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Abstract: State-of-charge (SOC) estimation of lithium-ion batteries (LIBs) is the basis of other state
estimations. However, its accuracy can be affected by many factors, such as temperature and ageing.
To handle this bottleneck issue, we here propose a joint SOC-SOH estimation method considering
the influence of the temperature. It combines the Forgetting Factor Recursive Least Squares (FFRLS)
algorithm, Total Least Squares (TLS) algorithm, and Unscented Kalman Filter (UKF) algorithm. First,
the FFRLS algorithm is used to identify and update the parameters of the equivalent circuit model
in real time under different battery ageing degrees. Then, the TLS algorithm is used to estimate the
battery SOH to improve the prior estimation accuracy of SOC. Next, the SOC is calculated by the
UKF algorithm, and finally, a more accurate SOH can be obtained according to the UKF-based SOC
trajectory. The battery-in-the-loop experiments are utilized to verify the proposed algorithm. For
the cases of temperature change up to 35 ◦C and capacity decay up to 10%, our joint estimator can
achieve ultra-low errors, bounded by 2%, respectively, for SOH and SOC. The proposed method
paves the way for the advancement of battery use in applications, such as electric vehicles and
microgrid applications.

Keywords: lithium-ion batteries; joint SOC-SOH estimation; forgetting factor recursive least squares;
total least squares; unscented Kalman filter

1. Introduction

Energy crises and environmental pollution are the main obstacles restricting the
sustainable development of the economy and society. In this context, electric vehicles
(EVs) have developed rapidly worldwide because of their advantages in environmental
protection and energy conservation [1–5]. As the core component of EVs, lithium-ion
batteries (LIBs) have significant benefits, such as long cycle life, high energy density, and
low self-discharge rate [6–11]. Since Li-ion batteries are easily affected by usage conditions
and environments, a battery management system (BMS) is essential in ensuring battery
safety and reliability. State estimation of LIBs is one of the core functions of BMS. Common
states include state-of-charge (SOC), state-of-health (SOH), state-of-energy (SOE), state-of-
power (SOP), etc. [12–14]. SOC and SOH are, respectively, the indicators for remaining
driving distance and ageing degree [15–17]. However, due to the unaffordable cost of
integrating sensors into the batteries [18], these implicit states cannot be directly measured
by commercial BMSs. As a response, state estimation techniques, which indirectly calculate
the internal states of the batteries from available signals such as current, voltage, and
temperature, are gaining popularity.

SOC represents the ratio of the remaining capacity of LIB to its full charge capacity,
whose estimation is the basis of the other state observers. However, as revealed by [19], the

Energies 2022, 15, 7416. https://doi.org/10.3390/en15197416 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2190-6023
https://orcid.org/0000-0001-8172-0891
https://orcid.org/0000-0001-6151-4281
https://doi.org/10.3390/en15197416
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197416?type=check_update&version=2


Energies 2022, 15, 7416 2 of 20

accuracy of the SoC calculator is affected by factors such as battery ageing, ambient tem-
perature, and sensor noise. Therefore, conventional approaches, such as the ampere-hour
integral method and standard OCV method, are less effective in this kind of complicated
usage scenario. Compared with these simple algorithms, model-based approaches exhibit
better adaptiveness to these factors and have become the mainstream for online SOC
estimation [20]. Commonly used models can be categorized into three types, namely,
first-principle models, electric circuit models, and data-driven models.

First-principle models refer to models that describe the process of chemical changes in
batteries. Pseudo Two-Dimensional (P2D) model and Single Particle (SP) model [21–24]
are the most representative examples. Though theoretically accurate, they require a deep
understanding of electrochemical natures, which may vary with battery materials [17,25].
In addition, these models are usually complicated to implement due to the involvement of
partial differential equations [26]. Therefore, they are more suitable for theoretical analysis
and less effective for onboard applications.

Data-driven models, as the name implies, rely purely on the data. Commonly seen ex-
amples include neural networks (NN) [27], support vector regression (SVR) [28], Gaussian
process regression (GPR) [29], and extreme learning machine (ELM) [30,31]. Without using
any prior knowledge of the chemistry nature, data-driven models can be used to describe
all types of LIBs. However, as a common issue for these data-driven methods, these models
require a large amount of data for training to improve accuracy, and their generalization
to untrained cases is usually weak. Since the real-life battery using profiles contain high
uncertainties, considerable training data should be used to ensure estimation accuracy in
different scenarios.

Compared with the above two model types, ECM, which uses RC networks to simulate
battery dynamics, offers a good balance between complexity and accuracy. As a result, vari-
ous methods are combined with the ECMs to implement SOC estimation. Commonly used
algorithms include Kalman Filters [32–34], Particle Filters [35], and some light-weighted
approaches such as Luenberger observer [36], PI observer [37], sliding mode observer [38],
and local least squares [39].

It is worth pointing out that the accuracy of these algorithms relies on not only
the quality of the filtering methods but also the modeling accuracy. As is the case with
most electrochemical systems, the model parameters of LIBs will change gradually with
battery ageing and temperature, and the resulted model mismatch will lead to large SOC
estimation errors [40]. Understanding that the SOH estimation also relies on an accurate
SOC estimation, joint state estimation frameworks for SOC and SOH have been developed
to handle this kind of circular dependence. Specifically, Yu et al. [40] used the Recursive
Least Square (RLS) algorithm to realize the online parameter identification of ECM and then
combined it with the adaptive H∞ filter to estimate battery SOH. Tan et al. [41] proposed
an EKF-RLS-based dynamic parameter identification algorithm with a multi-timescale and
conducted an online SOH estimation based on the SVR algorithm. Yan et al. [42] estimated
the battery SOH and predicted the remaining service life based on Lebesgue sampling.
Tang et al. [43] used V-min EKF to estimate the SOC and explored a balancing current ratio
technique to estimate the SOH for all cells in a battery pack.

Though effective, it is worth pointing out that most joint SOC-SOH estimation frame-
works do not consider the influence of temperature on model parameters. In addition, they
do not use an estimated state (e.g., SOH) to improve the accuracy of the other estimates
(e.g., SOC), leaving space to improve the overall accuracy. Aiming at these issues, we here
propose a joint SOC-SOH estimation method. Specifically, the FFRLS algorithm is first used
to identify the parameters of ECM in the battery ageing process online, and the battery
model is then updated in real-time. Next, the battery capacity and SOH are calculated
by using the TLS algorithm with the identified parameters. Based on the updated model
parameters and capacity, the SOC is estimated using the UKF algorithm. Finally, the battery
SOH is calculated again using the TLS algorithm and the estimated SOC trajectories. The
effectiveness of our “two-stage” estimation strategy is verified with the battery-in-the-loop
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experiments. The main potential contributions of this work can be summarized as follows:
(1) A new joint SOC-SOH estimation framework is proposed. In particular, a “two-stage”
estimation strategy is proposed to improve SOH estimation accuracy. (2) SOC and SOH are
accurately co-estimated online with a low computational cost against temperature change
and battery ageing.

The remainder of this paper is organized as follows: Battery modeling is described in
Section 2. The method of joint SOC-SOH estimation is described in Section 3. The results
and conclusions are given in Sections 4 and 5, respectively.

2. Battery Modeling
2.1. Equivalent Circuit Model

ECM balances model accuracy and complexity and is widely used in battery state
estimation [44,45]. The RC elements in the ECM can simulate the chemical diffusion and
polarization process inside the battery, and it is divided into 1RC, 2RC, 3RC, and n-RC
models. In this study, the 1RC model is used because it provides a good balance between
model robustness and complexity [46]. Its structure is shown in Figure 1.
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The mathematical expression of the 1RC model is as follows:

Uk = OCV(SOCk)− Ik · R0 − U1,k (1)

U1,k+1 = U1,k · exp(−t/τ1) + Ik · R1 · [1 − exp(−t/τ1)] (2)

τ1 = R1 · C1 (3)

where subscript k is the time k, Ut is the battery terminal voltage, U1 is the polarization
voltage, I is the working current (positive when charging the battery), R0 is ohmic resistance,
R1 is polarization resistance, C1 is polarization capacitance, τ1 is time constant, t is the time,
OCV() is a nonlinear function describing the relationship between the battery’s OCV and
SOC, and SOC is the battery’s state-of-charge, also defined as the remaining percentage of
the battery’s available capacity.

Recall the transfer function of the RC series circuit in the frequency domain:

Ha(s) =
1

τ · s + 1
(4)

where s is a complex variable in the Laplace transform.
By using bilinear transformation to discretize Equation (4), we get:

Hd = Ha(
2

∆T
· z − 1

z + 1
) =

1
(1 + 2

∆T · R1C1) + (1 − 2
∆T · R1C1) · z−1

(5)

where ∆T is the sampling interval, z is a complex variable in the Z-transformation.
According to the 1RC equivalent circuit structure, the converted transfer function is:

G(z) =
Ut(z)− OCV(z)

Iz
= −[R0 + R1 · Hd(z)] (6)
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Substituting Equation (5) into Equation (6) yields the transfer function as:

G(z) = −
(R0+R1)∆T+2R0R1C1

∆T+2R1C1
+ (R0R1)∆T−2R0R1C1

∆T+2R1C1
· z−1

1 + ∆T−2R1C1
∆T+2R1C1

· z−1
(7)

Equation (7) can be further simplified as follows:

G(z) =
Ut(z)− OCV(z)

I(z)
=

a2 + a3 · z−1

1 + a1 · z−1 (8)

which can be given as follows:

a1 = −∆T − 2R1C1

∆T + 2R1C1
(9)

a2 = − (R0 + R1)∆T + 2R0R1C1

∆T + 2R1C1
(10)

a3 = − (R0 + R1)∆T − 2R0R1C1

∆T + 2R1C1
(11)

Or equivalently:

R0 =
a3 − a2

1 + a1
(12)

R1 = − a3 + a2

1 − a1
− R0 (13)

τ1 = R1C1 =
∆T
2

· 1 + a1

1 − a1
(14)

By converting Equation (8) back to the (discretized) time domain and assuming that
the battery’s OCV tends to be stable in a short period (say, OCVk approximately equals to
OCVk−1), we have:

Ut,k = a1Ut,k−1 + (1 − a1)OCVk + a2 Ik + a3 Ik−1 (15)

Equation (15) can be re-written as:

yk = Ut,k = ϕT
k · θk (16)

with ϕk = [1, Ut,k−1, Ik, Ik−1]
T and θk = [(1 − a1)OCVk, a1, a2, a3]

T .
It is worth pointing out that our modeling strategy is different from those in Ref [47],

as OCV is also treated as a parameter to be identified in Equation (16). In this way, we can
use the identified OCV to implement the calculation of battery SOH while avoiding the
“circular dependence” issue (see Section 3.1 for details).

2.2. Online Parameter Identification

To ensure the modeling accuracy under various battery temperatures and ageing
degrees, we need to update the model parameters in real time. At present, model iden-
tification algorithms, such as the PSO and GA, are widely adopted [48]. However, these
algorithms suffer from high computational costs and are, therefore, not suitable for online
applications. The least square method is simple and requires no prior statistics. It is widely
used for online parameter identification [49]. However, a converged least square algorithm
is less sensitive to the new data [50], resulting in a gradual increase in error. To address this
issue, we here introduce the FFRLS algorithm to identify the model parameters online. The
process of online identification by the FFRLS algorithm is shown in Figure 2. The specific
process is as follows:
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(1) System input vector:
yk+1 = ϕT

k+1θ̂k+1 (17)

(2) Estimated error:
ek+1 = yk+1 − ϕT

k+1θ̂k (18)

(3) Gain vector:

Kk+1 = Pk ϕk+1(λ + ϕT
k+1Pk ϕk+1)

−1
(19)

(4) Parameter vector to be evaluated:

θ̂k+1 = θ̂k + Kk+1ek+1 (20)

(5) Update covariance matrix:

Pk+1 =
1
λ
(I − Kk+1 ϕT

k+1)Pk (21)

where θ̂ is the estimated parameter vector in Equation (17), e is estimation error, K
is the gain matrix, P is the covariance matrix, I is the identity matrix, and λ is the
forgetting factor, which is added to the conventional RLS algorithm to reduce the
weight of old data and improve the accuracy of online parameter identification under
dynamic conditions.
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When using the FFRLS algorithm, initial parameters (a1, a2 and a3) are calculated by
interpolating the data obtained from the parameter identification of fresh battery. Then, the
vector θk is determined, and the measurement vector ϕk and input vector yk are determined
according to the measured current and voltage data. Afterwards, the estimated error ek is
calculated. The gain vector Kk is calculated based on the covariance matrix Pk, measurement
vector ϕk, and forgetting factor λ. Finally, the estimated parameter vector θk is calculated,
and the model parameters can then be updated according to Equations (9)–(14). It should
be noted that the measured battery voltage and current change with the battery ageing
and temperature. In this case, the model parameters identified in real-time by the FFRLS
algorithm will change to minimize the model and measured voltages. Therefore, the
proposed algorithm can realize the real-time online identification and update of battery
model parameters and OCV under complex conditions.

3. Joint SOC-SOH Estimation Method
3.1. SOH Estimation

The battery’s SOH is not only an important indicator of the ageing status but also
a key prior knowledge for accurate SOC estimation. We do have multiple algorithms to
obtain battery SOH, such as using ICA-based calculous [51]. However, when an accurate
SOC trajectory is available, the most used battery capacity estimation method is the “Two-



Energies 2022, 15, 7416 6 of 20

Point” [52]. This method calculates the battery’s current capacity based on the change in
charge and SOC between the time interval t1->t2, which can be described as follows:

SOH =

∫ t2
t1

η I(t)
3600 dt

SOC(t2)− SOC(t1)

/
Cap0 (22)

where SOC(t1) and SOC(t2) are the corresponding battery SOC at two different times, t1
and t2, respectively, Cap0 is the battery’s initial capacity, and η is Coulomb efficiency, which
is commonly treated as 1.

In this work, our SOH estimation contains two stages. In the first stage, a SOH value
is calculated following the idea of Equation (22), where the SOC is obtained by feeding
the OCV identified from Equations (17)–(21) into a static OCV-SOC lookup table. Though
less accurate, this SOH can be used to compensate for the large capacity deviation of the
aged batteries to facilitate the follow-up SOC calculation. In the second stage, the SOH
is calculated again following the idea of Equation (22), but the SOC is obtained from the
powerful UKF algorithm (see Section 3.2 for details) to improve its accuracy. Noting that
two different models are utilized to obtain the SOC, our two-stage SOH estimator will not
suffer from the issue of “circular dependence”. In this work, our OCV-SOC trajectory is
obtained through the Hybrid Pulse Power Characteristic (HPPC) test at 25 ◦C, a detailed
experimental procedure that can be found in our previous work [53]. For clarity, the
identified OCV-SOC curve of our battery is shown in Figure 3.
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Noting that the “Two-Point” method suffers from the local perturbance in SOC esti-
mation, rather than directly using Equation (22), the total least square (TLS) algorithm [54]
is used to estimate the capacity online. Re-write Equation (22) as:

SOC(t2)− SOC(t1) =
1

Cap0

∫ t2

t1

η I(t)
3600

dt (23)

Marking xi =
∫ t2

t1

η I(t)
3600 dt, and yi = SOC(t2)− SOC(t1), the following expression can

be obtained:
yi = β1 + β2xi + vi (24)

where β1 is an estimated constant, β2 is an estimated coefficient with Cap = 1/β2 and vi is
the noise in the estimation process.
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By accumulating data from time m to time n (1 < m < n), Equation (24) can be expressed
in vector form as: 

ym
ym+1

...
yn

 =


1
1
...
1

xm,1
xm+1,1

...
xn,1


[

β1
β2

]
+


vm

vm+1
...

vn

 (25)

Then, Equation (25) can be converted into matrix form:

Y = X · H + V (26)

where Y is the observation vector, X is a known matrix, H = [β1, β2]
T is the parameter

vector, and V is the random error vector.
The parameter vector H can be solved by the analytic expression of the TLS algorithm:

H = (XTX − σ2
n+1E)

−1
XTY (27)

where σn+1 is the smallest singular value of [X Y], E is the identity matrix. Then, the
TLS-based capacity can be estimated by:

CapTLS = 1/H(2) (28)

Dividing the estimated capacity by the fresh-cell-capacity, we obtain the estimated SOH:

SOH =
CapTLS

Cap0
(29)

The above process is utilized for both the first-stage and the second-stage SOH estima-
tion. The only difference here is the method of acquiring battery SOC.

3.2. SOC Estimation
3.2.1. UKF Algorithm

Kalman Filter (KF) algorithm is widely used as the state observer, and the EKF al-
gorithm, which uses Tayer expansion to provide first-order model linearization, is the
most commonly used for SOC estimation in BMS [55]. However, batteries are highly
nonlinear systems, and using only first-order approximation will significantly influence
the estimation accuracy. Therefore, the UKF algorithm [56,57] is employed to estimate
SOC in this study. UKF algorithm deals with nonlinear systems by using the idea of the
probability distribution, which approximately replaces the linearization of the propagation
mode of statistical characteristics in EKF with an unscented transform (UT). UT will not
directly omit the higher-order terms but obtain some sampling points near the estimation
points according to certain calculation rules and use these sampling points to approximate
the probability density function of the state [58]. In general, UT could achieve 3-order
approximating accuracy for Gaussian inputs and at least 2-order accuracy for non-Gaussian
cases. The specific implementation process is as follows:

(1) Obtaining the 2n + 1 Sigma points:
Z0 = Z, i = 0

Zi = Z + (
√
(n + λ)P)i, i = 1, . . . , n

Zi = Z − (
√
(n + λ)P)i, i = n + 1, . . . , 2n

(30)

where Z is the sampling point after UT, Z is the mean value of random variables, n is the
dimension of the state vector, and P is the error covariance matrix.
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(2) Weighting of each Sigma point:
ω
(0)
m = λ

n+λ

ω
(0)
c = λ

n+λ + (1 − α2 + β)

ω
(i)
m = ω

(i)
c = λ

2(n+λ)
, i = 1, . . . , 2n

(31)

where λ = α2(n + κ)− n is the adjustment parameter, α denotes the distance from the
sampling point to the mean point, which is usually set to a small positive number, κ is
usually taken as 0 or 3, and β describes the distribution information.

After UT, the statistical characteristics of the new sampling points are used to describe
the nonlinear equation, which avoids the error caused by directly ignoring the high-order
terms and effectively improves the filter accuracy.

3.2.2. SOC Estimation Based on UKF Algorithm

To implement the UKF algorithm, we first discrete the battery model, with the results
given in Equations (32)–(34). Here ∆t is the sampling interval, R0 is ohmic resistance, R1 is
polarization resistance, τ1 is time constant, Ik is working current, η is Coulomb efficiency,
CapTLS is the current capacity estimated online by the TLS algorithm, wk is state transition
noise, and vk is measurement noise.

SOCk+1 = SOCk +
η Ik

3600CapTLS
+ w1,k (32)

U1,k+1 = U1,k exp
(
−∆t

τ1

)
− R1

(
1 − exp

(
−∆t

τ1

))
· Ik + w2,k (33)

Ut,k = OCV(SOCk)− IkR0 − U1,k + vk (34)

Then, the current is treated as the system’s input, and SOC and polarization voltage
are regarded as state variables and estimated simultaneously from the measured voltage.
The state vectors SOC and U1,k can also be written in the form of vectors, which is shown
in Equation (35). The system observation value yk is the battery’s terminal voltage Ut,k, as
shown in Equation (36), and the working current Ik is treated as the system excitation, as
shown in Equation (37).

xk =

[
SOCk
U1,k

]
(35)

yk = Ut,k (36)

uk = Ik (37)

With these definitions, Equations (35) and (37) can be re-written as

xk+1 = Axk + Buk + Q (38)

with A =

[
1 0
0 exp(−∆t

τ1
)

]
, B =

[
η

3600·CapTLS

−R1 · (1 − exp(−∆t
τ1
))

]
, and Q =

[
w1,k
w2,k

]
.

The state equation and observation equation of a nonlinear system can be expressed
in Equations (39) and (40):

xk+1 = f (xk, uk) + wk (39)

yk = g(xk, uk) + vk (40)

According to UT, state transition equation, and observation equation, the calculation
process of the UKF algorithm is listed in Algorithm 1.
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Algorithm 1. The calculation process of the UKF algorithm.

(1) Initialization parameters:The error covariance matrix P, usually taken as P = 10−6 ∗
[

1 0
0 1

]
.

(2) Iterative calculation, k = 1,2, . . . ,N:
(a) The state vector is transformed by the UT, and the Sigma points of the state vector xk and the weight of each Sigma point are
calculated according to Equations (30) and (31).
(b) State transfer of Sigma points:

x(i),−k = f (x(i),−k−1 , uk−1) + wk−1 (41)

(c) Calculating the updated state vector x−k and error covariance matrix P−
k according to Sigma points and weight:

x−k =
2n

∑
i=0

ω
(i)
m x(i),−k (42)

P−
k =

2n

∑
i=0

ω
(i)
c [x−k − x(i),−k ][x−k − x(i),−k ]

T
+ Q (43)

(d) The predicted value of the state vector is transformed by UT, and the new Sigma points and the weight of each Sigma point are
calculated.
(e) The new Sigma points are brought into the observation Equation (40), and the observation values are obtained:

y(i)k = g(x(i),−k , uk) + vk (44)

(f) The mean value of the observed value yk, error covariance Pykyk , and Pxkyk are obtained by weighted calculation:

yk =
2n

∑
i=0

ω
(i)
m y(i)k (45)

Pykyk =
2n

∑
i=0

ω
(i)
c [y(i)k − yk][y

(i)
k − yk] + R (46)

Pxkyk =
2n

∑
i=0

ω
(i)
c [x(i),−k − x−k ][y(i)k − yk] (47)

where R is measurement noise, and R = 10−3.
(g) Calculating the Kalman gain Kk:

Kk = P−1
ykyk

Pxkyk (48)

(h) Updating the state vector x+k and covariance matrix Pk:

x+k = x−k + Kk(Ut,k − yk) (49)

Pk = P−
k − KkPykyk KT

k (50)

where Ut,k is the measured voltage at time k.

The online SOC estimation can be completed by substituting Equations (39) and (40)
into the above iterative process. The parameters updated online in the FFRLS algorithm will
improve the accuracy of the UKF algorithm, including state vector xk and error covariance
Pk. The joint SOC-SOH estimation process of LIBs based on the FFRLS-TLS-UKF algorithm
is shown in Figure 4.
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4. Experimental Validation
4.1. Experimental Setup

The schematic of the experimental setup is shown in Figure 5. The experimental device
is composed of a high-precision battery test system (CT-4008-5V12A-DB), an upper com-
puter, a temperature chamber (BTH-150C), and the 18650 cylindrical battery. The battery
test system is connected to the battery in the incubator to control the charging/discharging
current and collect data. The upper computer can input commands to control other experi-
mental equipment and store data. The temperature chamber is used to observe and adjust
the test temperature. The performance parameters of the experimental battery are shown
in Table 1.
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Table 1. Battery performance parameters.

Parameters Values

Positive and negative materials NCA/C
Capacity (Ah) 3

Nominal voltage (V) 3.6
Charge cutoff voltage (V) 4.2

Discharge cutoff voltage (V) 2.5
Working temperature (◦C) 10–45

4.2. Experimental Results

In this paper, the ageing experiments are designed to verify the feasibility of the joint
SOC-SOH estimation method based on the FFRLS-TLS-UKF algorithm. The steps of the
ageing experiment are shown in Figure 6. The temperature chamber was adjusted to 45 ◦C,
25 ◦C, and 10 ◦C, respectively. Then, the battery was charged at a constant current to
SOC = 100% and SOC = 80% at each temperature. Third, the battery was discharged with
a constant current of 1/2C to SOC = 0% and SOC = 30%. Fourth, the above process was
repeated twice at each temperature and the temperature was adjusted to 25 ◦C for the basic
performance test after completing the cycle, including the standard capacity test, the HPPC
test, and the New European Driving Cycle (NEDC) test. The above process is defined as
an ageing cycle. The frequency of data acquisition in this paper is 1Hz. The current in an
NEDC test is shown in Figure 7.

4.2.1. Results of Parameter Identification

In this study, we first use the PSO algorithm to identify the parameters of the fresh bat-
tery at 25 ◦C to obtain an initial value. The whole SOC region is divided into 10 subregions.
In each subregion, the PSO algorithm is used to identify the model parameters offline.
Therefore, 10 groups of model parameters are obtained. FFRLS algorithm is then utilized
to acquire the model parameters of the target battery online. The results of parameter
identification after the first ageing cycle are shown in Figure 8. We can see that the model
accuracy is very high (RMSEs of four parameters are 15 mV, 8 mΩ, 16 mΩ and 15 ms,
respectively), and the identification value is consistent with the reference value. In addition,
the model error in the low SOC region (SOC < 20%) is slightly larger, which is the deficiency
of the integer order ECMs.

To better illustrate the effectiveness of the proposed identification, we compare the
error between the model’s and the measured battery terminal voltage over the full SOC
range. Here, six groups of NEDC test data of LIBs with different ageing degrees (SOH
down to 86.9%) are selected. The error of terminal voltage between real-time updating and
non-updating parameters is shown in Figure 9, with RMSE given in Table 2.

The blue lines in Figure 9 denote the modeling error of using the fresh battery’s
parameter, and the red line marks the error corresponding to the parameter-adaptive
models. As shown in Figure 9, the error of terminal voltage after parameter updating is
significantly reduced by 81%, implying an improved modeling accuracy.

Table 2 lists the RMSE of terminal voltage in the whole SOC range before and after
parameter updating. When model mismatch does not exist, the parameter-fixed RC model
could also achieve a relatively low error (approximately 10 mV). However, this error
increases with ageing, especially when SOH < 90%. After using FFRLS to update the model
parameters, RMSE drops to 20 mV, which is satisfactory for general engineering use.
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Figure 8. Results of parameter identification after the first ageing cycle: (a) OCV, (b) R0, (c) R1, and
(d) τ1.
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Figure 9. Terminal voltage error under different ageing degrees: (a) SOH = 96.2%, (b) SOH = 90.2%, 
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Figure 9. Terminal voltage error under different ageing degrees: (a) SOH = 96.2%, (b) SOH = 90.2%,
(c) SOH = 89.8%, (d) SOH = 89.2%, (e) SOH = 88.3%, and (f) SOH = 86.9%.

Table 2. Model errors of batteries with different ageing degrees.

SOH (%) RMSE (mV)
(Before Updating)

RMSE (mV)
(After Updating)

100 10.2507 7.6588
96.2 16.2795 9.4335
90.2 63.7639 10.9586
89.8 74.7514 12.5548
89.2 89.1580 13.2999
88.3 105.8686 14.3224
86.9 121.8357 16.0252

4.2.2. Results of SOC Estimation

To verify the effectiveness of the proposed FFRLS-TLS-UKF algorithm in SOC estima-
tion, we use six groups of NEDC test data with different ageing degrees (SOH = 96.2%,
90.2%, 89.8%, 89.2%, 88.3%, and 86.9%) for online parameter identification. The TLS algo-
rithm is used to estimate SOH (in the first stage) to improve the accuracy of prior estimation
in the UKF algorithm. Then, SOC is estimated by the UKF algorithm. SOC estimation
results under different ageing degrees are shown in Figure 10. The mean absolute error
(MAE) and RMSE of SOC estimation are shown in Table 3. The blue line in Figure 10
denotes the SOC reference value obtained by the accurate current integration in our lab,
which can be regarded as the referenced value; the green line denotes the SOC estimation
results based on the FFRLS-TLS-UKF algorithm; and the red line denotes the SOC estima-
tion results obtained by the UKF algorithm without considering parameter updating. To
test the convergence speed of the proposed algorithm, we manually added an initial error
of 5% in SOC estimation, and the current and voltage errors are set to ±0.001A/V.
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Figure 10. Results and errors of SOC estimation under different ageing degrees: (a,b) SOH = 96.2%;
(c,d) SOH = 90.2%; (e,f) SOH = 89.8%; (g,h) SOH = 89.2%; (i,j) SOH = 88.3%; (k,l) SOH = 86.9%.

Table 3. MAE and RMSE of SOC estimation.

SOH (%) MAE (%)
(Before Updating)

MAE (%)
(After Updating)

RMSE (%)
(Before Updating)

RMSE (%)
(After Updating)

96.2 0.31 0.16 0.53 0.37
90.2 0.88 0.44 1.02 0.56
89.8 1.27 0.63 1.44 0.73
89.2 1.07 0.58 1.20 0.73
88.3 1.70 0.70 1.97 0.82
86.9 1.84 0.70 2.10 0.81

It can be clearly seen that the SOC estimation using the FFRLS-TLS-UKF algorithm
can converge quickly to 2% with the help of real-time updating of model parameters and
SOH, even if the capacity difference between the modeling and target batteries exceeds
10% (ranges from 100% to 86.9%). On the contrary, the SOC estimation error without
considering parameter updating gradually increases to 4%. It can be concluded that the
proposed joint estimation scheme can greatly improve SOC estimation accuracy during
battery ageing by at least 50%.

4.2.3. Results of SOH Estimation

After the online model parameter identification, the first-stage SOH (denoted as SOH1
in the following discussions) is estimated by the TLS algorithm. Then, SOH1 is used
in SOC estimation to improve accuracy. After SOC estimation, the second-stage SOH
(denoted as SOH2 in the following discussions) can be obtained by feeding the estimated
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SOC trajectories into the TLS algorithm. For comparison, a benchmarking algorithm that
calculates the SOH from the UKF-based SOC trajectory (without parameter update) is also
tested, whose result is denoted as SOH3. The SOH estimation results during the battery
ageing process and their errors are shown in Figure 11, with RMSE listed in Table 4.
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Table 4. RMSE of SOH estimation.

Value RMSE (%)

SOH1 0.90
SOH2 0.67
SOH3 1.03

By comparing SOH2 and SOH3, it is straightforward to see that the SOC accuracy
could directly influence the performance of the “Two-Point” SOH estimator. The SOC
obtained from the conventional UKF approach suffers from a large chattering issue for aged
batteries, and the resulted SOH error becomes large, exceeding 2%. When comparing SOH1
and SOH2, we can see that the second-stage SOH updating is effective. This result agrees
with the fact that the FFRLS-UKF algorithm with TLS-updated SOH can provide better
SOC estimation accuracy than feeding the online identified OCV into the OCV-SOC lookup
table. When comparing SOH1 and SOH3, it is interesting to note that using a powerful UKF
algorithm to handle parameter-fixed models is less effective than using a simple FFRLS
algorithm to update the parameter-fixed model. This result highlights the importance of
adaptive parameter updating in the field of battery management. In addition, the first-stage
estimator (SOH1) can also be used independently as an efficient, lightweight SOH observer
to save computation.

5. Conclusions

An accurate SOC estimation is key to reducing range anxiety, but it is commonly
influenced by the inevitable battery ageing, noting that the battery parameters change
gradually with degradation. Here, a joint SOC-SOH estimation method for LIBs based on
the FFRLS-TLS-UKF algorithm is proposed to tackle this bottleneck issue, and the following
conclusions are drawn:

(1) The FFRLS algorithm is proposed to identify the parameters online. The experimen-
tal results indicate that the error of terminal voltage decreases after parameter updating,
bounded by 20 mV, even if >10% model mismatch in battery ageing exists;

(2) A two-stage SOH estimator based on the TLS algorithm is proposed, and its error
is lower than 2%, exhibiting first-class accuracy. The first-stage SOH estimator can also be
used independently to reduce algorithm complexity;

(3) The FFRLS-TLS-UKF algorithm proposed in this paper can effectively improve the
accuracy of SOC estimation. The SOC accuracy estimated by the proposed algorithm is
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almost twice that estimated by the traditional EKF algorithm. The error is kept within 2%
even if there are initial SOC errors, modeling mismatches, and measurement noises.
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