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Abstract: The share of energy produced by small-scale renewable energy sources, including photo-
voltaic panels and wind turbines, will significantly increase in the near future. These systems will
be integrated in microgrids to strengthen the independence of energy consumers. This work deals
with energy management in microgrids, taking into account the volatile nature of renewable energy
sources. In the developed approach, Multi-Agent Reinforcement Learning is applied, where agents
represent microgrid components. The individual agents are trained to make good decisions with
respect to adapting to the energy load in the grid. Training of agents leverages the historic energy
profile data for energy consumption and renewable energy production. The implemented energy
management simulation shows good performance and balances the energy flows. The quantitative
performance evaluation includes comparisons with the exact solutions from a linear program. The
computational results demonstrate good generalisation capabilities of the trained agents and the
impact of these capabilities on the reliability and resilience of energy management in microgrids.

Keywords: energy management; multi-agent reinforcement learning; renewable energy systems;
microgrid

1. Introduction

Curtailing man-made contributions to climate change is one of the biggest challenges
of the 21st century. To this end it is pivotal to leverage renewable energy sources.

Renewable energy sources increase the stochastic effects on the supply side. Addi-
tionally, the demand side faces changes. This includes new types of consumers, such as
electrical vehicles, and agile, on-demand production systems, such as additive manufactur-
ing systems. In addition to this, new prosumers, such as pumped storage power plants,
supercapacitors [1], and photo-voltaic (PV) attached batteries [2], are on the rise.

In general, fluctuations on the demand and consumer side will put energy networks
under much more stress. The introduced dynamics is a threat, with respect to blackouts,
increasing the need for preparedness for such events. Energy intensive industries, such
as steel production, have been using their own small power plants to fulfil their energy
needs in-short, becoming independent from the main grid [3]. Following this approach,
other industries also wish to become less dependent. For example, a fish farm in Mali has
benefited from using a PV microgrid for maintaining continuous power supply to their
water treatment plant as “a 30-min power outage would mean the death of the fish in the
pools, resulting in huge financial losses” [4]. The Austrian company Fronius [4] shows
that the “solar system is providing 98% of firm requirements while 2% is generated with
backup diesel generator”. This does not only improve the resiliency of the farm but is also
reducing its carbon footprint.
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For rural electrification, having Renewable Energy (RE) grids involving PV panels
is a good way of generating green energy, but “these mini-grids require investments in a
rather complex power generation and distribution infrastructure” [5]. Additionally, the
production is heavily dependent on the location. In a European region, the weather changes
a lot (in contrast to, e.g., Africa) and roof construction styles and location of the industry
brings more complexity to the overall system.

The above described dynamics put extreme stress on grids. Attention needs to be
placed on energy management to avoid a breakdown of the overall system. In this applied
research, our goal was to increase the resilience and reliability of microgrids by means of
effective energy management. The vision is to develop a method that could be deployed
decentralised, controlling the reactions of systems in the grid in order to maintain the
balance of energy produced and consumed.

The first step towards this vision is to analyse data-driven methods that can be trained
and later deployed in a decentralised manner, enabling systems to independently react to
disturbances in the grid. The initially developed simulation environment allowed us to
research such methods without real-time constraints.

We adapted a Multi-Agent Reinforcement Learning approach and trained the agents
centrally. However, it is possible to deploy the agents decentralised. We used real world
consumer and producer energy data for the development. Industrial users have provided
input with respect to energy management systems and future microgrids. To improve
the generalisation capabilities of the trained multi-agent reinforcement learning model, a
generalised method was developed. A method to calculate a resilience and reliability score
for a microgrid was developed. Quantitative results show that the generalised training
method improves the resilience and reliability of the trained EM simulation, compared to
simulation models that have been trained with specific energy data.

The rest of the paper is structured as follows. Section 2 gives an overview of the related
work and discusses the key contributions of this article, Section 3 describes an approach to
solve the real world problem by defining a problem statement, understanding the data and
the simulation, and also defining an evaluation criteria for both. Finally, Sections 4 and 5
provide the results and conclusions of our research.

2. Related Work
2.1. Micro Grids

In a smart grid, as an extended concept of an intelligent power grid, individual com-
ponents (storage, producers, consumers) of the energy network can communicate and
coordinate with each other [6]. This forms the technical basis that allows one to achieve
a producer/consumer balance between the components. This is important to limit the
effects of extreme weather and other events with low probability and high impact on power
systems, which have become increasingly evident worldwide over the last decades [7].

Microgrids represent a subgroup of smart grids that can also be operated autonomously
by including locally generated (renewable) energy to increase resilience [8] According to
IEEE standard 2030.7, a microgrid is “a group of interconnected loads and Distributed Energy
Resources (DER) with clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid. It can connect and disconnect from the grid to enable operation in both
grid-connected or island modes” [9] (p. 13).

Some other research on microgrids is focusing on multi-energy microgrids [10] and
megagrids [11].

Due to the current challenge of reducing CO2 and thus the increasing need to use
renewable energies (solar, wind, etc.), as well as the progress in the field of electrical
energy storage, research on multigrid/multi-energy systems is becoming more and more
important. Abu Elzait et al. [12] observed a drop in the prices of PV systems and showed
in their studies that renewable-based microgrids are more economical than microgrids
that utilize only conventional energy systems. Energy storage is an important aspect in
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efficient microgrids. Machine learning can support the energy management of microgrids
by leveraging different technologies and strategies [13].

2.2. Reliability and Resilience

Weather induced events, in general, lead to High Probability, Low Impact (HPLI)
events [14]. In recent years, not only climate induced energy uncertainty (CinU) have led to
Low Probability, High Impact (LPHI) events. Important characteristics of energy systems
are their reliability and resilience [15].

There is no common definition of reliability and resilience in general, and with respect
to microgrids in particular. In the following, we review work that addresses one of the two
system properties—or even both.

With respect to microgrids, the difference between resilience and reliability can be
determined by survivability, where survivability is defined as the ability of the system
to maintain its supply even at a degraded level to consumers during a disturbance [16].
Reliability deals with preparedness against HPLI events, whereas resilience deals with
preparedness against LPHI events. Resilience describes the ability to survive and quickly
recover from extreme and unexpected disruptions [17].

For a system to be resilient, it either has to be robust, so that disturbances have less to
no impact, or it can adapt quickly to get back to an output as it was before the event [18].

Resilient microgrids can be built by supporting an island mode. Here microgrids
are trying to continue to operate independently without the main grid. For example, a
microgrid in Maryland was able to supply its local loads by islanding from the grid during
Superstorm Sandy in the USA [19].

Reliability can be defined as the ability of the power system to deliver electricity in the
quantity and with the quality demanded by the users [20]. In short, the reliability of energy
systems means that the lights are always “on” in a consistent manner.

Cuadra et al. [21] summarized the differences of concept resilience vs. reliability in
power grids as: Resilience is related to LPHI events. It is a dynamic concept. Reliability is
related to HPLI events. It is a static concept.

Amani et al. [22] depicted a literature review of different methods of measuring
reliability and resilience of power grids and compared the performance of different metrics
when applied to scenarios in benchmarks and real power grids.

Wang et al. [23] discussed an approach of how microgrids can help increase resilience.
With respect to the operational strategies used to improve resilience, they classified the
research areas of interest as: network reconfiguration, maingrid islanding, feasible islanding,
demand side response, and vulnerability analysis.

Panteli et al. [7] described in their work the multi-phase resilience trapezoid phases
(disturbance progress, post-disturbance degraded, and restorative) and metrics during a
disaster event and its restoration.

Mujjuni et al. [24] presented a framework that links resilience to development states
within the Electricity Supply Industry (ESI). They proposed 303 resilience indicators linked
to 13 development goals, measured against 6 capacities and 11 qualities.

For prevention from extreme weather conditions, e.g., Panteli et al. [25] evaluated the
relationship between windstorms and the failure probability of transmission components
by using a mix of infrastructure and operational indices. Dehghani et al. [26] optimized
the preventive replacement of poles in a large-scale power distribution system. Jufri et
al. [27] studied in detail different grid resilience indices and classified grid resilience en-
hancement strategies into the groups physical hardiness and operational capability. Resilience
enhancement strategies were categorized by Huang et al. [28] into resilience planning,
resilience response, and resilience restoration, and they argue that the ultimate goal of
system resilience enhancements leads to smart grids. This also leads to a more specific field
of application: the recovery from cyber-attacks in smart grids [29].

Different measures can be applied to minimize the impact of the disturbance and
decrease the time to restore the state [30].
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2.3. Reinforcement Learning and Energy Management System

Active Energy Management (EM) has to be applied to increase resilience.
In recent years, the application of Reinforcement Learning (RL) for solving EM prob-

lems has significantly increased [8,31]. A few select research problems are found in the list
below [8,32]:

• Energy management (energy cost, load peaks, electricity balance, etc.);
• Load and demand forecasting;
• Demand response (total profits, total cost, operating cost, etc.);
• Operational control (generation control, frequency deviation, reliability, etc.);
• Cyber security;
• Economic dispatch;
• Fault detection of equipment.

For ML methods, it is important that data from energy sources and consumers can
be captured in large datasets, and that the data can be used for engineering appropriate
EM systems. In the context of EM for buildings, privacy preserving methods are also
researched [33].

The application of RL can be approached in two different ways, namely single and
multi-agent RL [34].

2.3.1. Single Agent Reinforcement Learning

Qin et al. [35] proposed an approach to protect privacy of the load controls in resi-
dential microgrid. In their study, there is a central operator controlling a number of smart
homes, and the authors suggest using Deep Reinforcement Learning (DRL) to solve the
privacy issues. Muriithi and Chowdhury [31] used a PV microgrid including PV producer,
Battery Energy Storage System (BESS), and local loads. It uses single agent RL algorithm Q-
Learning to control the discrete charging and discharging behaviour of a battery. Ji et al. [36]
used a microgrid consisting of distributed generators, PV installation, BESS, wind turbines,
local loads, and a connection to the main grid. Here, a deep Q-network algorithm is used to
train the distributed generators to produce cost-efficient energy. Khawaja Haider et al. [37]
investigated in their study the differences of online and offline learning with respect to
energy-storage systems in microgrids.

2.3.2. Multi Agent Reinforcement Learning

Samadi et al. [38] used a microgrid consisting of wind and PV energy sources, BESS,
heat producers, diesel generators as a backup, and some thermal and electrical loads. This
microgrid is connected to the main grid and represents each producer or consumer as an
agent responsible for selling or buying energy in the EM market. The EM Performance
is guided by reducing costs for the energy consumers in the microgrid. In this approach,
Q-Learning is used, and the RE producers only contribute in the observation space but are
not controllable. Foruzan et al. [39] used the RE microgrid, representing each component
as an agent, RE producers as sellers, consumers as buyers, BESS as both, and the main grid
as the seller. It uses an auction-based approach to maximise the profit within the microgrid
using the Q-learning algorithm. Fang et al. [40] presented another residential microgrid
focusing on an auction-based approach to achieve Nash-equilibrium within the microgrid
using Q-learning algorithm. They consider residential PV producers as sellers and electric
vehicles as storage acting as buyers. Fang et al. [41] proposed another Q-network approach
to achieve Nash-Equilibrium in a residential microgrid. Here, the microgrid consists of a
PV panel, wind turbines, distributed BESS, and industrial and residential loads. A game-
theoretical view on multi-agent RL has been researched to find a point where it becomes
uninteresting for an attacker to continue their attack [42].

2.4. DRL for Reliability and Resilience

To enhance the reliability of the Energy Management System (EMS) with DRL a multi-
microgrid architecture where EM performance is guided by lowering the economic cost
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of running, a RE microgrid has been proposed by Ref. [43]. In their model, four similar
functioning microgrids are used, consisting of PV producer, wind turbines, BESS, diesel
generators, and loads. Here, each microgrid has a microgrid control centre (MGCC), and
there is also a central microgrid cluster control centre (MGCCC), each acting as an agent,
with the main goal of working together and reduce the operational cost while performing
load balancing.

To handle resilience and the impact of extreme weather events, a multi microgrid
formation using a single agent RL to model a Distribution Network Operator (DSO) has
been proposed [44]. The DSO uses network topology, total production, and total load
as observation. The actions consist of changing the network configuration, while the
reward is governed by voltage and current flow in a branch. Researching Multi-Agent
Reinforcement Learning (MARL) and resilience, a double agent approach in a microgrid
has been proposed [45]. One agent is a distributed generator while the other is a load agent
and the EM performance is guided by optimal power flow. The optimal power flow is the
total cost incurred by the generators to produce enough energy to achieve load balancing.
The EM performance is also guided by improving the utility value of a microgrid in a
short period of time with limited generation resources. As per Ref. [45], the utility value
is given by load supply income, planned and unplanned outage losses, maximizing the
utility value increases resilience. In another approach, a multi-agent framework has been
used to enhance the resilience of the complete power system [46].

Q-learning is an important approach used to solve EM problems using RL,DRL or
MARL. The usage of policy gradient methods with these actor-critic models is very in-
teresting, as these have shown significant performance in teaching flexible movement to
human simulation or walking to Boston Dynamics robot simulation [47]. In many of the
studies there are simple rewards schemes as the EM performance is more guided towards
profits and cost reduction. When the EM performance goal becomes multi-dimensional, the
design of the reward scheme becomes complicated and the impact of it on the performance
needs to be investigated.

3. Approach

In this section, we will describe the problem and the approach taken. Overall, not
only in energy systems research but also, for example, in manufacturing, the number of
data-driven approaches [48,49], in contrast to a model-driven approach [50], is increasing.
We are following this trend.

Section 3.2 defines the problem statement and describes in brief the methodology
mentioned in Figure 1. Section 3.3 describes the energy profile data, the data analysis
techniques applied, and the generation of artificial data to promote the generalisation
behaviour for trained agents. Section 3.4 discusses the MARL approach towards training
an energy management simulation. Section 3.5 describes the approach towards qualitative
and quantitative analysis of the trained agents.

3.1. Research Questions

Based on the above motivation, we define our research questions as follows:

• Is it possible to provide a tool to support decision-making with respect to the design
and management of RE microgrids that allows to assess the reliability and resilience
of microgrids?

• Is it feasible to develop a data-driven EM simulation for a RE micro grid, that leverages
real-world energy data?

• To what extent does the simulated EM system show reliability and resilience?

3.2. System Design

To model real world problems, an EMS simulation must be developed where the RE
producers, consumers, and a battery storage can be modelled as agents working together.
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In this research, an EMS system is considered as a RE PV microgrid that includes the
following components:

• Profile-Following PV producer;
• Profile-Following consumer;
• BESS;
• Fully Controllable Producer (FCP), such as Diesel generators, etc.;
• Freely Acting Consumer (FAC), such as pumped water storage, etc.

Profile-following agents are an important aspect of this simulation. Here, any real
world time series data can be used. The profile in this EMS is a series of 96 time steps
of energy production or consumption, where each time step is 15 min of a day. For our
research, we are using energy profiles from Upper Austria large PV installations and
industrial consumers.

The goal for the agents is EMS performance, which can be defined as:

• Profile Following: The profile-following agents should closely follow the energy
profile defined for them;

• Battery Function: A BESS agent should be able to perform its duties of storing ac-
cess RE and providing energy when the produced RE is not reaching the required
consumption in the microgrid;

• Load Balancing: The FCP and FAC agents should act in a way so that energy is closely
balanced in this microgrid;

• Control Energy or Load Balancing: The stochastic nature of RE and consumption
introduces sudden fluctuations, where the BESS is not capable of reacting fast enough.
This points out the need for a component of energy that can handle such changes of
energy production and consumption. In this microgrid, FCP and FAC should provide
this control or load balancing. FCP should provide the minimum energy required in
the microgrid to balance energy while FAC should store the minimum of the excess
energy generated in the microgrid.

This EMS performance is subject to weather conditions on different days of the year
as the energy profiles on a summer day and a winter day will be quite different.

Finally, the impact of sudden drop in PV production due to weather conditions also
needs to be studied. An analysis of EMS performance can be carried out, in the sense
that in a more resilient microgrid each actor in the microgrid is able to react to sudden
fluctuations, where the agent should still perform their duties. In a less resilient microgrid
EMS performance will lead to a gap between balanced consumption and production, or
agents will leave their profile.

A methodology, as described in Figure 1, has been developed to perform resilience
and reliability analysis of a PV microgrid.

In brief, the methodology is as follows,

• The raw energy data, i.e., PV profile data and consumption profile data, are visualised
using the tool mentioned in Appendix A to select a set of profile data;

• Signal analysis is performed on the data to generate synthetic profiles to avoid overfit-
ting to specific profile data of a day;

• Once the synthetic profile is ready, energy agents in the energy management simulation
are trained to achieve energy management performance;

• After this step, the trained agents are subjected to quantitative, reliability, and resilience
analysis.
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Figure 1. Proposed methodology.

3.3. Energy Data

This subsection gives an overview of the energy profile data used in this research.
Furthermore, the data analysis techniques and synthetic data generation techniques are
outlined in this section. This analysis of the data and synthetic data generation plays an
important role in our reliability analysis strategy, where the agents are subjected to different
types of profiles that capture the essence of different seasons for PV data or different
industry work hours for industrial consumers.

3.3.1. Energy Profile Data

The training data for the EM simulation comprise of real-world energy profiles for
large-scale PV installations and industrial consumers in Austria. Figure 2 shows sample
profiles covering one work week in June 2019. The seventh day is Sunday and the factory
is closed. This is visible by the consumer profile (blue). The dome shaped PV production
production profiles (orange) show strong fluctuations on the 4th and 6th day, most likely
due to variations in cloud cover on these days. Figure 2 is extracted using the tool developed
to understand the data, the tool developed has been explained in Appendix A.

For training, data from a year is available. There are clear differences between winter
and summer. The quality of the data and profiles varies. It is possible to explain observed
peeks or valleys—apart from in some cases. In some cases sensors or data streams must be
broken or interrupted.

Figure 2. Data samples for the industrial energy consumption profiles (blue) and dome shaped PV
production profiles (orange).

From the data of large scale PV installation, one month data for June 2019 is chosen
as the final dataset for the experiments. This dataset is chosen as it contains different
patterns of PV and consumption profiles. The maximum PV production is 280 kW and the
maximum consumption is 180 kW in this dataset. For experiments, the energy values are
scaled down by a factor of 105, and each profile has a data of 96 time steps comprising of
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the whole day. This dataset of 30 days is later referred to as the energy profile dataset in
the text.

3.3.2. Data Analysis

Data comprehension was achieved by a short analysis of the given profiles. To identify
the underlying patterns isolated from the seasons, one month of the dataset was picked. As
all profiles are time series, a trend and noise analysis showed potential classifications of PV
and consumer behaviours. We compare the following analysis with Figure 2.

PV profiles can be described by taking the theoretical bell shape, resulting from
cloudless and perfect conditions, as a baseline. This baseline is dependent on the season,
as amplitude is varying over the time of a year. We were able to identify three different
cases of perturbations. First, the baseline is nearly achieved, with negligible perturbations
and up to 5% amplitude variation from the median. Second, 5–7 short intervals of 2–3 time
steps, with a low impact up to 20% change relative to the baseline. Third, longer intervals
with higher impact and shocks up to 60% change relative to the baseline. In the second and
especially in the third case, daily variations result in strong noise throughout the day.

Consumer profiles can be described by summing weekday dependent needs to the
minimum consumption, as baselines. This results in three different cases. Minimum
consumption varies consistently between 0.1 and 0.4 power units. Workdays require an
additional average consumption of 1.5 power units starting in the first quarter of the day.
Dependent on full or half workdays, the power is needed until the end or the middle of the
day. Daily variations result in noise throughout the day.

3.3.3. Data Generation

After reviewing the results from Section 3.3.2, generation of artificial training data
for PV and consumer profiles can be achieved. Our strategy enables for new profiles,
mimicking the behaviour of PV and consumer profiles in the dataset. Following the dataset
ratios, a case combination is randomly picked from the previously described possibilities.

To generate artificial PV profiles, we use a relatively simple multiplicative time series
approach. The time series consists of two parts: the above mentioned baseline and a noise.
Dependent on the chosen class, the baseline is adapted and the noise model varies. In
class 1, only slight deviations from the baseline were observed. For simplicity, we decided
to generate each noise array from an uniformly distributed random number generator with
a small range of 0.95–1.0. Classes 2 and 3 need more sophistication. However, for both
we apply the same kind of noise array at last to imitate small daily fluctuations and add
broadness to the data. In class 2, the noise model follows the observations and decides
randomly upon which and how many intervals in the time series to pick for stronger
perturbation. Given the intervals, impacts are randomly decided on, with a maximum
of 20% deviation from the perturbed baseline. In each interval the impact is applied at
one random chosen timestamp and the neighbouring interval timestamps are interpolated,
following polynomial interpolation of second degree. A similar approach, consisting of
more and more impacting intervals, is used in class 3 right before the last noise array of
class 1 style is applied and after the step explained next, to imitate the original dataset.
From observations of the data, class 3 profiles can contain a shock or dent of higher impact,
which has to be modelled separate of the interval approach, as they appear once or twice
and have a potentially longer duration. It is randomly chosen if and where such an event
occurs in the time series: namely in the first half, the second half, both, or overall. Based
on this, if chosen, the baseline is reshaped by application of 50–60% value reduction at 1
to 30 neighbouring points in the given area. By interpolating, following the polynomial
interpolation of second degree in a randomly chosen size of a neighbourhood, the new
baseline shape is generated.

Consumer profiles are generated by applying a direct one-layer noise model to the
case specific baseline. The noise model is generated from a standard normal distributed
random number generator. Each baseline follows the observed consumption needs, where
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the consumption levels and intervals are randomly chosen, based on the occurrences in a
given case.

3.4. MARL Approach to Energy Management Simulation

This section gives an overview of the RL approach to model the problem stated in
Section 3.2. It is based upon our earlier work [34] and extends it with generalisation analysis
and inclusion of stressors in the simulation. Section 3.4.1 gives a brief introduction to RL
and MARL, the simulation model is introduced in Sections 3.4.2 and 3.4.3 describes the
training environment, observation space, DRL model, and the reward scheme used to steer
the agents. Section 3.4.4 discusses the development accomplished to achieve generalisation
of the trained MARL model. Finally, Section 3.4.5 introduces the definition of stressors
used to stress the simulation.

3.4.1. RL and MARL
Deep Reinforcement Learning

RL is regards developing decision-making skills through sequential interactions with
an environment. The environment defines an observation space S and an action space A.
At each time step in the interactions, the RL agent receives an observation st and a reward rt
from the environment and then decides on an action at by using a policy function π(at|st).
The learning objective for the agent is to maximize the expected cumulative reward:

Rt =
∞

∑
k=1

γkrt+k+1, γ ∈ (0, 1]. (1)

The definition of the value of a policy π for a state s is

vπ(s) = Eπ(Rt|st = s), (2)

and the action-value function of a policy is defined as

qπ(s, a) = Eπ(Rt|st = s, at = a) (3)

when an action a is taken in a state s. Maximisation of the action-value function results in
an optimal policy.

With the most recent developments in Deep Learning (DL), several new opportunities
in Machine Learning have emerged. The combination of DL with RL (DRL) has in par-
ticular produced new, astonishing outcomes in a variety of sectors, such as superhuman
performance in video games. In DRL, deep neural networks are used as function approx-
imators for value and policy functions. This introduces a network parameter θ, which
allows to directly optimise the policy by looking for the best values for θ in the policy space
{πθ(at|st), θ}. For bigger spaces of states and/or actions where a tabular representation is
impractical, function approximation is essential.

The gradient ascent approach (Baird and Moore [51]) can be used to optimise the
neural network parameters θ, leading to a class of algorithms known as policy gradient
methods. A parameter update is represented by an estimate in the gradient of an objective
function. Proposed by Schulman et al. [52], the following objective function is frequently
employed for policy gradient methods:

LPG(θ) = Êt[log πθ(at|st)Ât] (4)

where Ât is an estimator of the advantage function that describes the additional benefit
that could be gained by acting in the manner indicated by at.

So-called actor-critic methods are created by the combination of policy gradient meth-
ods with action-value functions. The critic approximates the action-value function while
the actor approximates the policy, criticising the actions that the policy has taken.



Energies 2022, 15, 7381 10 of 35

Multi-Agent Reinforcement Learning

MARL is a multi-agent generalisation of RL, which studies how multiple agents learn
in a shared environment. The presence of additional agents, who are actively changing the
training environment, presents a significant difficulty for MARL. An agent’s observation
includes information on both the agent’s own activities and those of other agents. In other
words, several agents in MARL indirectly communicate with one another through their
behaviour. Dependencies and load balancing in the EM scenario necessitates coordinated
activity from all agents. We took the Reinforcement Learning library (RLlib) implementation
of a Proximal Policy Optimisation (PPO) algorithm and enhanced it with a centralized
critic to be able to train coordinated actions. Inspiration for applying a centralised critic
approach is taken from Yu et al. [53].

The new family of actor-critic approaches, known as PPO, was put forth by Schulman
et al. [52]. A concept to stabilize training was suggested using a modification of (4). Large
policy changes are constrained by the new objective, which results in smaller steps and
allows for numerous epochs of mini-batch updates. The new aim is established as follows
using the ratio of the new and old policies: rt(θ) = πθ(at|st)/πθold(at|st)),

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât] (5)

where clip(rt(θ), 1− ε, 1 + ε) clips the ratio to the interval [1− ε, 1 + ε].

3.4.2. Simulation

As per Section 3.2, the components of RE PV microgrid are considered in the simulation
as agents that need to be trained to maintain EM performance. As with any RL problem, the
development of an efficient and effective training environment is crucial. This essentially
boils down to the design and implementation of agents’ observations, actions, and rewards.
To capture EM dynamics, the observations in the simulation training environment consist
of time series for four quantities and these four quantities depend on the type of agents. For
profile-following agents and fully controllable agents, this is the total energy production
in the microgrid, total energy consumption, the actual load of the agent, and the load
according to the agent’s energy profile. For a BESS agent, it is the total energy production
in the microgrid, total energy consumption, current battery State Of Charge (SOC), and
total renewable energy available. At any time step, an agent can choose 1 of 11 discrete
actions: increase load (5 discrete increments), decrease load (5 discrete decrements) or do
nothing. The EM performance forms the basis for the reward scheme design of the MARL
based simulation.

3.4.3. Agent and Training Environment

The five components specified in Section 3.4.2 are represented as agents in the multi-
agent compatible RL training environment that is described in this subsection. The goal
of the training is to discover the best strategies for achieving the objectives of energy
management outlined in Section 3.4.2.

• Training Environment:
The multi-agent environment of RLlib [54] has been bootstrapped for the creation
of the training environment, making it compatible with OpenAI gym environments.
Box observation spaces and discrete action spaces are used in the environment for
the agents. Tang and Agrawal [55], who claim that “the discrete policy provides
considerable performance advantages with state-of-the-art on-policy optimization
methods PPO” served as an inspiration for the choice to employ discrete action spaces
with the PPO algorithm. The optimal number of discrete sampling for a continuous
action space is given by Tang and Agrawal in their citation of Ref. [55] as being (7–15).
In our studies, 11 discrete actions produced the best results;
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• Parameters and Variables:
In the Tables 1 and 2, the mathematical notation and the variables for the EM problem
are introduced, which will be used throughout the paper;

• Agents:
The characteristics of the agent configuration are detailed below. For profile-driven

agents, the energy profile is the decisive aspect, whereas for BESS, their initial SOC
and minimum SOC play a crucial role. In FCP and FAC, load balancing tolerance
is a critical part. Load-balancing is accomplished if the absolute difference between
total production and total consumption is less than the tolerance. Max-load-diff is the
maximum load difference between two consecutive time steps for each agent. In BESS
it establishes the maximum reaction magnitude. As shown in Figure 3 the observation
of an agent is made up of four time series with five time steps each.

Figure 3. Observation space for agents.

Parameters

Table 1. Mathematical notations for the parameters.

Parameters Explanation

T The number of time steps per episode.

SOCinit Initial SOC value of the BESS.

SOCmin Minimum SOC value of the BESS.

SOCmax Maximum SOC value of the BESS.

Pmax Maximum load of the PV producer.

Fmax Maximum load of the fully controllable producer.

Cmax Maximum load of the profile-driven consumer.

Dmax Maximum load of the freely acting consumer.

Bmax Maximum battery magnitude of the BESS.

∆pv Maximum load difference of the PV producer.

∆ f Maximum load difference of the fully controllable producer.

∆c Maximum load difference of the profile-driven consumer.

∆d Maximum load difference of the freely acting consumer.

Finit Initial load of the fully controllable producer.

Dinit Initial load of the freely acting consumer.

Rpv
t Profile load for PV producer at time t, t < T.

Rc
t Profile load for profile-driven consumer at time t, t < T.
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Variables

Table 2. Variables mathematical notations.

Variables Explanation

pt Load of the \ac{pv} producer at time t, t < T, 0 ≤ pt ≤ Pmax.

ft Load of the fully controllable producer at time t, t < T, 0 ≤ ft ≤ Fmax.

ct Load of the profile-driven consumer at time t, t < T, 0 ≤ ct ≤ Cmax.

dt Load of the freely acting consumer at time t, t < T, 0 ≤ dt ≤ Dmax.

bt Battery magnitude of \ac{bess} at time t, t < T,−Bmax ≤ bt ≤ Bmax.

soct \ac{soc} of \ac{bess} at time t, t < T, SOCmin ≤ soct ≤ SOCmax.

In the following, the agents are specified in more detail.

– PV producer agent:
The energy output profiles of a PV panel are followed by this agent, thus the
agent is profile-driven. Figure 3a shows the agent’s 20-dimensional observation
space. The agent has a discrete action space of 11 non-negative numbers, with
the options (0–4) for reducing production load, 5 for doing nothing, and (6–10)
for increasing production load. The production load increase or decrease is thus
represented as (0.2, 0.4, 0.6, 0.8, 1.0) ∗ ∆pv;

– Profile-driven consumer agent:
This agent adheres to power consumption profiles and is profile-driven. As with
the PV agent, the observation and action space are identical;

– BESS agent:
This agent mimics the behaviour of a battery storage, whose primary goal is to
charge and discharge batteries in an acceptable manner, which is to charge when
renewable energy is present, and discharge when no or less renewable energy is
present. Figure 3b illustrates its 20-dimensional observation space. Its action space
is made up of 11 non-negative values, where 0–4 corresponds to battery drain,
5 to inactivity, and 6–10 to battery charging. Max-load-diff, in the context of the
BESS agent refers to a battery’s maximum rate of charging and discharging Bmax.
The battery magnitude, also known as the effective charging/discharging rate, is
calculated as (0.2, 0.4, 0.6, 0.8, 1.0) ∗ Bmax. Specific configuration parameters for
the BESS agent are initial/minimum/maximum SOC levels, denoted as SOCinit,
SOCmin and SOCmax. The initial value refers to the start value at the beginning of
an EM episode;

– FCP and FAC agent: Both agents share their specifications for observation space
and action space with the PV agent. The maximum power output that can be
sent into the microgrid is a crucial configuration factor for the fully controllable
producer. These agents have no specific profile to follow and are mainly in charge
of load balancing.

• Deep Reinforcement Learning Model:
In our implementation, which builds upon RLlib’s implementation of a PPO algorithm,
the agents share a centralised critic model, criticising the agents’ actions from a
microgrid-wide perspective. The DRL model that was utilized for each agent is
depicted in Figure 4. The action logits are located in the third layer of the actor
model’s three layers. Each agent’s centralized critic model comprises three input
levels. Let us assume that we have n agents in order to better comprehend the input
layers. The first input layer is the agent’s own observation with the shape (, 20); the
second input layer processes the observations of the opponent agents with the shape
(, 20 ∗ (n− 1)); and the third layer processes the actions of the opponent agents with
the shape (, 11 ∗ (n− 1)).
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Figure 4. DRL model.

The three input layers are concatenated, and then the combined input is processed
by two dense hidden layers. The last layer generates a single value, which is the
action-value for a specific input of observations and actions. The first dimension
of (, size) for all layers is left unspecified because it depends on the (configurable)
mini-batch size of the PPO algorithm.

• Reward Scheme for Agents:
The reward scheme for different agents in our EM simulation is as shown in Table 3.

Table 3. Agents and reward schemes.

Agent
Profile
Deviation
Penalty

Load
Balancing
Reward

Battery Behaviour
Reward and Penalty

Excess Energy Penalty and
Appropriate Energy
Reward

PV agent X

Profile-Driven
Consumer X

BESS X

FCP X X

FAC X X

In the following, we discuss what these different reward configurations mean. There
are four types of reward configuration as mentioned below:

– Profile Deviation Penalty: As displayed in Figure 5a, the profile-following agents
should remain close to the energy profile to avoid distance-based growing penalty.
In Figure 5a, shades of blue extend to infinity in both directions, showing distance-
based penalty;

– Battery behaviour rewards and penalty: Shown in Figure 5b BESS should provide
energy in the orange area and store the RE in the blue area to avoid penalty and
earn rewards;

– Load Balancing Reward: FCP and FAC agents are given a reward if they work
together such that (total production − total consumption ≤ balance tolerance)
where balance tolerance is one of the environment configurations;
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– Excess energy penalty and appropriate energy reward: As per Figure 5b there are
different additional reward configurations for FCP and FAC agents;

* FCP: It receives a reward for producing appropriate energy in an orange
area and producing nearly zero energy in a blue area, otherwise, a penalty is
applied;

* FAC: It receives a reward for absorbing nearly zero energy in an orange area
and absorbing appropriate energy in a blue area, otherwise, a penalty is
applied.

Complete equations to reproduce these reward schemes can be found in the work by
Haemmerle et al. [34].

(a) (b)
Figure 5. Reward scheme in a nutshell. (a) Profile deviation penalty. (b) Battery behaviour reward
and penalty.

3.4.4. Generalised Training

This subsection talks about the development accomplished to enable generalisation
capabilities of the trained agents. Data analysis from Section 3.3.2 and artificial data
generation from Section 3.3.3 form the basis for this development. The PV classes mentioned
in Section 3.3.3 represent the energy profiles of different days taken from energy data.
During training, based on the randomly generated profiles from a specific PV class for
producer and consumer class for consumer, the profiles are exchanged after every episode.
This helps the trained agents to react to fluctuations that may occur for a specific PV class
or a consumer class. For evaluation, a specific day is picked from the energy profile dataset
corresponding to the specific PV class and consumer class. Then a complete quantitative
analysis is carried out based on Section 3.5.1.

3.4.5. Inclusion of Stressors in the Training Environment

To enable Resilience and Robustness Analysis, we included the option to use abstract
stressors in the environment. To simplify the approach, we only focused on PV and
consumer agents, while using a rather straightforward stress signal. At any given sub-
interval of an episode, one of the two agents can be manipulated. Stress is referring to a
change in the produced energy for PV or consumed energy for the consumer. Whereas the
profile-following is not influenced, the observation from other agents will be. Especially
the BESS, FCP and FAC agents are dependent on the profile-following agents and need to
adapt to the new situation.

The parameters for stressors are determined by their interval and significance. Inspired
by real-world scenarios, we decided upon different levels of impact. Low, moderate, and
high impact, representing high, moderate, and low probability events.

3.5. Simulation Analysis

For simulation analysis, one or multiple days from the dataset are selected. The
analysis is carried out using the following three steps:
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• Evaluation with no stressors: Evaluation against original profiles from selected data is
performed. Resulting plots and quantitative analysis as per Section 3.5.1 are recorded;

• Evaluation with theoretical optimum: Evaluation against the theoretical optimum
simulation as defined in sub-Section 3.5.2 is carried out on selected data;

• Evaluation with stressors switched on: Trained simulation is perturbed with stressed
PV profile data or consumption data or both, which is described in sub-Section 3.5.3
for selected data. The resulting plots and quantitative analysis are recorded.

3.5.1. Quantitative Analysis

This subsection describes the quantitative analysis formulation used in this article.
Below are the legends for the quantitative analysis of the simulation:

• mae—Mean Absolute Error (MAE);
• rmse—Root Mean Squared Error (RMSE);
• norm rmse/mae—normalized ratio RMSE against MAE;
• sma—Simple Moving Average;
• sma mae—MAE between SMA’s;
• noice—additive signal decomposition in SMA’s and noise;
• noice metrics—statistical noise signal analysis based on types;
• ee—excessive energy produced, considering PV producer, profile-driven consumer

and BESS;
• EE FCP—total excessive FCP production, while the PV producer exceeds the profile-

driven consumer, i.e., energy should have been provided by the renewable producer
but still the non-renewable produces the energy;

• AEE FCP—total excessive energy available higher than the balance tolerance;
• diff AEE FCP—total absolute FCP excessive energy higher than ee. For example FCP

energy is 0.75 units and ee is 1.5, then diff AEE fcp would be 0.75, similarly if FCP
energy is 1.5 and ee is 0.75, diff AEE, fcp would again be 0.75;

• EE FAC—total excessive consumption, while PV production is less than profile-driven
consumption, i.e., total RE available is less than consumption;

• diff AEE FAC—total FAC excessive energy absorbed higher than ee. For example FAC
energy is 0.75 units and ee is 1.5, then diff AEE fac would be 0.75, similarly if FAC
energy is 1.5 and ee is 0.75, diff AEE fac would again be 0.75;

• Storage illegal actions—number of time steps battery not charging or discharging
appropriately.This means the battery is charging when no or less renewable energy is
present or the battery is discharging when there is no consumption available;

• Storage absolute illegal loads—total battery magnitude difference to the difference of
RE—consumption available.

The quantitative analysis can be divided into four parts:

• Profile-Following: This is quantitatively analysed based upon how close the agents
are following the energy profile. Distance over an episode is measured through mae,
while rmse and norm rmse/mae give more insight to the occurred spikes. Sma mae
and noise metrics on the other side analyse from a behavioural standpoint. Small sma
mae points towards a good underlying baseline and low-level understanding of noise
trends. Noise metrics investigates if the high-level noise model is matching. These
measures provide a deeper insight into the comparison of the energy profile and the
solution of the trained agent;

• Storage Behaviour: for storage to behave appropriately it is important that it produces
energy when no or less RE is available, while it absorbs energy when there is excess. To
analyse this behaviour quantitatively, the storage illegal actions and storage absolute
illegal loads are used;

• Load Balancing: For load balancing, the distance between total production and total
consumption is measured. As above, the metrics are mae, rmse, and norm rmse/mae;

• Control Energy: In addition to load balancing, FCP and FAC agents can be quanti-
tatively analysed by measuring how little energy is produced by the FCP agent and
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how little energy is absorbed by the FAC agents. For FCP agents EE FCP, AEE FCP,
and diff AEE FCP provide the analysis while for an FAC agent it is EE FAC and diff
AEE FAC.

The above quantitative analysis gives an analysis towards the energy management
simulation. Furthermore a comparison between single-day trained agents and generalised
trained agents can be carried out by keeping the same metric in mind.

3.5.2. Comparison to Theoretical Optimum

As an additional component for quantitative evaluation of trained agents, a linear
program for the EM problem described in Section 3.2 has been implemented. The input
parameters and variables for the linear program are described in Section 3.4.3. The linear
program solves the EM problem for one day, and it requires the energy profiles to be fully
specified for the day under consideration. This renders the mathematical programming
approach impractical for deployment scenarios, where EM control decisions have to be
made sequentially, and future consumer loads, as well as future energy output from PV
producers, are not known. However, a multi-agent system trained with RL is able to
cope with deployment scenarios, because the agents’ control decisions are based on their
observations, and these do not contain any information about the future.

The linear program has been implemented with CMPL 1.11.0 (<Coliop|Coin> Mathe-
matical Programming Language). In the following, the objective function is briefly discussed.

O = min ∑
t<T

{
Wp f ·

(∣∣∣pt − Rpv
t

∣∣∣+ |ct − Rc
t |
)
+

W lb · |pt + ft − bt − ct − dt|+ Wee · ( ft + dt)
} (6)

In Equation (6) the parameters Wp f , W lb, Wee denote the weights for the profile-
following, load balancing, and excess energy term, respectively. If bt < 0, the BESS is
discharging (acting as producer), and if bt > 0, the BESS is charging (acting as consumer).

The linear program provides exact solutions to EM problem instances, and these solu-
tions are used as benchmarks for the trained simulation. For benchmarking, an integrated
software is developed that uses CMPL’s Java API, together with CMPL’s built-in Cbc (Coin-
or branch and cut) solver 2.9.8 to calculate the benchmark solutions. Comparison of each
agent with a benchmark is carried out considering their 96 time steps of load or battery
SOC data. All the loads or battery SOC of trained agents and benchmark solution, respec-
tively, are compared using the profile-following metrics, as mentioned in Section 3.5.1. So,
we compare the load or battery SOC of each agent (benchmark vs. trained) considering
mae, rmse, norm rmse/mae, sma mae, and noise metrics. For load balancing comparison
(benchmark vs. trained), we use the profile-following metrics to compare the difference
(total production–total consumption) curves for each solution.

3.5.3. Reliability and Resilience Analysis

In our work we use the following definition of EM reliability: “EM in a microgrid is
reliable, if it is able to provide high quality energy to the microgrid’s energy consumers for
a large variety of EM problem instances”. Energy quality is a direct consequence of load
balancing in the microgrid. With better load balancing the quality increases, hence load
balancing mae values are used to measure reliability. Reliability calculation is formalised
as follows, assuming that the inverse reliability value σM is specific to a set of EM problem
instances M:

σM =
∑m∈M lm
|M‖ (7)

In Equation (7), the load balancing mae value for problem instance m is denoted by lm.



Energies 2022, 15, 7381 17 of 35

In this paper EM resilience is defined as a microgrid’s ability to provide high quality
energy to consumers in the microgrid, when the microgrid is confronted with stressors. For
resilience analysis, the following stressors are used:

• Distinct indentations in PV energy output;
• Distinct indentations in energy consumption.

For a specific stressor s and a problem instance m, the inverse resilience value ρsm is
defined as

ρsm =
ls
m − lm

lm
(8)

In Equation (8), lm denotes the load balancing mae value for the undisturbed problem
instance m, and ls

m denotes the load balancing value for the stressed problem instance m.

4. Results

This section describes the evaluation results for trained EM simulations. In the follow-
ing, the evaluation results are presented in two subsections: (1) single-day training and (2)
generalised training. In each of these subsections, two cases are discussed: (a) evaluation
without stressors, and (b) evaluation with stressors. In case (a), undisturbed energy pro-
files are used for evaluation. In case (b), the energy profiles are modulated by a stressor
signal. The evaluation uses the formulation for quantitative analysis laid out in Section 3.5.
Additionally these subsections discuss how the agents in the EM simulation are trained,
and the EM problem instances that were used for training and evaluation.

4.1. Single-Day Training

For single-day training and evaluation, a subset of three days {1, 2, 3} from the energy
profile dataset is used. Each day comprises specific energy profiles for PV producer and
profile-driven consumer, cf. Figure 6. However, the energy profiles are just part of a
day-specific EM problem instance. The full specification of the three problem instances that
are used for training and evaluation is shown in Table 4.

(a) (b)

(c)
Figure 6. Energy profiles of the problem instances. (a) Day 1, (b) day 2, (c) day 3.
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Table 4. Problem instances for EM simulation.

Parameters Day 1 Day 2 Day 3

PV profile
Dataset
day 1

Figure 6a

Dataset
day 2

Figure 6b

Dataset
day 3
Figure 6c

Consumption
Profile

Dataset
day 1

Figure 6a

Dataset
day 2

Figure 6b

Dataset
day 3
Figure 6c

SOCinit 30.0 30.0 30.0

SOCmin 2.4 2.4 2.4

SOCmax 60.0 60.0 60.0

Pmax 5.0 5.0 5.0

Fmax 5.0 5.0 5.0

Cmax 5.0 5.0 5.0

Dmax 5.0 5.0 5.0

Bmax 1.5 1.5 1.5

∆pv 0.187510 0.194949 0.166984

∆ f 0.5 0.5 0.5

∆c 0.416 0.524191 0.052

∆d 0.5 0.5 0.5

Finit 0.208 0248 0.2

Dinit 0 0 0

4.1.1. Evaluation without Stressors

This section reports on the results with respect to evaluating the trained EM simulation
with problem instances from Table 4. The energy profiles are undisturbed, i.e., they are
not modulated by stressor signals. The results cover two important cases: (1) training and
evaluation use the same problem instance, (2) training and evaluation use different problem
instances. Obviously, case 2 tests the generalisation capability of the trained EM simulation.

The three problem instances that are used for evaluation differ mainly in their con-
sumption profiles, cf. Figure 6. Day 1 represents a normal production day with high energy
consumption, where all the solar energy can be used by the profile-driven consumer and
the BESS. Days 2 and 3, representing production on a Friday or weekend day, respectively,
show the need for negative control energy, implemented by the FAC agent.

As shown in Figures 7–9, the single-day trained agents show good EM performance
when they are evaluated with the trained days. The agents’ load curves are depicted in
Figures 7a, 8a and 9a. On day 1, when there is no need for negative control energy, the FAC
agent is not active. However, on day 2 and day 3 the FAC agent is actively providing the
negative control energy required for load balancing. On all days the BESS agent shows the
required behaviour of providing energy when needed and absorbing excess energy from
the PV producer whenever needed. The FCP agent is active whenever there is too little
output from the PV producer. The profile-driven agents follow their profiles closely. Most
of the time the trained agents show good load balancing, depicted in Figures 7b, 8b and 9b.
One exemption is the period 50–80 in Figure 9b, where load balancing is inappropriate.
This is due to the fact that the maximum storage capacity is reached, and the FAC agent is
not properly trained to handle such a situation. We will see later on in Section 4.2, that this
situation is mitigated with generalised training.
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(a) (b)

Figure 7. Evaluation on day 1, with agents trained on day 1. (a) Agent load curves and profiles.
(b) Load balancing.

(a) (b)

Figure 8. Evaluation on day 2, with agents trained on day 2. (a) Agent load curves and profiles.
(b) Load balancing.

Figures 10 and 11 illustrate results for the case when training and evaluation use
different problem instances. For both figures the agents have been trained on day 1. For
Figure 10, the evaluation day is day 2, and for Figure 11 the EM simulation has been
evaluated on day 3. In both figures poor load balancing is evident, due to the weak
generalisation capability of the trained EM simulation. This is particularly obvious for
the FAC agent. Being trained on day 1, the FAC agent never learned to provide negative
control energy. However, the provision of negative control energy is a required behaviour
for proper load balancing on days 2 and 3.
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(a) (b)

Figure 9. Evaluation on day 3, with agents trained on day 3. (a) Agent load curves and profiles.
(b) Load balancing.

(a) (b)

Figure 10. Evaluation on day 2, with agents trained on day 1. (a) Agent load curves and profiles.
(b) Load balancing.

Table 5 shows quantitative analysis results of the trained agents, when evaluated on
days other than the ones they were trained on. Table 5 points out an important drawback
of single-day training: the inability to adapt to major changes in energy profiles. A profile-
driven consumer agent trained on day 3 is unable to follow the consumption energy profiles
of days 1 and 2, as these do include different patterns. Moreover, BESS and FAC behaviours
are incorrect, resulting in poor load balancing when the single day trained agents are
evaluated on different problem instances.
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Table 5. Quantitative analysis of trained agents evaluated on different days.

Metric Day 1 Training
Day 1 Evaluation

Day 1 Training
Day 2 Evaluation

Day 1 Training
Day 3 Evaluation

Day 2 Training
Day 1 Evaluation

Day 2 Training
Day 2 Evaluation

Day 2 Training
Day 3 Evaluation

Day 3 Training
Day 1 Evaluation

Day 3 Training
Day 2 Evaluation

Day 3 Training
Day 3 Evaluation

Profile
following
PV (mae)

0.011 0.037 0.063 0.031 0.013 0.016 0.015 0.015 0.009

Profile
following
consumer
(mae)

0.039 0.068 0.015 0.101 0.038 0.019 0.50 0.242 0.008

EE FCP 0.28 2.16 0.0 0.28 2.312 5.4 0.34 2.352 0.9

Diff AEE
FCP 0.0 0.52 0.0 11.7 0.64 0.0 6.794 3.327 0.0

EE FAC 0.0 0.00 0.0 0.0 0.4 0.1 0.8 1.8 1.7

Diff AEE
FAC 0.0 33.646 49.91 24.67 0.00 21.756 20.641 15.06 13.064

Storage
illegal
actions

0.0 7.0 16.0 5.0 0.00 4.0 8.0 7.0 7.0

Storage
absolute
illegal
loads

0.0 6.296 11.382 3.042 0.00 2.337 12.041 11.325 16.08

Load
Balancing
(mae)

0.079 0.488 0.594 0.483 0.112 0.361 0.416 0.282 0.222
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(a)
(b)

Figure 11. Evaluation on day 3, with agents trained on day 1. (a) Agent load curves and profiles.
(b) Load balancing.

4.1.2. Evaluation with Theoretical Optimum

In order to provide benchmarks for the single-day trained agents, exact solutions
for the problem instances day {1, 2, 3} have been calculated with a linear program. The
weights in the objective function of the linear program (cf. Equation (6)) have been set as
follows: Wp f = 0.5, W lb = 0.25, Wee = 0.25. The evaluation results are summarised in
Table 6. The numbers in the table indicate the mean absolute error between the load curve
of the respective trained agent and the corresponding load curve provided by the exact
solution. The range for BESS mean absolute error values is (0, 100), and for all other agents
the range is (0, 1). In general, the numbers indicate good performance of the trained agents.
On day 3, the FAC and the BESS agent show worse performance than on day {1, 2}. This
shortcoming is mitigated with generalised training, as we will show later on in Section 4.2.

Table 6. Single-day training evaluation with benchmark solutions from the linear program.

Day PV
(mae)

Consumer
(mae)

FCP
(mae)

FAC
(mae)

BESS
(mae)

1 0.011 0.039 0.057 0.001 2.852

2 0.013 0.038 0.062 0.123 3.926

3 0.009 0.008 0.014 0.386 5.727

4.1.3. Evaluation with Stressors On

In this subsection, the focus is on resilience evaluation of the trained simulation, by
confronting the trained agents with stressed energy profiles for PV producer or profile-
driven consumer. All resilience experiments use problem instance day 1, cf. Table 4.

Stressing an agent means changing the agent’s original profile in the time interval
(40, 60), which is a period with high consumption and high renewable production, with
different stressor levels low/moderate/high. For a PV profile, the stress levels are low
(0.85), mod (0.48) and high (0.23), and the consumption profile stress levels are low (0.91),
mod (0.77), high (0.6). The original profile’s load values are multiplied with these level
values, resulting in the stressed profile.

Figure 12a shows the behaviour of the trained agents with stressed PV agent. At
time step 40, when the moderate stressor starts, the BESS agent starts discharging to its
minimum SOC level, and the FCP agent is activated, providing positive control energy.
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Since the BESS is not charged with renewable energy, the BESS agent is not able to provide
enough energy in the last part of the episode, and the FCP agent is activated to achieve load
balancing in the microgrid. However, during training the FCP agent was never confronted
with such a stressed situation, and thus its load adaptations are not sufficient for proper
load balancing. This insufficiency of the FCP agent in the last part of the episode is depicted
in Figure 12b, which shows the load balancing difference curve, i.e., total production–total
consumption. It points out the resilient behaviour of the trained agents: at time step 40, the
stressor start is immediately followed by a distinct peak in the load balancing difference
curve. However, within a few time steps the difference bounces back to within the allowed
load balancing tolerance of 0.15. This is mainly due to the actions of the BESS agent, which
starts discharging immediately after the stressor start. A similar behaviour can be noted at
time step 60, when the stressor finishes, and the BESS starts charging.

(a) (b)

Figure 12. Evaluation with stressor on day 1, with PV agent stressed moderately. (a) Agent load
curves and profiles. (b) Load balancing difference.

Figure 13a shows the behaviour of the trained agents with moderate stress on the
profile-driven consumer agent between time steps (40, 60). Since the FAC agent has not been
trained in cases with distinct consumption indentations, it reacts poorly and the resiliency
of the microgrid is weak. This weakness can also be observed in the difference curve
Figure 13b: after stressor start, load balancing never recovers between the time steps (40, 60).
In Section 4.2.3 we will show that this behaviour is improved with generalised training.

Table 7 provides an overview of the quantitative analysis with the applied stressors.
The table reveals the correlation between degrading FCP performance and increasing
strength of the PV stressor, cf. Diff AEE FCP values. The values show that the FCP agent is
not able to contribute sufficiently to load balancing in cases with moderate and high stress
on the PV agent. Similarly, a correspondence between degrading FAC performance and
increasing stress levels on consumption can be observed, cf. Diff AEE FAC values.
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(a) (b)

Figure 13. Evaluation of stress on day 1, with the consumer agent stressed moderately. (a) Agent
load curves and profiles. (b) Load balancing difference.

Table 7. Single-day training on day 1, evaluation on day 1 with stressors.

Metric
High
Stress
on PV

Moderate
Stress on
PV

Low Stress
on PV

High Stress
on Consumer

Moderate
Stress on
Consumer

Low Stress
on
Consumer

Profile
following
PV (mae)

0.016 0.020 0.012 0.016 0.011 0.011

Profile
following
consumer
(mae)

0.069 0.061 0.039 0.042 0.037 0.037

EE FCP 0.812 0.104 0.28 0.28 0.28 0.280

Diff AEE
FCP 48.331 29.075 0.0 0.0 0.0 0.0

EE FAC 0.0 0.0 0.0 0.0 0.0 0.0

Diff AEE
FAC 0.0 0.607 0.0 12.919 0.529 0.0

Storage
illegal
actions

0.0 0.0 0.0 0.0 0.0 0.0

Storage
absolute
illegal
loads

0.0 0.0 0.0 0.0 0.0 0.0

Load
balancing
(mae)

0.361 0.260 0.089 0.212 0.146 0.097

4.1.4. Discussion Single-Day Training

The results for single-day training provide the proof-of-concept for training an EM
simulation with MARL. However, the shortcomings of single-day training with respect to
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generalisation are evident. A simulation trained on a specific day shows poor performance
when evaluated on another day, if these days show significant differences in their energy
profiles. These shortcomings will be tackled in the following section.

4.2. Generalised Training

For generalised training, the approach described in Section 3.4.4 is applied. The PV
profiles all belong to the same class mentioned in Section 3.3.2, namely class 1. To compare
against single-day training, evaluation is done on the same subset of three days {1, 2, 3}
from the real-world dataset, cf. Table 4. Parameters SOCinit, SOCmin, SOCmax, Pmax, Fmax,
Cmax, Dmax, Bmax, ∆ f , ∆d and Dinit remain the same as in single-day training, shown in
Table 4.

4.2.1. Evaluation without Stressors

This section reports on results with respect to evaluating the generalised trained EM
simulation with the three problem instances described in Table 4. The energy profiles are
undisturbed, i.e., they are not modulated by stressor signals. An in-detail description of the
three problem instances for evaluation can be found in Section 4.1. The evaluation results
include a comparison with single-day trained simulation models.

As shown in Figures 14–16, the generalised trained agents show good EM performance,
when evaluated with the different days. The agents’ load curves are depicted in Figures 14a,
15a, and 16a.

Although we can observe similar good behaviour in all three days, compared to the
single-day trained simulations, some slight differences appear. The main reason is the
missing variance in profile data in single-day training, where the agents are prone to adapt
to the given energy profiles. This can especially be seen in the comparison between the
consumer profiles in Figures 7 and 14. The generalised trained consumer agent is reacting to
the load changes, whereas the single-day trained agent does follow the profile much better.

(a) (b)

Figure 14. Evaluation on day 1, with the generalised trained agents. (a) Agent load curves and
profiles. (b) Load balancing.
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(a) (b)

Figure 15. Evaluation on day 2, with the generalised trained agents. (a) Agent load curves and
profiles. (b) Load balancing.

(a) (b)

Figure 16. Evaluation on day 3, with the generalised trained agents. (a) Agent load curves and
profiles. (b) Load balancing.

Through dependencies of the other agents on the profile-following agents, their be-
haviour is varying as well. While minor variations in the fully-controllable agents are to be
expected, days 2 and 3 show more significant changes, when compared to the single-day
trained simulation. On day 2, the FAC has more activity, as the BESS is not charging to its
full potential. On day 3, a less fluctuating BESS leads to better load balancing possibilities
for the FAC. Figures 14b, 15b and 16b illustrate that the most important EM objective,
namely load balancing, is achieved well.

Keeping in mind that the results are originating from a single simulation model, they
are not surprising. While it might be considered as a weakness of the generalised approach
not to follow the profiles as well as in single-day training, it is more natural and leads
to better results overall. More broad usage of all agents gives the needed stimulation for
BESS and the fully-controllable agents to act properly. Comparing the results directly to
Figures 10 and 11 shows significantly better generalisation competences, whereas the same-
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day evaluated single-day trained simulation is not outperforming the general approach
by far.

Table 8 shows results of the quantitative analysis of the trained agents when evaluated
on the three selected days. The comparison of Tables 5 and 8 strengthens the above
argument. On average, the profile-following MAE doubled, compared to single-day
training and same-day evaluation. Load balancing shows better results, being on average
nearly on par with the MAE of single-day trained simulations. Day 3 specifically stands
out, as the generalised trained simulation shows better metrics then the single-day trained
simulation.

Table 8. Generalised training quantitative evaluation for each problem instance.

Metric Day 1 Evaluation Day 2 Evaluation Day 3 Evaluation

Profile-following PV (mae) 0.023 0.024 0.018

Profile-following consumer
(mae) 0.084 0.05 0.021

EE FCP 0.272 2.26 0.00

Diff AEE FCP 0.0 0.596 0.0

EE FAC 0.0 1.7 1.8

Diff AEE FAC 0.0 0.715 2.367

Storage illegal actions 1.0 0.0 0.0

Storage absolute illegal loads 0.302 0.0 0.0

Load balancing (mae) 0.141 0.123 0.116

Whenever the single-day trained models are evaluated on another day than the
training day, the evaluation results are significantly worse than the generalised model’s
results. Load balancing on average has a MAE of 3.5 times higher, which is explainable by
the restricted need for fully-controllable agents in the single-day scenarios.

4.2.2. Evaluation with Theoretical Optimum

Table 9 provides an overview of quantitative analysis results with respect to comparing
the generalised training results with benchmark solutions from the linear program. The
benchmark solutions are the same that are used in Section 4.1.2. The comparison with
Table 6 shows that the benchmark performance of the FAC agent and the BESS agent is
improved with generalised training.

Table 9. Generalised training evaluation with benchmark solutions from the linear program.

Day PV
(mae)

Consumer
(mae)

FCP
(mae)

FAC
(mae)

BESS
(mae)

1 0.023 0.084 0.064 0.08 2.046

2 0.024 0.05 0.051 0.088 2.007

3 0.018 0.021 0.00 0.256 4.729

4.2.3. Evaluation with Stressors On

In this subsection, the qualitative analysis of the generalised trained agents is shown
in cases with stress on profile-driven PV agent or consumer agent. The stressors are the
same as in the single-day trained evaluation, cf. Section 4.1.3, and the trained simulation
is evaluated on the day 1 problem instance. The stressors are active in the time interval
(40, 60).

Figure 17 shows the evaluation results for the case where a moderate stressor is applied
to the PV agent. The results are similar to the single-day trained agents, with resilient
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behaviour after stressor start and end. The resiliency is mainly achieved by proper actions
of the BESS agent. The FCP agent is active when required (i.e., in the end of the episode),
but its actions are not good enough for proper load balancing. However, the Diff AEE FCP
values in Table 10 show a significant overall improvement of the generalised trained FCP
agent compared with the single-day trained FCP agent and its Diff AEE FCP values in
Table 7.

(a) (b)

Figure 17. Evaluation of stress on day 1 (generalised), with the PV agent stressed moderately.
(a) Agent load curves and profiles. (b) Load balancing difference.

In Figure 18. the agents are confronted with moderate stress on the profile-driven con-
sumer agent. The generalised trained FAC agent acts properly during the stressed period
and provides negative control energy for load balancing, which shows significant improve-
ment compared to the single-day trained simulation, cf. Figure 13. The improvement of the
FAC agent with generalised training is emphasised by the Diff AEE FAC values in Table 10,
providing an overview of the quantitative evaluation results for various stressors.

(a) (b)

Figure 18. Evaluation of stress on day 1 (generalised), with consumer agent stressed moderately.
(a) Agent load curves and profiles. (b) Load balancing difference.
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Table 10. Generalised training, evaluation on day 1 with the stressors switched on.

Metric
High
Stress
on PV

Moderate
Stress on PV

Low Stress
on PV

High Stress
on Consumer

Moderate
Stress on
Consumer

Low
Stress
on Consumer

Profile
following
PV (mae)

0.020 0.023 0.024 0.024 0.024 0.025

Profile
following
consumer
(mae)

0.084 0.074 0.084 0.074 0.079 0.080

EE FCP 2.112 0.904 0.264 0.272 0.272 0.272

Diff AEE
FCP 29.422 16.706 0.0 0.0 0.0 0.0

EE FAC 0.0 3.20 0.0 0.0 0.0 0.0

Diff AEE
FAC 3.354 1.081 0.0 0.0 0.0 0.0

Storage
illegal
actions

1.0 1.0 2.0 1.0 1.0 1.0

Storage
absolute
illegal
loads

0.302 0.302 0.641 0.302 0.302 0.302

Load
balancing
(mae)

0.356 0.296 0.158 0.158 0.150 0.144

4.2.4. Discussion Generalised Training

The results for generalised training show that it is possible to train a single simulation
model that shows good EM performance for the complete set of problem instances {1, 2, 3}.
With the generalised training approach, the generalisation capabilities of the agents are
significantly improved, compared to single-day trained agents.

Tables 11and 12 show that improved generalisation does also result in better reliability
and resilience. In Table 12 four simulation models are compared: three single-day trained
models, and one generalised trained model. The inverse reliability scores are calculated
according to Equation (7), with days {1, 2, 3} as the set of problem instances. The reliability
advantage of the generalised trained model with score 0.127 is evident.

Table 11 provides an overview of inverse resilience scores for various stressors. Two
simulation models are compared: (1) agents trained on day 1, and (2) generalised trained
agents. Both models were not confronted with stressors during training. We have investi-
gated the impact of low/moderate/high stressors on PV producer and profile-driven con-
sumer, respectively. The inverse resilience scores are calculated according to Equation (8).
The scores show that the generalised trained agents outperform the single day trained
agents for each of the stressors.
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Table 11. Inverse resilience scores for single day training and generalised training.

Stressor Day 1 Trained Inverse
Resilience Score

Generalised Trained
Inverse Resilience Score

High stress
on PV 3.56 1.52

Moderate
stress on PV 2.29 1.09

Low stress
on PV 0.126 0.12

High stress
on consumer 1.68 0.12

Moderate
stress on
consumer

4.26 0.06

Low stress
on consumer 0.227 0.021

Table 12. Inverse reliability scores for single day training and generalised training

Trained Model Inverse Reliability Score

Day 1
trained 0.387

Day 2
trained 0.318

Day 3
trained 0.306

Generalised
trained 0.127

5. Conclusions

Our contribution allows for the training of an EM simulation for microgrids with
MARL, leveraging real-world energy profile data for energy consumption and renewable
energy production. The quantitative analysis, including the comparison with exact solu-
tions for the EM problem from a linear program, shows good performance of the trained
simulation. It will help decision makers to estimate the resilience and reliability of the
microgrid system.

In more detail, the contributions of this work can be summarized as follows:

• A data-driven EM simulation has been developed, which is able to demonstrate
reliable and resilient behaviour;

• To make the simulation adapt to different data patterns, a strong emphasis on generalisa-
tion capabilities have been given. This included, analysis of real-world energy profiles,
generated artificial energy profiles and generalised training with artificial profiles;

• A multi-dimensional reward scheme was developed to incorporate different EM
performances such as load balancing, maximise usage of renewable energy, minimise
usage of non-renewable energy, battery charging/discharging behaviour, and energy
profile-following;

• An extension of the actor-critic RL algorithm PPO was employed with centralised
critic to deal with the collaborative behaviour of each agent;

• As a result of strong generalisation capabilities, the realisation of reliability was noted;
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• Finally, evaluation of trained agents with stressors switched on provided insights on
the resilience aspects of trained agents in a RE microgrid.

An important development target was “trained agents with good generalisation
capabilities”. This means that the trained EM simulation should exhibit good performance
for a multitude of EM problem instances. The presented results are based on a set of three
problem instances, with considerable differences in the energy consumption profiles. In
further research, the number of problem instances and the variety of data patterns in energy
profiles will be increased, thus continuing the work towards the above development target.

Aiming at good generalisation capabilities, a specific methodology was developed. The
methodology comprises analysis of real-world energy profile data, generation of artificial
profile data based on the analysis, and training with the artificial data. Computational
results demonstrate the impact of this training methodology on EM performance, especially
with respect to reliability and resilience. An EM simulation with good generalisation
capability shows better reliability, and better resilience in the face of stressors, even if these
stressors have never been encountered in the training phase of the EM simulation.

In RL, design and parametrisation of the reward scheme are crucial development steps.
A lesson learned is the need for iterative cycles of reward scheme design, tuning the reward
parameters with hyperparameter search, and evaluation. For a complex MARL task with a
multi-dimensional training objective (such as EM in microgrids) it is not sufficient to apply
a methodology where huge efforts are put into the design phase, and after the design phase
the reward parameters are tuned in iterative hyperparameter search and evaluation cycles.

In this contribution, the focus is on training an EM simulation, where training and
execution of the simulation are done in a centralised fashion. This means that the agents that
make up the simulation are trained/executed in a central training/execution environment.
However, the aim of future research is to build on the results described in this work, and to
develop an EM system that actually manages the loads in a physical microgrid. We envisage
the application of the “centralised training and decentralised deployment” paradigm: the
agents are trained in a central training environment, and after training they are deployed
on the microgrid in a decentralised fashion. For example, a BESS agent would be deployed
on the local control system for the corresponding BESS component in the microgrid.

In the presented work, a microgrid consisting of five components is used. In real-world
EM deployment use cases, the number of microgrid components, and thus the number
of agents to be trained, could be significantly larger than five. From the point of view of
MARL, a research question is then: “How does the EM training performance in MARL
scale with the number of agents to be trained?” Another research challenge that comes
in the wake of the deployment scenario is the integration of the trained agents with the
cyber-physical microgrid infrastructure. In this work, the agents’ observations from the
environment, and the effects of agents’ actions on the environment, are simulated. In a real
microgrid, the observations for a deployed agent must be provided by the cyber-physical
infrastructure, sensing and transmitting physical parameter values to the agent. Similarly,
the deployed agent’s actions have to be translated into actual load adaptation signals for
the corresponding microgrid component.
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Appendix A. Tool to Extract Energy Profiles

In the project, we used datasets of photovoltaic systems from Upper Austria. One
dataset contains data from about 190 private smaller photovoltaic systems equipped with
battery packs. In addition, a second dataset from larger systems ’Grossanlagen’ was also
provided. The records are from the period 2014 to 2021, with a recording interval of 15
or 5 min, and were provided as MATLAB export files. In total, these datasets contain
over 100 million rows of data. Constant parameters available for each system are zip code,
model, and capacity. The available properties are PV production, power consumption,
grid power, grid injection, how much battery charged, how much battery discharged, and
battery SOC .

To test our algorithms, we wanted to extract interesting daily profiles for electricity
generation and consumption from this data. For this task, a profile extraction tool was
developed, that first allows to get an overview of the existing data. The data for the small
pv systems are available as matlab export files. However, the ’Grossanlagen’ dataset uses
the HDF5 file format, which is used in MATLAB export files > version 3.7. Therefore, the
application is able to read both formats of data.

To quickly develop the application, we decided to use python. With the help of
Plotly-Dash (https://dash.plotly.com/, accessed on 2 February 2022) we created some
appropriate dashboards. Users in this application can first select whether they want to
examine the data of large or small PV systems. The next step is to select the concrete system.
The charts now show an overview of the data of the PV and the consumers in the entire
time range (see Figure A1). In addition, two drop down menus are filled with all months
and days for which data are included in the time series. The drop down menus can be used
to filter data accordingly.

Figure A1. Overview profile extraction tool.

https://dash.plotly.com/
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Users can filter individual months (e.g., Figure A2) and search the data for days of
interest (e.g., Figure A3).

Figure A2. A sample month in the profile extraction tool.

If exactly one day is selected as a filter, export of the data is then possible. Users can
then activate the Download Excel button and the day’s data will be exported to MS-Excel as
a daily profile, and can be used in experiments.

The final profile contains values for every 15 min of the day (so the dataset contains
exactly 96 data points).

This extraction tool has proven to be very useful in the initial stages of the project.

Figure A3. A sample day in the profile extraction tool.
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