ratio, their influences on the stability of
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the system can be ignored. The eigenvalues λ3–12, λ13–18, and λ19–24 correspond to high-,
medium-, and low-frequency bands, respectively. By calculating the participation factor,
high- and medium-frequency eigenvalues λ3–18 are mainly related to the inverter output
current controlled by the VSG and the state variables of the LC filter. Low-frequency
eigenvalues λ19–24 are related to the virtual angular frequency of each VSG and the phase
difference with reference coordinates.

Table 5. Steady-state operating points of the multi-VSG system.

Parameter Value Parameter Value

Id1/A 21.24 Id2/A 27.64
Uod1/V 311.70 Uod2/V 311.90
Iod1/A 21.38 Iod2/A 27.78
Iq1/A 13.36 Iq2/A 14.05

Uoq1/V 4.41 Uoq2/V 4.41
Ioq1/A 3.43 Ioq2/A 4.12

Table 6. Multi-VSG system eigenvalues.

Eigenvalue Real Part Imaginary
Part

Oscillation
Frequency/Hz

Damping
Ratio

Dominant Related
State Variables

λ1–2 −55129.01 ±319.24 50.03 0.99 iodq1, iodq2
λ3–4 −1268.41 ±4247.55 676.36 0.29 uodq1, uodq2, idq1, idq2
λ5–6 −937.89 ±1537.41 244.81 0.52 uodq1, uodq2, iodq1, iodq2
λ7–8 −41.48 ±848.78 135.16 0.05 uodq1, uodq2, iodq1, iodq2
λ9–10 −33.72 ±3247.69 517.15 0.01 uodq1, uodq2, idq1, idq2
λ11–12 −29.00 ±2340.81 372.74 0.02 uodq1, uodq2, idq1, idq2
λ13–14 −122.46 ±542.93 86.45 0.22 iodq1, iodq2
λ15–16 −69.26 ±331.68 52.81 0.21 iodq1, iodq2, idq1
λ17–18 −60.38 ±336.65 53.6 0.18 iodq1, iodq2, idq2
λ19–20 −4.03 ±1.12 0.18 0.96 ω1, ω2
λ21–22 −3.2 ±3.17 0.50 0.71 θ2, ω1, ω2, δg
λ23–24 −4.39 ±2.17 0.35 0.89 θ2, ω1, ω2

5.2.2. Influence of Virtual Inertia on Eigenvalues

The change trends of the eigenvalue trajectories of the system with the increase in
the virtual inertia of each VSG (J = 3.5→14) are shown in Figure 10. The eigenvalues
λ19–24 move towards the imaginary axis, and their impact on the system stability cannot be
ignored. The eigenvalues λ19–20 (green trajectories in the figure) and the eigenvalues λ21–22
(blue trajectories in the figure) have the same change trend. When the virtual moment of
inertia J increases to a certain extent, the eigenvalues move away from the real axis and
close to the imaginary axis, and the speed away from the real axis is greater than the speed
close to the imaginary axis. The eigenvalues λ23–24 monotonically and rapidly move away
from the real axis and close to the imaginary axis, and the speed close to the imaginary axis
is greater than that away from the real axis. The damping of the corresponding oscillation
attenuation mode decreases rapidly, and the system stability will worsen.

5.2.3. Influence of Damping Coefficient on Eigenvalues

The influence of the change in damping coefficient on the eigenvalue trajectories of
the system is shown in Figure 11. With the increase in the damping coefficient of each VSG
(D = 70→130), the system eigenvalues in the low-frequency band λ19–24 move to the left
of the complex plane. The imaginary parts of the eigenvalues λ19–20 (green trajectories in
the figure) and λ21–22 (blue trajectories in the figure) gradually move close to the real axis,
and the oscillation frequency of the corresponding oscillation attenuation mode decreases.
When the damping coefficient D increases to a certain extent, they will move away from
the imaginary axis and close to the imaginary axis along the real axis. The eigenvalues
λ23–24 quickly move away from the imaginary axis and close to the real axis. The damping
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of the corresponding oscillation attenuation mode increases and the system stability will
be improved.

Figure 10. Eigenvalue trajectories of system under different virtual inertias.

Figure 11. Eigenvalue trajectories of the system under different damping coefficients.

5.2.4. Influence of Line Resistance on Eigenvalues

The influence of the line resistance changes on the eigenvalue trajectories of the system
is shown in Figure 12. When the line resistance Rc gradually increases from 0.025 Ω to
1 Ω, and other parameters remain unchanged, the high-frequency eigenvalues λ9–12 and
intermediate-frequency eigenvalues λ15–18 move to the left of the complex plane. The
moving speeds of the eigenvalues λ9–10 are greater than those of the eigenvalues λ11–12.
However, the moving speed of the eigenvalues λ15–16 (yellow trajectories in the figure)
is basically the same as that of the eigenvalues λ17–18 (red trajectories in the figure), their
imaginary part is basically unchanged, the real part is gradually reduced, and the damping
of the corresponding oscillation attenuation mode increases. Therefore, increasing the line
resistance can increase the system damping and improve the system stability.

5.2.5. Influence of Line Inductance on Eigenvalues

The influence of line inductance changes on the system eigenvalue trajectories is shown
in Figure 13 (yellow trajectories in the figure are eigenvalues λ15–16, red trajectories in the
figure are eigenvalues λ17–18). When the line inductance changes Lc = 0.36 mH→15 mH, other
parameters remain unchanged, and the intermediate-frequency eigenvalues λ15–18 move
to the right of the complex plane. The imaginary parts of the eigenvalues λ15–18 decrease
slowly, the real parts increase rapidly, and the intermediate frequency damping decreases.
The low-frequency eigenvalues λ19–22 move towards the direction close to the real axis, the
real parts of the eigenvalues are basically unchanged, the imaginary parts decrease rapidly,
and the oscillation frequency decreases significantly. When the line inductance increases to
a certain extent, the eigenvalues move along the right side of the real axis complex plane
and quickly approach the imaginary axis, and the low-frequency damping of the system
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decreases. Increasing the line inductance can reduce the system damping, which is not
conducive to the system’s stability.

Figure 12. Eigenvalue trajectories of the system under different line resistances.

Figure 13. Eigenvalue trajectories of the system under different line inductances.

6. Time Domain Simulation Verification and Result Discussion
6.1. Simulation of Single-VSG Grid-Connected System

To verify the correctness of the analysis of the above variable parameters on the change
law of eigenvalue trajectories, a time domain simulation model of a VSG grid-connected
system was built, as shown in Figure 1. The system parameters under the initial operating
conditions are shown in Table 1. When t = 3 s, the system load is increased by 2 kW.

Under the initial operating conditions, the system parameters are set as the references.
The ratios of the virtual inertia J, the virtual damping coefficient D, and the resistance
inductance ratio r of the connecting lines to their corresponding references are 0.5, 1, and
1.5, respectively.

Virtual inertia J has a significant influence on the active power and virtual angular
frequency of the system. As the virtual inertia gradually increases, the overshoot in active
power increases, while the overshoot in virtual angular frequency decreases, and the
response time and decay oscillation time of active power and virtual angular frequency
are extended.

As the virtual damping coefficient increases, the response times of active power and
virtual corner frequency remain the same. However, their overshoot is decreased, the
oscillation time becomes shorter, and the decay oscillation time becomes faster.

As the resistive inductance ratio r increases, the response times of active power and
virtual angular velocity increase, and the decay oscillation time decreases. The overshoot
of active power is decreased, but the overshoot of virtual angular frequency is increased.
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6.2. Simulation of Multi-VSG Grid-Connected System

The time domain simulation model of the two-VSG grid-connected system is built to
verify the correctness of the analysis of the influence of the above variable parameters (J,
D, Rc, Lc) on the system stability. With the same other parameters (as shown in Table 4),
when the power is disturbed, the response simulation waveforms under different virtual
moments of inertia, virtual damping coefficients, line resistances, and line inductances are
shown in Figures 14–17, respectively.

Figure 14. Simulation waveforms with different virtual inertias: (a) active power of VSG1; (b) virtual
angular frequency of VSG1; (c) active power of VSG2; (d) frequency of VSG2.

Figure 15. Cont.
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Figure 15. Simulation waveforms with different damping coefficients: (a) active power of VSG1;
(b) virtual angular frequency of VSG1; (c) active power of VSG2; (d) frequency of VSG2.

Figure 16. Simulation waveforms with different line resistances: (a) active power of VSG1; (b) virtual
angular frequency of VSG1; (c) active power of VSG2; (d) frequency of VSG2.

As can be seen from Figures 14 and 15, increasing the virtual inertia J or decreasing the
virtual damping coefficient D will make the system unstable under a power disturbance.
Increasing the virtual inertia J influences the number of oscillations of active power and fre-
quency under power disturbance, increasing the regulation time of the system. Increasing
the virtual damping coefficient D reduces the amplitude of oscillations of active power and
frequency and shortens the time for the system to reach stability.
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Figure 17. Simulation waveforms with different line inductances: (a) active power of VSG1;
(b) virtual angular frequency of VSG1; (c) active power of VSG2; (d) frequency of VSG2.

In Figures 16 and 17, reducing the line resistance Rc or increasing the line inductance
Lc will deteriorate the system stability. Reducing the line resistance Rc will increase the
overshoot of active power, and the adjustment time of active power and frequency will be
increased. Increasing the line inductance Lc will enlarge the overshoot of active power and
reduce the overshoot of frequency.

7. Conclusions

We studied the stability of single-VSG and multi-VSG systems. The influence mecha-
nisms of various parameters on system stability were verified by small-signal models and
numerous simulation models. The conclusions are as follows.

(1) In the single-VSG grid-connected system, increasing the virtual moment of inertia
will rapidly reduce the damping ratio of the corresponding oscillation attenuation mode
and deteriorate the system stability. Increasing the virtual damping coefficient and the
resistance inductance ratio of the connecting line will increase the damping ratio and
improve the system stability.

(2) In the multi-VSG system, increasing the damping coefficient and line resistance
will increase the system damping and improve the system stability. Increasing the virtual
moment of inertia and line inductance will reduce the system damping, which is not
conducive to the system stability.

We achieved some research results that provide a theoretical reference for the match-
ing and selection of various parameters in VSG single-machine grid-connected systems
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and multi-VSG parallel grid-connected systems. However, further in-depth research and
discussion are still needed:

(1) The influence of grid voltage fluctuation is not considered in the small-signal
stability analysis of VSG single-machine and multi-machine parallel systems. When the
voltage fluctuates, the transient stability of VSG needs further study.

(2) This paper mainly verifies the theoretical analysis through time domain simulation,
and a semi-physical test platform based on theory and simulation is necessary to further
prove the effectiveness of the results.
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