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Abstract: The possibility of increasing the transmission efficiency in mid-range wireless power
transfer (WPT) applications can be achieved by inserting resonant relay coils between the transmitting
and receiving sides of the device, forming an array of magnetically coupled resonant circuits, over
which a receiver can be placed. This is a very cheap solution for improving the performance of the
WPT apparatus, even if the complexity of the system increases, requiring a complete and detailed
investigation for a smart design and control of the apparatus. The presented study investigates the
current distribution in the coils of the array, which revealed strong peaks in magnitude depending
on the load and receiver position. The analysis is carried out with the transmission line (TL) theory
and it is performed for different positions of the receiver, as well as for different load conditions.
Furthermore, a real application is considered and discussed, which includes the presence of a power
converter as power supply and a battery charging system as load. Each resonant circuit resonates at
150 kHz and the whole apparatus is capable to transmit power up to 1 kW with an efficiency around
70%. The theoretical results have been validated with experimental measurements.

Keywords: wireless power transfer; inductive power transfer; resonator array; magneto-inductive
waves; transmission lines

1. Introduction

In recent years, wireless power transfer (WPT) has received increasing attention for
the prospects of use that it offers, ranging from powering portable electronic devices to
electric vehicle (EV) charging. The WPT systems are continuously improved, allowing
more power to be transferred and operation in difficult environment, where water, dirt
or dust are present. The major limitations for inductive power transfer (IPT) technologies
are the magnetic field generated that can cause disturbances to electric and/or electronic
devices and field exposure to people in the surroundings as well as the transmission
distance, which is limited by the nature of the physical phenomena exploited. As a
consequence, these issues have become the most important challenges in this field and
different solutions have been proposed in the literature [1–5]. It is indeed necessary to
consider both problems when realizing WPT devices. High-frequency IPT systems are
usually the most popular candidates, allowing the size of the components to be limited with
an acceptable transmission distance, even if the electromagnetic radiation may become
hazardous as the frequency increases. For this reason, they can be sized for a limited
amount of power, resulting in WPT systems suitable for portable electronics or medical
devices only [6,7]. Another widespread alternative is represented by the possibility of
inserting relay coils between the transmitting and receiving circuits, thereby forming a
structure of magnetically coupled resonators as shown in Figure 1. In this case, the power
rating of the apparatus is determined by the size of the coils and related components, which
can be tailored also for high power transfer, as it is needed in industry or EV charging
applications. There are many papers that testify the potential of relay coils, arranged
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in widely differing ways, as reported in [5,8–14], even if a conventional structure and
arrangement of the coils is not discussed.

−+VDC Filter

Battery

Load

Figure 1. Array of R-L-C resonators as inductive coupling device of a battery charger.

Configuring the system as presented in [14–16], an array of resonant magnetically
coupled circuits is formed, with the possibility of placing a receiver over it and then make
the power transmission very tolerant to the receiver misalignment without the addition
of complex power electronic circuits. This peculiarity makes resonator arrays for IPT
applications a very cheap and simple solution.

However, the interaction between the coils leads to power-reflection phenomena
which, in turn, alter the current distribution in the windings, causing strong peaks in some
of the resonators and the strong increase in the magnitude of the current can lead to severe
overloads in the resonator windings, with a non-negligible thermal stress. Furthermore,
the raised current increases the Joule losses in the coils, with consequent efficiency decrease.
It is important to notice that the resonators operate in resonance, meaning that the current
is limited by the resistance of the wire only, which should be kept very small in order to
avoid important losses. It is easy to understand that the monitoring of the standing wave
phenomenon is crucial to avoid system breakdown and it should be performed both in
the design and operating stages. These phenomena are investigated and discussed in this
paper, carrying out the analysis first with Kirchhoff voltage law (KVL) equations [17,18]
and then through the theory of magneto-inductive (MI) waves [19–21] that is exploited
in order to provide a satisfactory description of the operation and useful insights into the
design. The efficiency of this kind of systems has been deeply investigated [12,16,18,21],
while the behaviour of the resonator currents requires a more in-depth research due to
power reflection phenomena that can occur [21]. The main aim of this work is to analyse the
behaviour of the array currents considering a real load and power source, and to present a
mathematical model capable of describing the phenomena that govern the operation of
resonator arrays, in case of practical implementations.

The manuscript is organized as follows. In Section 2, the structure of the proposed
array of resonators is described, with the description of two different approaches for its
analysis. Then, Section 3 is focused on the equivalent circuit model of the apparatus—
including also the power source and the load—and, in Section 4, the problem of the
current peaks in the resonators is theoretically and numerically investigated. The study is
extended to the case of arrays of resonators employed as transmitting devices in Section 5.
The theoretical and numerical analyses have been experimentally verified in Section 6.
Finally, Section 7 concludes the paper discussing and summarising the achieved results.

2. Resonator Array for IPT

The WPT system considered in this work consists of an array of n identical L− C
series resonant circuits, called resonators or cells, which are arranged in a plane along a line
to form a 1-D structure and are magnetically coupled as shown in Figure 2. The resonators
are spaced by the same distance and consequently each pair of adjacent resonators has
the same mutual inductance M. In the following analysis, the mutual coupling between
nonadjacent circuits is neglected, being much lower than that between adjacent cells. This
hypothesis is called in literature “nearest neighbourhood interaction” [20] and it has been
analytically and experimentally verified. Each resonator of intrinsic resistance R is tuned
to a resonant frequency f0 = 1/(2π

√
LC), where L is the self-inductance of each resonator

and C the capacitance of an additional capacitor connected in series to the resonator.
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The cell connected to the power source is labelled 1, whereas the last cell of the array is
labelled n. It is important to highlight that this study considers the first harmonic of the
electrical quantities voltage and current of a real IPT system. The power supply can be in
general represented with its Thévenin equivalent circuit, then as an ideal voltage source
with a series impedance that, at the resonant frequency f0, can be named as V̂s and Ẑs,
respectively. The load is represented by the impedance ẐT connected to the last resonator
of the array.
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Figure 2. Equivalent circuits of a resonator array (a) circuit fed by a half-bridge inverter and connected
to a load and (b) approximate circuit for the first harmonic.

2.1. Circuit Analysis

The analysis is developed considering phasor quantities for the voltages and currents
involved in the system, which can be determined solving the KVL equations written for
each cell. This approach is the most common, and implies to solve the system

Î = Ẑ−1
m V̂ (1)

where V̂ = [V̂s 0 ... 0]T is the phasor voltage vector (with V̂s the phasor supply voltage of
the transmitter), Î is the vector of the phasor currents flowing in the resonators and Ẑm is
the impedance matrix of the array resonators. However, the circuit analysis, carried out
through the solution of (1), is as simple as poor in content, since it does not suggest any
motivation for the results that it provides.

2.2. Magneto-Inductive Waves

Alternatively, the array of resonators can be considered as a cascade connection of
identical two-port networks, where each of them represents the coupling between adjacent
resonators, phase shifting and attenuating the input current and voltage. In this paper
a cascade of n− 1 chain matrices Ti,i+1 is used to represent an array of n cells. For two
adjacent resonators i and i + 1 the voltages and currents at the input and output ports of
the two-port network are related by[

V̂i
Îi

]
= Ti,i+1

[
V̂i+1
Îi+1

]
(2)
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with

Ti,i+1 =

[
Âi,i+1 B̂i,i+1
Ĉi,i+1 D̂i,i+1

]
(3)

where
Âi,i+1 = − Ẑi

ẐMi,i+1

B̂i,i+1 = ẐMi,i+1 −
Ẑi Ẑi+1
ẐMi,i+1

Ĉi,i+1 = − 1
ẐMi,i+1

D̂i,i+1 = − Ẑi+1
ẐMi,i+1

.

(4)

For an array of identical resonators of impedance Z, Ẑi = Ẑi+1 = Ẑ/2 and Ẑ1 = Ẑn = Z,
while the mutual impedance ẐMi,i+1 = jωM. Thus, the array can be described by three
different Ti,i+1 matrices only. In the following the transmission matrix associated to the
two-port networks representing the coupling between two adjacent array resonators i
and i + 1 is simply named as T, with the exception of the two matrices T1,2 and Tn−1,n of
the two ports comprising the first and last resonators of the array, respectively. A similar
structure can be associated to a TL able to support the propagation of a current wave which
is called magneto-inductive (MI) wave in [19].

It must be clarified that MI waves, whose idea comes from the analysis of the array
resonator currents, do not correspond to electromagnetic waves. Indeed, as all the cells
of the array are magnetically coupled, in resonance the currents of adjacent resonators
are displaced by 90 electrical degrees due to the mutual coupling (jωM). Thus, exciting
the first array coil, a 90 degrees-displaced voltage (and then the corresponding current) is
induced in the second resonator which, in turn, induces a voltage and then a current in
the third one, and so on, until the last one. This behaviour mirrors the one of a wave that
propagates in the space along the array. Thus, the considered structure is described in terms
of the current circulating in each cell. A simple MI wave solution for a 1-D configuration
according to [20,22] is:

Îi = Î1e−γ̂(i−1)d (5)

where Îi is the ith resonator phasor current and Î1 is the first resonator phasor current, d
is the side-length of each resonator forming the array and γ̂ = α + jβ is the propagation
constant, with α attenuation constant and β phase constant. The attenuation per cell of the
MI wave can be expressed as [16]:

αd = sinh−1
(

1
kQ

)
(6)

where k = 2M/L is the coupling coefficient between adjacent cells and Q = ω0L/R
the quality factor of the single cell, being ω0 = 2π f0 the resonant angular frequency.
The current wave attenuation is due to the resistance R of each cell and becomes stronger
as the coupling between adjacent cells weakens. The propagation of MI waves is gov-
erned by the dispersion equation which in case of low losses gives the following simple
relationship [16,20]:

cos(βd) =

(
ω2

0 −ω2

kω2

)
(7)

which defines the frequency limits of the propagation band enforcing |cos(βd)| = 1. When
the system operates at ω0, the attenuation is minimized and the phase shift per cell is
βd = π/2. It must be noticed that each resonator contributes with a phase shift of βd,
meaning that the wavelength of the MI wave is fixed by the length d of the resonators and
results λMIW = 4d. The analogy with TLs also suggests the possibility of matching the
MI waveguide, condition that avoids MI-standing waves. In matching condition and in
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resonance for a low-loss line, i.e., R� ω0M, the current has the same magnitude in all the
array resonators and the power transferred to the terminal resonator is maximum [15,23].
This is possible if the array is terminated in a lumped impedance equal to the characteristic
one of the MI waveguide, defined as [20]:

Ẑ0 = jωMe−γ̂d. (8)

For a low-loss MI waveguide, Ẑ0 simplifies to Ẑ0 ≈ ω0M for f = f0. The same result
can be found considering the general representation of a transmission line segment of
length d by means of a transmission matrix, which for a MI waveguide can be expressed
as [24]

TMI−TL =

[
cosh(γ̂d) Ẑ0sinh(γ̂d)
1

Ẑ0
sinh(γ̂d) cosh(γ̂d)

]
. (9)

By Equating (9) and (3) the characteristic impedance of the considered line segment is
found as:

Ẑ0i,i+1 =

√
B̂i,i+1

Ĉi,i+1
(10)

which becomes Ẑ0 ≈ ω0M for a low-loss array operating in resonance, being Zi = Zi+1 =
R2/4 ≈ 0.

3. Array Circuit Modelling

Carrying out the study of resonator arrays with both the circuit theory and MI waves, it
is required to evaluate all the parameters of the system, since they strongly affect the current
distribution and the power transfer. In order to analyse the feasibility of a resonator array
for WPT, possible applications with real power supplies and loads have to be considered; a
precise analysis has to be carried out when dealing with this kind of apparatuses, since
they usually present a nonlinear behaviour.

The power supply is assumed to be a half-bridge inverter and, thanks to the pass-band
filter behaviour of the resonator array, it can be represented by means of first harmonic
approximation through its equivalent Thévenin circuit, composed of an ideal voltage
source V̂s with a series impedance Ẑs. In particular, according to [14]

V̂s =
2Vdc

π
ej0 (11)

where Vdc is the bus DC voltage at the input side of the converter and

Ẑs =
8Ron

π2 ej tdω0
2 (12)

where Ron is the resistance of the MOSFET. The term td indicates the dead-time of the
considered inverter. Usually, td 6= 0 and then the impedance Ẑs is complex, with an
inductive behaviour. If the load is assumed to be a battery charging system, it can be
described by its equivalent impedance Ẑload, as reported in [14]. Then,

Ẑload =
8

π2 Rbattery (13)

where Rbattery is the resistance of the battery pack. Considering loads different from the
previous one, in the array represented in Figure 2b the impedance Ẑload corresponds to the
termination impedance of the array ẐT .

The two impedances Ẑs and ẐT depicted in Figure 2b are the two parameters that
govern the reflections in the array and their different possible values are considered in
the following.
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4. Current Peaks and Standing Waves

As it has been introduced in Section 2, in case of mismatch of the termination
impedance of the array, a standing wave pattern can occur for the MI wave. Thus, some
resonators may experience very high currents, depending on the values of the impedance
at the input and output sides of the array, as well as the length of the array. With the
help of the theory of MI waves these phenomena can be rigorously described. In order
to proceed with the analysis, the equivalent TL is defined as described in Section 2 and
shown in Figure 3, where the input and termination of the array are modelled as illustrated
in Section 3. According to the classic theory of the traditional TLs, it is possible to deter-
mine the current behaviour studying the propagation and reflections experienced at the
two terminals. The first reflection that the current wave expressed by (5) undergoes is
due to the mismatching of the termination impedance ẐT , which usually differs from the
characteristic impedance Ẑ0. It is possible to define the termination reflection coefficient as:

ρ̂T =
ẐT − Ẑ0

ẐT + Ẑ0
. (14)

Considering the internal impedance of the power source Ẑs as the the input impedance
of the MI waveguide, the source reflection coefficient can be expressed as:

ρ̂s =
Ẑs − Ẑ0

Ẑs + Ẑ0
. (15)

It can be observed that it is very difficult to realize the matching of the input port, too,
being Ẑs dependent on the inverter components and control strategy.

The standing wave pattern is the result of multiple reflections between the input
and termination sides of the line, whose interaction has been considered as an overlap of
the various components. The final mathematical expression is given in [25] for waves in
traditional TLs and a similar one can be obtained for MI waves. After some mathematical
manipulation, the current in the ith resonator of the array can be expressed as:

Îi =
V̂s

Ẑs + Ẑ0

e−γ̂(i−1)d − ρ̂Te−2γ̂(n−1)deγ̂(i−1)d

1− ρ̂Sρ̂Te−2γ̂(n−1)d
. (16)

The consequence of the mismatching of both sides of the line is the interference
between the reflected waves, with the consequent creation of a standing wave pattern for
the current, which exhibits maxima and minima with a periodicity that depends on the
wavelength of the individual wave. When a standing wave pattern occurs, the power
transfer capability of the system is strongly reduced (the power is reflected) [16], even if
the worst consequence is the stress of the electric and electronic components. According
to [25], the usual procedure for the definition of the shape of this pattern can be achieved
by specifying:

• The ratio of the current magnitude maximum to the minimum in the standing wave
pattern (standing wave ratio);

• The location of any current minimum, with reference to a specified coordinate;
• The distance between two consecutive maxima or minima.

The standing wave ratio (SWR) is introduced in order to evaluate the magnitude of
the wave peaks and is defined as

SWR =
| Îi|max

| Îi|min
(17)

where | Îi|max and | Îi|min are the current magnitude maximum and minimum in the standing
wave pattern, respectively.
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The distance between consecutive current maxima or minima corresponds, as it is
well known, to half wavelength. As the wavelength of an MI wave is λMIW = 4d, it
results in being 2d. It must be noticed that, considering the attenuation due to the losses,
the magnitude of the current peaks is expected to be lower as they occur far from the
power supply.

Ẑs

+

−
V̂in−

+V̂s T1,2 ... T ... Tn−1,n ẐT

Î1 Î2 Îi În

Figure 3. Equivalent representation of a resonator array by a cascade connection of
two-port networks.

4.1. Numerical Analysis

The procedure just illustrated allows the calculation of the currents in the resonators
of the array and the determination of the overall standing wave pattern. Performing
the calculation for different values of the reflection coefficients ρ̂T and ρ̂s, it is possible
to observe different configurations for the MI wave. The simulations have been carried
out with reference to the real system used in the experiments, whose parameters are
summarized in Table 1. The apparatus can be used for industrial applications (automatic
machine and electric vehicle charging) to transmit power up to a few kWs. Thus, a H-bridge
inverter has been chosen as power source, which operates in the range of hundreds of
kHz. The inverter feeding the apparatus is realized with GaN transistors, with an internal
impedance ẐS = 0.01 Ω, which results in a source reflection coefficient ρ̂S ≈ −1 (perfect
reflection). The termination reflection coefficient ρ̂T depends on the termination load and
its effect has been investigated in [23], with a great, but unique, focus on the efficiency
and power transferred. In Figure 4, the standing wave pattern for the current is plotted
in the case of short-circuit (S.C.) termination, open-circuit (O.C.) termination and perfect
load matching. As expected, the matching termination avoids the standing wave from
arising, whereas the current peaks are much more significant in case of O.C. termination.
It is interesting to notice that, as the considered TL is an array of resonators, the O.C.
termination corresponds to an array with one resonator less. This peculiarity is crucial for
the following analysis.

Table 1. Resonator array parameters.

Quantity Symbol Value

Resonator Resistance R 0.11 Ω

Resonator Self-inductance L 12.5 µH

Resonators Mutual Inductance M −1.55 µH

Capacitance C 93.1 nF

Resonance Frequency f0 147 kHz

Characteristic Impedance Ẑ0 1.43 Ω

Input Impedance Ẑs 0.01 Ω

Input Voltage Vin 3.6 Vrms

Resorting to the definition reported in (17), it is possible to evaluate the current
SWR for arrays of different lengths, namely for arrays formed by a different number of
resonators, as shown in Figure 5. In particular, the blue curve refers to arrays with S.C.
termination, whereas the red one is obtained with a perfect matching. The case of O.C.
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termination is not shown, as it corresponds to an array shorter than one cell with S.C.
termination. As expected, with a matched termination the SWR is always closed to one
and the magnitude of the current is equal for each resonator, with relatively moderate
values with respect to the case in which standing waves are present.

1 2 3 4 5 6

0

5

10

15

20

25

Figure 4. Current standing wave patterns for different termination loads.

For the S.C. termination, the standing wave behaves differently for arrays with an even
or odd number of cells and, in particular, the SWR and then the current peaks are much
stronger in the case of an array with an odd number of cells. This SWR can be explained
considering the superposition of the incident and reflected waves in the waveguide, whose
final result is given by (16). In the following the behaviour is analysed with reference to a
lossless and a low-loss array.

Lossless and Low-Loss Array

For an array composed of n resonators, using the TL theory the current maxima can
be easily found in the resonators whose index i is

i = n− 2m, (18)

where m = 0, 1, 2, . . . , m < n/2, is an integer number. This means that, regardless the
number of resonators, a current maximum is always found in the array last resonator. Then
from (18) it follows that the current maxima are in the even resonators for an array with
an even number of cells, and in the odd resonators for an array with an odd number of
cells. The values of the current magnitude maximum in the resonators can be obtained
considering (16). When the array has an even number of cells, in the even resonators the
current magnitude maximum is |V̂s/(Ẑs + Ẑ0)|; in the odd resonators, it is zero. Differ-
ently, when the array has an odd number of cells, the denominator of (16) becomes zero,
and the convergence of the formula can be studied calculating its limit when the number
of resonators ξ approaches n as:

Îi = lim
ξ→n

V̂s

Ẑs + Ẑ0

e−γ̂(i−1)d − ρ̂Te−2γ̂(ξ−1)deγ̂(i−1)d

1− ρ̂Sρ̂Te−2γ̂(ξ−1)d
. (19)

Performing the calculation for different values of i, it is found that the current mag-
nitude in the odd resonators becomes infinite, whereas it tends to |V̂s/(Ẑs + Ẑ0)| in the
even resonators.

For a lossy array with a limited attenuation, the location of the current maxima and the
different behaviour of arrays with an even or odd number of cells do not vary much with
respect to the case of a lossless array. It can be observed that in arrays with an even number
of resonators the attenuation produces a slight reduction of the current maxima compared
to the lossless case; moreover, the attenuation slightly increases the value of the current in
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the odd resonators, which is no longer zero, as Figure 4 shows. This figure shows also that
the attenuation produces a significant reduction of the current maxima in arrays with an
odd number of resonators; further, the current module in the even resonators decreases
with respect to the lossless case.

Overall, as expected, the SWR is more pronounced as the MI waveguide becomes
shorter, the input energy is spread among less resonators. As a final point, considering
arrays with a very large number of resonators, Figure 5 shows that the SWR is quite close
to that of the perfect matching, regarding the uncertainty on the parameters of the system
nearly null. This confirms the classic theory of the TLs, which states that for an infinitely
long line no reflections occur.

10
0

10
1

10
2

0

5

10

15

20

25

30

Figure 5. Standing wave ratio for arrays of different length and different termination conditions.

5. Resonator Array with a Receiver

Until now, resonator arrays have been considered to enhance the power transmission
to the terminal resonator, which acts as a receiver for the WPT system. However, in
the literature, a slightly different application is usually considered, that exploits the whole
array as a transmitter, over which the receiver is free to move. This configuration increases
the tolerance to the misalignment of the receiver circuit and represents a suitable solution
for industry applications, e.g., for automation and EV charging. Furthermore, if the receiver
moves over the resonators, it could offer the possibility of a dynamic power transfer. In this
section, the configuration of a resonator array with a receiver shown in Figure 6 is analysed,
making use of the approaches presented in Section 2 and highlighting its equivalent TL.
Basically, the array is the same presented in Section 3, with a further resonator labelled r
acting as a receiver, which for simplicity is identical to the array resonators and is placed
10 mm above the array. The load is connected to that resonator and Ẑload is its impedance,
as represented in Figure 7. The last cell of the array is terminated in an additional impedance
that can assume arbitrary values. There is now another parameter that affects the operation
of the WPT system, which is the mutual inductance Mr,i between the receiver circuit and
the i-th resonator of the array facing the receiver. It depends on the geometry of the cells
and the position x of the receiver along the array, which is described by the coordinate
system represented in Figure 6. As all the resonators are identical, the mutual inductance,
function of the position x, behaves as reported in Figure 8 for the receiver and three different
consecutive resonators.

For a complete analysis, different positions of the receiver have been considered. As a
consequence, the current of each resonator becomes a function of the receiver position.
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Figure 6. Resonator array with a receiver.
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Î1
+

−
V̂in

MM

R
CL

Î2
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Figure 7. Equivalent circuit of a resonator array with a receiver.

Figure 8. Mutual inductance between the receiver and three consecutive resonators of the array, as a
function of the receiver position at a receiver height of 10 mm.

5.1. Circuit Analysis

The circuit analysis is carried out as described in Section 2, with an additional KVL
equation written for the receiver. The impedance matrix Ẑm now includes also the terms
representing the coupling of the receiver with the array cells, which are different for each
position of the receiver along the array. In general, in case the receiver is coupled with the
ith and (i + 1)th cells of the array, the impedance matrix is :
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Ẑm =


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...
...

...
...

...
...

. . . · · · · · · · · · · · ·
...

... 0
...

...
...

... · · · · · · · · · · · ·
...

... jωMr,i
...

...
...

... · · · · · · · · · · · ·
...

... jωMr,i+1
...

...
...

... · · · · · · · · · · · ·
...

... 0
...

...
...

... · · · · · · · · · · · · . . . . . .
...

0 · · · · · · · · · · · · · · · · · · · · · jωM Ẑ + ẐT 0
0 · · · · · · · · · · · · jωMr,i jωMr,i+1 · · · · · · 0 Ẑr


(20)

where the last row considers the coupling of the receiver with the ith and (i + 1)th cells of
the array for a receiver generic position, Ẑ = R + jωL + 1/(jωC) is the impedance of the
single cell and Ẑr = Ẑ + Ẑload is the impedance of the receiver.

5.2. Equivalent Transmission Line

The structure of the apparatus can be studied with its equivalent TL, that allows
interesting insights to be attained. Among the different models that can be proposed the
most comprehensive one can be obtained considering the receiver as a further TL connected
to the array, having the same length λ/4 of the resonators that form the array. However,
as regards the array current analysis it is possible to simplify the equivalent TL as shown
in the following for a receiver that couples to one or two array resonators.

5.2.1. Perfectly Aligned Receiver

In case the receiver couples to one resonator only, it is possible to simplify the system
by embedding the reflected impedance Ẑd of the receiver into the equivalent circuit of the
facing array resonator. In fact, according to [15,16,26], for a receiver coupled with the ith
array cell, it is possible to write the KVL equation:

jωMÎi−1 + (Ẑ + Ẑd) Îi + jωMÎi+1 = 0 (21)

where

Ẑdi
=

(ωMr,i(x)
∣∣
max)

2

Ẑr
. (22)

The equivalent TL representing this system configuration can be obtained from that
of the resonator array without a receiver considering the increased impedance Ẑ + Ẑdi

of
the ith resonator. The transmission matrices Ti−1,i and Ti,i+1 representing the coupling
between the ith resonator and the adjacent ones (i − 1 and i + 1, respectively) modify
consequently, as Ẑi in (4) becomes Ẑi = (Ẑ + Ẑdi

)/2, while the mutual impedance ẐMi,i+1
is not altered. By using (10), the segment of MI waveguide composed of the two-port
networks represented by the modified transmission matrices Ti−1,i and Ti,i+1 presents a
characteristic impedance Ẑ0i−1,i = Ẑ0i,i+1 = Ẑ0d 6= Ẑ0. Thus, at the interfaces between TL
segments of different characteristic impedances, shown in Figure 9 by vertical dashed lines,
there occur reflections of MI waves that come from the power source and the termination.
The reflection phenomenon can be understood by means of the reflection coefficient at the
interfaces. For forward MI waves travelling from the power source towards the termination
(positive x direction), the reflection coefficient at the interface between the i− 1 and i cells is

ρ̂di
=

Ẑ0d − Ẑ0

Ẑ0d + Ẑ0
, (23)
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and −ρ̂di
at the interface between the i and i + 1 cells, whereas the opposite should be

considered for backward MI waves travelling in the negative x direction. According to [16],
the exact receiver matching is achieved in resonance when Ẑload = Ẑm

load where

Ẑm
load =

ω0M2
r,i(x)

∣∣
max

Me−αd − R, (24)

a condition very difficult to meet, since the receiver load is defined by the circuitry con-
nected to it.

+

−
V̂i−2

Îi−2

T...

+

−
V̂i−1

Îi−1

ρ̂di

Ti−1,i

+

−
V̂i

Îi

Ti,i+1

+

−
V̂i+1

Îi+1

−ρ̂di

T

+

−
V̂i+2

Îi+2

...

Figure 9. Section of the equivalent TL of a resonator array with a receiver coupled with the
ith resonator.

5.2.2. Receiver Coupled with Two Array Resonators

In case the receiver is coupled with the ith and (i + 1)th resonators, a reflected
impedance and a controlled voltage source have to be added in the ith and (i + 1)th
cells. Thus, the impedances of the ith and (i + 1)th resonators and the mutual impedances
between the ith and (i + 1)th resonators and the adjacent ones modify accordingly, alter-
ing the parameters of the transmission matrices Ti−1,i, Ti,i+1 and Ti+1,i+2. The resulting
equivalent TL is depicted in Figure 10. The values of the modified matrix elements can be
derived considering the KVL equations written for the receiver and the ith and (i + 1)th
array resonators:

jωMr,i Îi + jωMr,i+1 Îi+1 + Ẑr Îr = 0 (25)

jωMÎi−1 + Ẑ Îi + jωMÎi+1 + jωMr,i Îr = 0 (26)

jωMÎi + Ẑ Îi+1 + jωMÎi+2 + jωMr,i+1 Îr = 0 (27)

Substituting Îr from (25) in (26) and (27) we obtain:

jωMÎi−1 +

(
Ẑ + Ẑdi

(x)
)

Îi +

(
jωM + Ẑdi,i+1

(x)
)

Îi+1 = 0 (28)

and (
jωM + Ẑdi,i+1

(x)
)

Îi +

(
Ẑ + Ẑdi+1

(x)
)

Îi+1 + jωMÎi+2 = 0 (29)

where

Ẑdi
(x) = ω2 Mr,i(x)2

Ẑr
(30)

Ẑdi+1
(x) = ω2 Mr,i+1(x)2

Ẑr
(31)

Ẑdi,i+1
(x) = ω2 Mr,i(x)Mr,i+1(x)

Ẑr
(32)
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The new terms of Ti−1,i, Ti,i+1 and Ti+1,i+2 can be found according to (4) considering:

Ẑi(x) =
Ẑ + Ẑdi

(x)
2

(33)

Ẑi+1(x) =
Ẑ + Ẑdi+1

(x)
2

(34)

and
ẐMi,i+1(x) = ẐMi+1,1(x) = jωM + Ẑdi,i+1

(x), (35)

whereas the characteristic impedances of the TL segments are found with (10). It must be
noticed that, as the mutual impedance is not purely imaginary, the resulting characteristic
impedances are not real anymore. Moreover, they are different for each line segment,
which considers resonators coupled with the receiver and depend on the receiver position
x, with consequent MI wave reflections due to the impedance discontinuities. In general,
Ẑ0i−1,i (x) 6= Ẑ0i,i+1(x) 6= Ẑ0i+1,i+2(x) 6= Ẑ0. The reflection coefficients at the interfaces, that
are different and complex, can be generally defined, for forward MI waves, as:

ρ̂i,i+1(x) =
Ẑ0i,i+1(x)− Ẑ0i−1,i (x)

Ẑ0i,i+1(x) + Ẑ0i−1,i (x)
(36)

and are schematically shown in Figure 10. The opposite value should be considered
for backward MI waves. The equivalent TL can be considered as the union of three TL
segments: the first comprising the resonators from the 1th to the (i − 1)th, the second
composed of the resonators coupled to the receiver (two-port networks represented by
Ti−1,i, Ti,i+1 and Ti+1,i+2) and the third comprising the resonators from the (i + 2)th to the
last one. In particular, the first and third segments of the TL result to be longer or shorter
depending on the receiver position.

+

−
V̂i−2

Îi−2

T...
+

−
V̂i−1

Îi−1

ρ̂i−1,i

Ti−1,i

+

−
V̂i

Îi

ρ̂i,i+1

Ti,i+1

+

−
V̂i+1

Îi+1

ρ̂i+1,i+2

Ti+1,i+2

+

−
V̂i+2

Îi+2

ρ̂i+2,i+3

T

+

−
V̂i+3

Îi+3

...

Figure 10. Section of the equivalent TL of a resonator array with a receiver coupled with the ith and
(i + 1)th resonators.

5.3. Numerical Simulations

In this section, the results of numerical simulations of the array prototype used for the
experiments (and described in Section 6) are presented and discussed. The characteristic
impedance of the array is Ẑ0 ≈ 1.5 Ω and different simulations have been performed
considering matched and modulated terminations and load impedance values of 0.7 Ω,
5 Ω and 15 Ω. To simulate the continuous variation of the receiver position, a small
discretisation step ∆x = d/30 has been set.

5.3.1. Currents for a Matched Array

The termination impedance of the array ẐT , which can be considered the unique de-
gree of freedom during the operation, can seriously affect the performance of the apparatus.
In particular, as a first choice, it seems convenient to set ẐT = Ẑ0, i.e., matching only the
array. In this way, the amount of power that is transferred in the TL segment after the
discontinuity introduced by the receiver does not undergo reflections and is completely
absorbed by the termination impedance.
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In Figure 11 the current magnitudes of the resonators are reported as a function of the
receiver position for different values of the load resistance. The plots suggest the presence
of standing wave patterns for the MI waves and indicate that the most severe current peaks
occur when the receiver is perfectly aligned with a resonator. For a better visualization
of the standing wave patterns, the resonator current magnitudes are plotted for different
values of the load resistance in Figure 12, considering only the position of perfect alignment
since it leads to the highest current magnitudes. As it can be expected, no standing waves
occur for the segment of the TL after the resonator covered by the receiver, with the overt
case when the receiver is placed over the first resonator of the array. The reflections caused
by the impedance discontinuity are more evident when the receiver is close to the power
source, since this situation corresponds to the shortest equivalent TL, confirming what
discussed in Section 4.1 and observed in Figure 5.
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Figure 11. Current magnitude of each resonator as a function of the receiver position, for a matched
array and different load resistances.

The presence of the termination impedance allows the TL segment to be matched at the
cost of decreasing the efficiency, since it dissipates the incident power. In order to increase
the efficiency, it is convenient to keep the traveling power inside the waveguide and this
can be achieved with both S.C. and O.C. terminations. The resulting transmission efficiency
is reported for a generic receiver position in Figure 13 in the case of a load resistance of 5 Ω.
The curves mirror the efficiency trend in the case of O.C. and S.C. terminations, whereas a
strong efficiency reduction occurs in the case of a matched array.

5.3.2. Modulated Termination

The standing wave patterns of the efficiency, shown in Figure 13, suggest the possibil-
ity of adjusting the termination impedance of the array so that an efficiency peak is obtained
at the position of the receiver. Among the proposed modulation techniques [27,28], the sim-
plest idea consists in changing the termination condition from S.C. to O.C., leading to a
shift in the standing wave pattern of the current with a consequent shift in the position of
the efficiency peaks.
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Figure 12. Standing wave patterns for different positions of the perfectly aligned receiver, a matched
array and different load resistances.
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Figure 13. Transmission efficiency in the cases of S.C., O.C. and matched terminations for Rl = 5 Ω.

In this way, the power-transfer efficiency is nearly constant for each position of the
receiver along the array, even if current peaks can occur in the resonators upstream and
downstream the ones facing the receiver. In general, the MI wave transmitted downstream
of the receiver undergoes reflection at the termination and, in turn, also at the discontinuity
created by the receiver, causing standing wave patterns in each section of the equivalent TL.

The magnitude of the resonator currents as a function of the receiver position and the
relevant standing wave patterns for a perfectly aligned receiver are plotted in Figures 14–19
in the case of S.C., O.C. and perfectly matched termination for different receiver load values.
In particular, Figures 14 and 15 refer to Ẑload = 0.7 Ω, Figures 16 and 17 to Ẑload = 5 Ω and
Figures 18 and 19 to Ẑload = 15 Ω.

These values have been chosen to cover all the possible load conditions that can
occur. Indeed, the matching load of the receiver circuit ω0Mr,i(x) is 5 Ω in the case of
perfect alignment conditions. Then, the values 0.7 Ω and 15 Ω have been considered to
simulate low- and high-impedance conditions, respectively. Moreover, the load Ẑload = 15
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Ω theoretically guarantees the matching of the receiver to the array and is calculated
by (24).
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Figure 14. Magnitude of the currents of the array resonators as a function of the receiver position,
for different terminations and a receiver load Ẑload = 0.7 Ω.
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Figure 15. Standing wave patterns for different positions of the receiver, different terminations and a
receiver load Ẑload = 0.7 Ω.

The plots highlight that the resonators covered by the receiver experience low current
values, whereas the most severe peaks occur when the receiver covers the even resonators.
Analysing the worst scenarios, it is possible to state that the receiver load Ẑload affects the
amplitude of the current peaks, whereas their position is determined by the length and the
boundary conditions of the equivalent TL (input and termination impedances). Consid-
ering typical loads connected to the receiver, i.e., battery charging systems, the reflected
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impedance from the receiver Ẑdi
is real and then the phase shift experienced by the MI

waves along the line is not altered, despite further reflections occur. The resulting standing
wave pattern can be explained considering the defect impedance introduced by the receiver
and the lengths of the TL segments upstream and downstream of the discontinuity.

Case Ẑload = 0.7 Ω

For low values of Ẑload (|Ẑload| < |Ẑm
load)|) , the receiver reflected impedance presents

very high values and the array resonator covered by the receiver behaves as an open circuit,
as (30)–(32) show. In the case of perfect alignment, the upstream TL segment is formed by
i− 1 resonators and terminates in S.C., while the downstream one is composed of n− i
cells and is terminated in ẐT . Thus, according to Section 4.1 (see Figure 5), the upstream
SWR has higher values if i is even, while the downstream segment experiences higher
SWR values if n− i is odd with ẐT = 0 or n− i is even with ẐT → ∞, as it is possible
to see from Figure 15. In the case the receiver couples to two resonators i and i + 1,
the same considerations hold, where the upstream TL segment composed of i − 1 cells
and the downstream one of n− (i + 1) cells. Overall, the current behaviour in the two line
segments varies according to the receiver position, which determines their effective lengths
and terminations, as it is shown in Figure 14. It should be observed that, if the receiver
covers an odd cell, the standing wave pattern occurred in the upstream TL segment makes
the magnitude of the first resonator current very low compared to the previous situation,
thereby reducing the power demand to the supply system.

An exception is observed in the array current distribution of the downstream TL
segment for S.C. and matched termination. In these conditions, the even cells experience
current peaks when the receiver is placed between an even and an odd cell. This may be
explained considering that both upstream and downstream TL segments are composed of
an odd number of cells and thus their SWRs have higher values, as discussed in Section 4.1.

Case Ẑload = 5 Ω

If the receiver load increases, its reflected impedance decreases as (30) shows, and the
resulting equivalent TL is getting closer to the case of the array without receiver, for which
the standing wave pattern is shown in Figure 4. As Figures 16 and 17 show, the trends of
the currents and the SWRs are similar to those of the previous case. It can be noticed that
the current values are smaller, which is the discontinuity introduced by the receiver smaller.

Case Ẑload = 15 Ω

Finally, Figures 18 and 19 show that for a value of Ẑload = 15 Ω, which guarantees
the matching for perfect alignment positions and is obtained from (24), the upstream
equivalent TL segment is matched when the impedance Ẑi of the resonator facing the
receiver is Ẑ0 (ρ̂di

= 0). In general, Ẑi = Ẑ + Ẑdi
+ ẐTL,down, where ẐTL,down is the reflected

impedance of the downstream TL segment to the ith resonator, whose value varies between
zero and infinity depending on its length and termination, as shown in [26]. For a low-loss
array Ẑi ≈ Ẑdi

+ ẐTL,down and thus, considering the receiver matched, Ẑi ≈ Ẑ0 only if
ẐTL,down ≈ 0, namely only if:

• The downstream TL segment is composed of an even number of resonators and is
terminated in S.C.;

• The downstream TL segment is composed of an odd number of resonators and is
terminated in O.C.

This can be appreciated from Figure 19, which illustrates the standing wave patterns.
When the upstream TL segment is matched, the upstream resonator currents are all equal.
However, for generic receiver positions standing waves still occur and the highest currents
magnitudes are found for an array with an odd number of resonators, as Figure 18 shows.

Overall, the presented results clearly indicate that, although a proper modulation of
the termination of the array allows the efficiency to be dramatically improved, for generic
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receiver positions the resonators can experience very large currents, which may potentially
lead to a breakdown of the whole apparatus.
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Figure 16. Magnitude of the currents of the array resonators as a function of the receiver position,
for different terminations and a receiver load Ẑload = 5 Ω.
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Figure 17. Standing wave patterns for different positions of the receiver, different terminations and a
receiver load Ẑload = 5 Ω.
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Figure 18. Magnitude of the currents of the array resonators as a function of the receiver position,
for different terminations and a receiver load Ẑload = 15 Ω.
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Figure 19. Standing wave patterns for different positions of the receiver, different terminations and a
receiver load Ẑload = 15 Ω.

6. Experimental Verification

The numerical results have been experimentally verified considering the array rep-
resented in Figure 6, in the case of perfect matching of the termination and a load of 5 Ω.
In Figure 6 all the components of the experimental system are indicated. The array proto-
type, shown in Figure 20, is composed of six stranded-wire resonators (coils), each made
with six square turns of 153 mm side-length. The winding conductors have a section of
2.5 mm2, resulting in an intrinsic resistance R = 0.11 Ω and a self-inductance L = 12.5 µH.
The terminals of each resonator are connected to a capacitor of capacitance C = 93.1 nF,
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so that the coils resonate at a frequency f0 = 147 kHz. This array is characterized by
a mutual inductance M = −1.55 µH between adjacent resonators, resulting in a char-
acteristic impedance Ẑ0 ' 1.5 Ω. The input voltage downstream of the supply system
is set to 3.6Vrms and is provided by a half-bridge inverter realized with GaN transistors,
with an internal impedance ẐS = 0.01 Ω. The currents have been measured by means of
a current probe Tektronix TCP302 amplified by a Tektronix “TCPA 300” and processed
through an Agilent “Infiniium” 54855A oscilloscope with a sampling capability of 2 GSa/s
and a bandwidth of 500 MHz. The measurements refer to the current magnitude of each
resonator versus the position of the receiver along the array, considering the array ter-
minated in a resistance of 1.5 Ω and the receiver connected to a 5 Ω resistive load. The
results of the measurements are reported in Figure 21 and are compared with the numerical
predictions (see Figures 11 and 16). As expected, the measurement reveals the presence of
standing wave patters for the MI wave (current wave), with the highest magnitude values
in correspondence to the positions of perfect alignment of the receiver with even resonators.
The comparison between measurements and numerical simulations shows a very good
agreement; the maximum difference between the trends is found in correspondence of the
current peak values, with an error of about 3.5%.

Figure 20. Experimental setup.
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Figure 21. Comparison between the numerical and experimental values of the resonator current
magnitude for different receiver positions in the case of ẐT = 1.5 Ω and Ẑload = 5 Ω.

7. Conclusions

Inductive power transfer systems employing an array of magnetically coupled res-
onators allow the power transfer range to be extended, preserving a great efficiency. In this
paper the resonator arrays are studied exploiting the analogy with the TLs, which is
possible describing the array as a cascade of transmission matrices. This approach has
been discussed for generic arrays and permits the system behaviour to be analytically
investigated, as well as it provides insights about the phenomena that occur. In the first
part of the work arrays with a load impedance connected to the last resonator are con-
sidered. An analytical expression for the resonator currents of a generic array has been
proposed and validated, in the hypothesis of “nearest-neighbourhood interaction”. Both
analytical and numerical studies highlight strong current peaks occurring for particular
configurations reported and discussed in Section 4. The analysis of resonator arrays fed
by an inverter has shown critical standing wave ratios in case the arrays is composed of
an odd number of resonators. The second part of the work is devoted to the analysis of
resonator arrays with a receiver and shows how the TL model can be extended to these
apparatuses. The definition of the transmission matrices has been extended to case of a
receiver in a generic position, allowing an estimation of the current behaviour in the array.
Different modulation strategies have been presented in order to reach a uniform efficiency
for all the receiver positions along the array, at the expense of standing wave patterns of the
resonator currents. The presence of a receiver leads to discontinuities in the array causing
reflections and then high current peaks, which in turn may lead to severe stress to the
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electric components. This clearly indicates that the resonators have to be properly tailored,
still preserving the same impedance as well as the same mutual inductance, in order to
avoid further impedance discontinuities. With a proper design, resonator arrays can be
considered a very cheap solution to extend WPT.
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