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Abstract: The macroscopic physical properties of rocks are profoundly determined by their mi-
crostructure, and the research of accurately characterizing rock pore structure has been extensively
carried out in the fields of petroleum engineering and geoscience. Fractal geometry is an effective
means of quantitatively estimating the pore structure properties of porous media. In this study, the
evolution law of the fractal dimension and the quantitative relationship between the fractal dimension
and porosity were investigated based on the digital 3D rock models. First, three kinds of models
with gradually changing pore structures, namely sedimentation, compaction, and cementation, were
systematically reconstructed by the process-based approach. Then, the fractal dimensions of the
skeleton, pore, and surface of the models were computed and analyzed. Finally, the relationships
among the fractal dimension, porosity, and complexity were explored qualitatively. These works
reveal the changing laws of three types of fractal dimensions for different pore structure models. The
pore structure differences in sedimentation model can only be distinguished by the surface fractal
dimension, while both pore and surface fractal dimensions are available parameters for characterizing
different pore structures in compaction and cementation models. The quantitative relations between
box-counting fractal dimension and porosity were established, which can be expressed by combining
linear and logarithmic formulas. The comparison of fractal dimensions of compaction and cementa-
tion models proves that fractal dimensions can distinguish the subtle pore structure differences in
digital 3D rock models. Understanding the evolution law between the fractal dimension and pore
structure parameters provides more references for classifying and evaluating rock pore structure
features using fractal dimensions.

Keywords: process-based model; pore structure; box-counting; fractal dimension; quantitative relation

1. Introduction

As a kind of complex porous medium, rock has the structural characteristics of be-
ing heterogeneous, discontinuous, anisotropic, and multiphase. The irregularity of rock
pore structure occurs in different scales, which influences the physical properties, such as
porosity, density, elasticity, permeability, and conductivity [1–4]. The microstructure is a
significant factor determining the macroscopic properties of rock [5–8]. Therefore, deter-
mining how to establish a digital rock that can characterize the microscopic pore structure
of real rocks and how to understand and describe the pore structure characteristics of
digital rocks is a widely discussed issue.

The digital 3D core, which characterizes the microstructure of rock at the pore scale, has
become the basis of quantitative analysis for pore structures and physical properties [9,10].
In the past few decades, digital rock modeling technology has been studied extensively.
Generally, there are mainly two categories for constructing a digital core: physical experi-
ment and numerical reconstruction [11,12]. The physical experiment is described as the use
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of high-precision scanning equipment to directly image rock samples to establish digital
images. The specific methods include X-ray computed microtomography [13], focused
ion beam [14], and the combination of a series of thin sections [15]. On the other hand,
numerical reconstruction is described as the use of computer and mathematical algorithms
to simulate and establish a reconstruction model that is consistent with the characteristics
of rock properties. The input of modeling is based on the low-order statistical information
of rock, such as porosity, particle size distribution, and two-point correlation function. The
specific methods include simulated annealing method [16], sequential indicator simulation
method [17], multiple point geostatistics method [18], Markov chain method [19], process-
based method [20–24], and hybrid modeling [25,26]. Each modeling method has specific
advantages, and digital rock provides a prerequisite for the in-depth and convenient study
of the pore structure and physical properties of rock.

The process-based method is an effective tool for reconstructing digital rock models
with different pore structures. Bryant and Blunt [27] proposed this method of simulating
the rock formation process to reconstruct a digital core. Bakke and Øren [20] performed a
systematical and profound study on the process-based method, which not only considered
the distribution of grain size, but also simulated the quartz cement growth and the clay
coating of the free surface. Øren and Bakke [28] reconstructed the digital rock model
of Fontainebleau sandstone using this method, which well reflected the geometric and
conductive properties. Jin et al. [22] discussed in detail the geometrical structure and
mechanical properties of grains. Zhu et al. [23] reconstructed the digital core by using
irregular grains in the sedimentation simulation. The process-based method, which is
economical and efficient, has the prominent advantage of systematically establishing digital
3D rock models with gradually changing pore structure and porosity.

The pore space of rock presents extreme irregularities at different scales [29], and it is
difficult to quantify the complexity of pore structure using the traditional Euclidean integer
dimension. Therefore, fractal geometry has been rapidly and extensively developed in mi-
crostructure characterization of porous media since Mandelbrot [30] proposed the concept
of fractals. Hansen and Skjeltorp [31] established a fractal model to describe the number-
size distribution of fractures and faults produced by a tectonic process. Roy et al. [32] and
Wu et al. [33] calculated the fractal dimension of rock fractures using the box-counting
method. Anovitz et al. [34] and Li et al. [35] investigated the fractal properties of pore throat
structure in porous media. Krohn [36], Vega and Jouini [37], and Liu and Ostadhassan [38]
evaluated the fractal characteristics of pore structures of unconventional reservoirs such as
carbonate and shale at different scales. Tao and Zhang [39] and Zhang et al. [40] proposed
fractal models of the pore volume fraction, particle volume fraction, and size distribution
of pores or particles to characterize the fractal characteristics of porous media. Dathe
and Thullner [41] and Yu et al. [42] probed the relationship between the skeleton fractal
dimension and pore fractal dimension. Li et al. [24] calculated and analyzed the fractal
characteristics of the solid, pore, and interface of a digital 2D rock model. Many studies
have shown that the fractal dimension is a practical tool to quantify the microscopic pore
structures of porous media [43–48]. However, there is still no clear quantitative model
for the relationships among porosity, pore structure complexity, and fractal dimension in
digital rocks with different pore structures.

In addition, fractal parameters calculated from images are powerful standards in the
characterization, classification, and evaluation of pore structures in porous media with the
rapid development of computer technology [8,33,37,49]. The box-counting method has
simple and executable properties in calculating the fractal dimension, so it is a common
method for fractal estimation of 2D or 3D images [50,51]. However, the box-counting fractal
dimension is affected by a wide range of factors, including the computational algorithm
and the porous media image itself [52,53]; in particular, the porosity has a huge impact on
the fractal dimension results. Therefore, exploring the relationship between pore structure
parameters and fractal dimensions is the basis for extending its applicability. Researchers
have conducted some related studies and have made some progress (Table 1). However,
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these works usually use a small number of digital rock samples, and/or the pore structure
of the models does not have the characteristics of gradual change, so it is difficult to
accurately grasp the evolution law and quantitative relationship of the fractal dimension.

Table 1. Research progress on the relationship between box-counting fractal dimension and pore
parameters of porous media.

Literature Time Material Object Fractal Dimension Influence Factor

[54] 2001 2D image of soil Surface Image size and box size
[41] 2005 2D image of porous structure Matrix and pore Mass fraction of matrix and pore
[42] 2009 2D image of porous structure Skeleton and pore Porosity
[55] 2011 CT image of rock Pore Porosity

[56] 2012 MRI image of artificial core Pore Box size, threshold, resolution,
and porosity

[53] 2013 3D image of sand packing Pore Porosity and specific surface area
[57] 2015 2D image of soil Mass and pore Mass fraction
[37] 2015 2D image of carbonatite Pore and multifractal Porosity scaling

[24] 2019 Process-based model Solid, pore, and interface Porosity and complexity of pore
structure

[58] 2020 Process-based model Pore and interface Porosity and specific surface area

In this work, the fractal dimension of digital 3D cores with gradually changing pore
structure was computed by using the box-counting algorithm, and the characteristics of
different fractal phases were discussed. Firstly, three kinds of models with different pore
structures, namely the sedimentation model, compaction model, and cementation model,
were systematically reconstructed utilizing the process-based approach. Next, the fractal
dimensions of the skeleton, pore, and surface of the digital rock models were estimated
and their changing laws were analyzed. Finally, the quantitative relations between fractal
dimensions and porosity were discussed.

2. Methods
2.1. Process-Based Modeling

An effective method of obtaining digital rock microstructure is the simulation of the
formation process of rock. Bakke and Øren [20] summarized the basic principle of the
process-based method, which can be described as three main steps: sedimentation, com-
paction, and diagenesis. The basic information such as porosity, particle size distribution,
two-point correlation function, and shale content obtained from 2D thin section images of
rocks are usually used as input parameters for modeling. Using mathematical algorithms
and computer technology to simulate the formation process of rock, the digital core model
reflecting the microscopic pore structure can be obtained. The method does not attempt to
accurately reproduce the complex formation processes of rocks, but to reconstruct digital
rock models by simulating the results of the main sandstone-forming processes [20,28].

The code for reconstructing the 3D process-based models was developed, and it
is implemented in MATLAB. Figure 1 shows the three procedures for reconstructing
the digital core using the process-based approach. The first step in the simulation of
sedimentation is to set up the grain size distribution and deposition area. Figure 1a shows
the grain size distribution curve obtained from a sandstone. The grains can be selected
based on the distribution curve, and the deposition area can be set quantitatively according
to the grain size distribution and the required model size. Then, the most stable position of
the grains needs to be determined. A new grain can be deposited only after the previous
grain falls and stabilizes. When all the grains are deposited and meet the stable condition,
the sedimentation model is obtained. Figure 1a–d illustrate the sedimentation step, in
which a red grain is highlighted throughout the process. Then, the stable sedimentation
model is binarized, where the particle skeleton is represented in black and the pore space is
represented in white (Figure 1e).
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Figure 1. Three basic procedures for constructing 3D process-based model. (a–d) Sedimentation
process; (a) Grain size distribution; (b) A new grain; (c) Find stable position; (d) Sedimentation model;
(e) Binarization; (f) Compaction process; (g) Cementation process.

In the compaction simulation, it is assumed that grains remaining constant in shape
can be translated and interpenetrated, which forms a digital rock model with varying
porosity and pore geometry, as shown in Figure 1f. The compaction is described as a linear
process in which the Z-coordinate of each grain center is shifted vertically downward in
proportion to the original Z0,

Z1 = Z0(1− λ) (1)

where Z0 and Z1 are the initial value and new value of the grain center in the Z-coordinate,
respectively, and λ is the factor reflecting the compaction level.

In the cementation simulation, it is assumed that the minerals of different compositions
and types are precipitated and consolidated on the grain surface, which changes the
porosity and pore geometry of the initial model. Roberts and Schwartz [59] proposed
the grain consolidation model, in which the spheres are transformed into polyhedrons by
uniform growth to simulate the cementation process. Bryant and Blunt [27] introduced the
geometric uniform growth model to simulate cement overgrowth by uniformly increasing
the radii of all grains. Jin et al. [22] considered the effects of silica growth rate and grain
size on cementation and summarized a strict formula with several parameters to control
the direction and amount of cementation. To cause the pore structures of the cementation
model to have the characteristics of gradual change, the geometric uniform growth model
is adopted, which can be further interpreted as that the cement grows uniformly in all
directions of the original grain surface, forming an equal-thickness cemented layer, as
shown in Figure 1g, with black representing rock skeleton, white representing pore space,
and blue representing cemented layer.

D1 = D0(1 + β) (2)

where D0 is the original grain diameter, D1 is the grain diameter after cementation, and β is
the factor reflecting the cementation degree.
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2.2. Calculation of Fractal Dimension

Many objects in nature, such as coastlines, mountains, and clouds, are extremely
complex and cannot be described by traditional Euclidean geometry [60–62]. The fractal
theory provides a scientific means for describing complex and irregular objects. It is
significant for accurately characterizing and quantifying the pore structure complexity of
porous media. Self-similarity, i.e., scale invariance, is an essential property of a fractal and
is quantified by the fractal dimension.

Fractal is defined as a set (F) in which the Hausdorff dimension (DH) is strictly greater
than its topological dimension (DT).

F = {D : DH > DT} (3)

In most practical applications, it is difficult to calculate the Hausdorff dimension
directly. Thus, various methods have been put forward to estimate the fractal dimension.
Lopes and Betrouni [50] classified these methods into three main categories: box-counting
method, fractional Brownian motion method, and area measurement method. Due to its
reliability and applicability, the box-counting method is one of the most commonly used
methods in various fields, especially for digital images [62,63].

The principle of calculating the fractal dimensions of 2D and 3D images using the
box-counting method is basically the same. The only difference is that the 2D image is
covered by squares, while the 3D image is covered by cubes [8]. To avoid errors caused by
the cube size not completely covering the image, the sequence of divisors was applied to
determine the cube size [56]. The calculation of the fractal dimension of an image using the
box-counting algorithm is expressed as

FD = lim
r→0

log(Nr)

log(1/r)
(4)

where FD is the fractal dimension; r is the cube size, which ranges from the smallest unit in
the voxel scale to 1/2 of the entire volume; and Nr is the total number of cubes containing
the object of interest in the r scale.

Different fractal phases, including skeleton, pore, and surface, can be calculated by im-
plementing the box-counting code to count different objects of interest [8,24,42,54,64]. Figure 2
illustrates the calculation process of different fractal phases of the digital core. Figure 2a displays
the digital core model (6003 µm3) reconstructed by the process-based approach, whose central
volume (5003 µm3) is selected for fractal calculation. Figure 2(b-1,b-2,b-3) shows three 3D im-
ages of the identical core after binarization, highlighting the phases of interest. The white voxels
of b-1, b-2, and b-3, which are the objects of interest, represent the skeleton, pore, and surface,
respectively. Figure 2(c-1,c-2,c-3) illustrates the process of obtaining the fractal dimension by
fitting data points based on the corresponding fractal phase.
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Figure 2. The calculation process of different fractal phases in digital 3D core. (a) Digital core model;
The phases of interest are (b-1) skeleton, (b-2) pore, and (b-3) surface; The calculated results correspond
to (c-1) skeleton fractal dimension, (c-2) pore fractal dimension, and (c-3) surface fractal dimension.

3. Digital Rock Model Material

To explore the relationship between the porosity, pore structure complexity, and fractal
dimension, as well as the evolution law of the fractal dimension of various phases of
interest, it is necessary to reconstruct the three-dimensional core models that meet the
research needs. Three-dimensional core models with gradually varying pore structures
were established simply and systematically, including a sedimentation model, a compaction
model, and a cementation model. In terms of input parameters, different from using a
specific particle size distribution, the modeling here refers to the gradually changing
particle size of Luo et al. [58], so the pore structure of the reconstructed sedimentation
model has the characteristics of progressive change. In terms of porosity, the compaction
and cementation parameters were gradually changed to obtain the models of continuous
evolution in porosity. In addition, the cementation process adopted the uniform growth
mode, so there are slight differences between compaction and cementation models when
the porosity is the same, which provides a model basis for verifying whether the fractal
dimension can distinguish small differences in the pore structure.

The size of the representative volume elements of digital rocks is usually in the range
of 500–3000 µm3. In order to improve the modeling efficiency, the deposition range of all
models was set to 6003 µm3 under the condition of model homogeneity. Then only the
volume of 5003 µm3 in the model center was employed for image processing and fractal
calculation. Moreover, considering the capacity of computer modeling, the size of all
models was set to 240 × 240 × 240 pixels.

During the modeling process, 10 random simulations were performed for each sub-
model, so the mean and standard deviation could be calculated to evaluate the accuracy of
the results of modeling and fractal dimension. The standard deviation reflects the degree
of dispersion between a set of data. It is assumed that there is a set of data of x1, x2, . . . , xn,
whose average (x) is expressed as

x =
1
N

N

∑
i=1

xi (5)
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Further, the standard deviation (σ) is calculated as

σ =

√√√√ 1
N

N

∑
i=1

(xi − x) (6)

The average and standard deviation of the relevant results were calculated in MATLAB
based on 10 repeated simulations. Table 2 shows the modeling input parameters (including
particle size distribution, compaction factor, and cementation factor) and porosity results
(including mean and standard deviation) for the three models of sedimentation, compaction,
and cementation.

Table 2. The modeling input parameters and porosity results of sedimentation, compaction, and
cementation models.

Model A
(Sedimentation)

Model B
(Compaction)

Model C
(Cementation)

No. Particle Size (µm) Porosity No. λ Porosity No. β Porosity

A1 100 0.3778 ± 0.0042 B1 0 0.3755 ± 0.0029 C1 0 0.3755 ± 0.0029
A2 100,90 0.3840 ± 0.0044 B2 0.02 0.3506 ± 0.0024 C2 0.01 0.3382 ± 0.0027
A3 100,90,80 0.3785 ± 0.0028 B3 0.04 0.3257 ± 0.0025 C3 0.02 0.3020 ± 0.0028
A4 100, . . . ,70 0.3780 ± 0.0028 B4 0.06 0.3009 ± 0.0024 C4 0.03 0.2672 ± 0.0028
A5 100, . . . ,60 0.3755 ± 0.0029 B5 0.08 0.2764 ± 0.0025 C5 0.04 0.2341 ± 0.0029
A6 100, . . . ,50 0.3707 ± 0.0019 B6 0.10 0.2524 ± 0.0026 C6 0.05 0.2028 ± 0.0029
A7 100, . . . ,40 0.3680 ± 0.0020 B7 0.12 0.2287 ± 0.0027 C7 0.06 0.1737 ± 0.0029
A8 100, . . . ,30 0.3643 ± 0.0032 B8 0.14 0.2045 ± 0.0026 C8 0.07 0.1470 ± 0.0028

B9 0.16 0.1806 ± 0.0025 C9 0.08 0.1229 ± 0.0027
B10 0.18 0.1571 ± 0.0025 C10 0.09 0.1016 ± 0.0026
B11 0.20 0.1345 ± 0.0023 C11 0.10 0.0829 ± 0.0024
B12 0.22 0.1129 ± 0.0021 C12 0.11 0.0667 ± 0.0023
B13 0.24 0.0924 ± 0.0019 C13 0.12 0.0529 ± 0.0021
B14 0.26 0.0732 ± 0.0015 C14 0.13 0.0412 ± 0.0017
B15 0.28 0.0559 ± 0.0013 C15 0.14 0.0315 ± 0.0014

3.1. Sedimentation Model

The sedimentation model was simulated by setting different grain sizes and contained
eight sub-models, and the particle size parameters are shown in Table 2. Figure 3 shows the
grain deposition images of the three sub-models. The corresponding three sub-models b-1,
b-2, and b-3 were obtained by binarization, in which the black represents the grain skeleton
and the white represents the pore space.

From A1 to A8, the types of grain size gradually increase, whereas the number of
grains with different sizes in each sub-model is equal. The sub-model A1, containing only
one kind of grain size with a diameter of 100 µm, has a uniform deposition arrangement,
so it has a relatively regular and simple pore structure, as shown in Figure 3(a-1,b-1). The
sub-model A8 containing eight kinds of grain sizes, since the pore space between larger
grains is often filled by smaller grains, has more compact packing and more complex pore
structure, as shown in Figure 3(a-3,b-3). The porosity evolution of the sedimentation model
is depicted in Figure 3c, where (and in all subsequent figures of the same type) red dots
and green error bars represent the arithmetic mean and standard deviation of 10 repeated
simulations, respectively. The porosity exhibits an initial slight increase followed by a
gradual decrease, which is usually closely related to the grain size distribution. The A1
sub-model shows regular packing because it contains only one grain size, but the A2
sub-model cannot be tightly packed because the two grain sizes do not change much, so
the porosity increases slightly. With the change in grain size distribution, small grains can
effectively fill the large pore space, so the porosity has a decreasing trend, but there is a
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small variation range with only 0.0197 from 0.3840 to 0.3643. Overall, the sedimentation
model is characterized by a gradual change in the complexity of the pore structure.
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3.2. Compaction Model

Taking sub-model A5 of the sedimentation model as the initial sub-model (i.e., B1 in
compaction model), the compaction model including 15 sub-models was constructed by
setting different compaction factors (Equation (1)). Figure 4 displays 3D images of B1, B8,
and B15 and the porosity evolution of the model. As the compaction factor increases, the
vertical movement between particles continuously occurs, so the entire model changes
gradually, which reduces the complexity and heterogeneity of the pore structure to some
extent (Figure 4a–c). However, the diameter and surface morphology of each grain remain
unchanged, so it is considered that the complexity of a single grain is invariable.
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Figure 4d shows the porosity evolution of the compaction model, which is obviously
different from that of the sedimentation model. With the increase in the compaction factor,
the porosity of the model decreases rapidly from 0.3755 to 0.0559, decreasing by 85.11%,
indicating that compaction reduces the initial model porosity significantly. Meanwhile, the
porosity standard deviation of 10 repeated simulations is far less than the porosity variation,
indicating that the deviation of compaction is small and the final effect is consistent.
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3.3. Cementation Model

Similarly, taking the sub-model A5 as the initial sub-model, the cementation model
including 15 sub-models was simulated by setting different cementation factors (Table 2).
Figure 5 displays 3D images of C1, C8, and C15 and the porosity evolution of the cemen-
tation model. From C1 to C15, the contact and overlap between grains cause the pore
space to decrease (Figure 5a–c), which results in the complexity and dispersivity of the pore
structure decreasing accordingly. In addition, compared with the compaction model, it is
worth noting that the degree of surface curvature of the grain gradually decreases with
the increase in grain diameter, resulting in a change in single-grain complexity. This can
be understood as that when only a single sphere is considered, the surface of the small
sphere is more curved than the large sphere, or the specific surface area of the small sphere
is larger than that of the large one. The difference between the compaction and cementation
models is that there is a slight variation in particle size which results in subtle differences
in the complexity of the pore structure. Figure 5d shows the porosity evolution of the
cementation model, which is similar to that of the compaction model. The porosity has a
sharp decrease; it is reduced by 91.61% from 0.3755 to 0.0315.
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In general, three types of models with gradually changing pore structures were recon-
structed by the simulation of the rock formation process, providing the basis for fractal
dimension calculation.

4. Results and Discussion

The digital 3D cores with different pore structures were modeled using the process-
based approach, and the fractal dimensions of these models were then calculated using the
box-counting method. The relations among porosity, pore structure complexity, and fractal
dimension were qualitatively investigated.

4.1. Fractal Dimension of Sedimentation Model

Figure 6 shows the variation in the fractal dimensions of the sedimentation model.
The fractal dimensions of the skeleton, pore and surface are marked as blue triangles, green
squares, and red dots respectively. Figure 6b highlights the surface fractal dimension and its
standard deviation. It can be seen that the skeleton fractal dimension of the sedimentation
model is the largest, while its variation range is small with only 0.0151 from 2.8960 to 2.9111.
In addition, the value of the pore fractal dimension is between that of the skeleton and
surface, and its variation range is only 0.0080 (2.7660–2.7740), which is even lower than that
of the skeleton. The reason for this is that the pore fractal dimension is affected by both
porosity and pore structure complexity; more specifically, it increases with the increase in
porosity and pore structure complexity. With the increase in the number of particle types in
the sedimentation model, the complexity of the pore structure has a slight rise, while the
porosity has a slight decline, which eventually leads to a quite small change in the pore
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fractal dimension. Accordingly, it is clear that the fractal dimensions of the skeleton and
pore cannot effectively reflect these pore structure differences in the sedimentation model.
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Figure 6. Fractal dimension evolution of sedimentation model. (a) Three kinds of fractal phases;
(b) Surface fractal dimension and its standard deviation.

Of the three kinds of fractal dimensions, the surface fractal dimension is the smallest,
which is not only applicable to the process-based model, but also applicable to all digital
images [41]. Figure 6b shows that the surface fractal dimension rises gradually from A1
to A8, which reflects that there is a steady increase in the complexity of pore structure
in the sedimentation model. The standard error of 10 repeated simulations is very small,
indicating that the results of random repetition are consistent. On the other hand, the
variation range of the surface fractal dimension is 0.0616 from 2.4791 to 2.5407, which is
overwhelmingly greater than that of the skeleton and pore. Therefore, it can be easily
concluded that the surface fractal dimension is an effective parameter for characterizing
and quantifying the pore structure complexity of the sedimentation model.

In the study of rock fractals, the complexity of rock pore structure is usually related to
the value of the fractal dimension, and the effect of the fractal phase (i.e., the volume fraction
of the considered object) is usually ignored. Moreover, more studies focus on evaluating
the complexity of digital core images only using the pore fractal dimension and do not
comprehensively consider the relationship between the three types of fractal dimensions
of skeleton, pore, and surface. It is worth emphasizing that when using box counting to
calculate the fractal dimension of digital cores that possess a small variation in porosity, the
difference in pore structure between these rocks may not be able to be characterized by the
fractal dimensions of the skeleton and pore, but it is a better choice to apply the surface
fractal dimension. Therefore, it is of great significance for the comprehensive evaluation of
rock pore structure to study the fundamental laws of the three kinds of fractal dimensions.

4.2. Fractal Dimension of Compaction Model

Figure 7a shows the evolution curves of fractal dimensions of the compaction model.
It can be seen that as the value of λ (i.e., the model number) increases, the skeleton fractal
dimension has a slight growth, and the increase value is 0.0869 (2.9047–2.9916), which
cannot be understood as the increase in the skeleton phase complexity, but the dramatic
rise in the volume fraction of the skeleton phase. In addition, the fractal dimension of
the pore is between that of the skeleton and that of the surface. However, there is a
considerable increase in the variation interval of the pore fractal dimension, reaching
0.4757 (2.2983–2.7740), which is even larger than that of the surface phase. The explanation
for this is that with increasing compaction factor, the porosity has a sharp reduction, and
the pore space irregularity has a certain degree of drop, which eventually results in the
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rapid decrease in pore fractal dimension. From B1 to B15, the surface fractal dimension
has a steady drop, and the decrease value is 0.2985 (2.2291–2.5276). Overall, both pore and
surface fractal dimensions have significant responses to the differences in pore structures
for the compaction model.
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Through further analysis in Figure 7a, it was found that the variation range of the
pore fractal dimension is larger than that of the surface fractal dimension (i.e., the pore
fractal dimension has a steeper decline), which indicates that with the increase in λ, pore
fractal dimension has a stronger response and is a more sensitive parameter to reflect the
comprehensive influence of porosity and pore structures.

Figure 7b shows the standard deviation of the fractal dimension of 10 repeated simulations
in the compaction model. Only some sub-model data are highlighted to facilitate the observation
of standard deviation results. It can be seen that the standard error has a very small value
compared with the significant changes in the average of the fractal dimension. In particular,
the standard deviation of the pore fractal dimension is extremely small. This indicates that
the results of random repetition have little deviation and good consistency, which proves that
digital rock modeling and fractal analysis have significant accuracy and reliability.

4.3. Fractal Dimension of Cementation Model

Figure 8a shows the evolution curves of the fractal dimension in the cementation model.
Since the pore structure change of the cementation model is similar to that of the compaction
model, there are extremely similar change trends in the fractal dimension between these two
models. There is a slight growth in the skeleton fractal dimension to 0.0905 (2.9047–2.9952)
with the increase in β (i.e., the model number). However, the pore and surface fractal
dimensions decrease significantly by 0.6471 (2.1269–2.7740) and 0.4680 (2.0596–2.5276),
respectively. The interpretation of the variation of the fractal dimension in the cementation
model is similar to that of the compaction model. Both pore and surface fractal dimensions
can significantly respond to the change in pore structure in the cementation model. In
addition, the standard deviation of the fractal dimension of 10 repeated simulations for
some sub-models is shown in Figure 8b, and all values are small, indicating that the fractal
dimension results have significant reliability.

In practice, it is necessary and critical to accurately characterize and quantify the
fractal attributes of real rock microstructure. If the porosity and complexity of real rock
samples have a relatively large difference, the fractal dimensions of the pore and surface
can be the active parameters for characterizing these rocks, and furthermore, the pore
fractal dimension may have a higher sensitivity to the change in porosity. In addition, there
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are subtle differences in pore structure between the cementation model and the compaction
model. It is important to understand the response law of the fractal dimension generated
by these subtle differences and to prove the effectiveness of the fractal dimension in distin-
guishing pore structure differences. Therefore, further analysis of the relationship between
the three kinds of fractal dimensions and the microscopic pore structure is significant for
the fractal evaluation of porous media.
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4.4. Quantitative Analysis of Fractal Dimension

The fractal dimension of rock is determined by the microscopic pore characteristics (i.e.,
the number, shape, and distribution of pore space), and it is of great significance to explore
the relationship between them for the evaluation of rock complexity and the analysis of
rock physical properties. The fractal data of the compaction and cementation models are
depicted as black dots, which have a gradual drop with the decrease in porosity (φn), as
shown in Figure 9. The effective fitting of these data points is important for understanding
the relationship between porosity and fractal dimension. Through the detailed exploration
of fractal data, it was found that the highest determination coefficient and good fitting
curve can be obtained by considering both logarithmic and linear equations on both sides of
the porosity of 0.2, as shown in Table 3. The determination coefficients (R2) of all the fitting
formulas are greater than 0.95, which indicates that there is an excellent fitting relationship
between porosity and fractal dimensions. In addition, Figure 9 demonstrates the fitting
curves between the pore and surface fractal dimensions and the porosity of the two models.

It is noteworthy that when the porosity is greater than 0.2, the linear equation shows a
good fitting effect. However, when the porosity is less than 0.2, the logarithmic formula can
be better applied to characterize this relationship. This illustrates that with the decrease in
porosity, especially when the porosity is less than 0.2, the fractal dimensions of the pore
and surface have a decreasing trend of increasing rapidity.

In order to compare the difference in fractal dimensions between the compaction
model and cementation model, it is necessary to compare the microscopic pore structures
of the two models and their influence on the fractal dimension. Figure 10 shows the
comparison of the fractal dimensions of the two models, in which the fractal dimension
data of compaction and cementation models are shown with a red solid line and a blue
dotted line, respectively.
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Figure 9. Fitting curves of FD versus φn in (a) compaction model and (b) cementation model.

Table 3. Fitting equations of fractal dimensions.

Model Fractal Phase Curve No. Fitting Formula R2

Compaction
Pore

1© FD = 0.8617 φn + 2.4569 0.9917
2© FD = 0.2541 ln(φn) + 3.0318 0.9999

Surface
3© FD = 0.3826 φn + 2.3908 0.9635
4© FD = 0.1861 ln(φn) + 2.7697 0.9982

Cementation
Pore

1© FD = 0.8851 φn + 2.4483 0.9902
2© FD = 0.2671 ln(φn) + 3.0498 0.9999

Surface
3© FD = 0.4313 φn + 2.3732 0.9538
4© FD = 0.2169 ln(φn) + 2.8132 0.9992
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Figure 10. The comparison of fractal dimensions between compaction model and cementation model.

The modeling process and pore structure characteristics of the compaction and ce-
mentation models have been detailed previously. After compaction, the complexity of
a single particle remains unchanged, which is because the size of each particle does not
change, so there is no change in the surface morphology of the particle. However, with
the increase in the cementation factor, the diameter of each grain grows gradually, and the
surface curvature has a slight decline gradually, which results in a decrease in single-grain
complexity in the cementation model. The blue dotted line is always below the red solid
line regardless of pore or surface fractal dimension (Figure 10), indicating that the fractal
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dimensions of the cementation model are smaller than those of the compaction model
when their porosity is the same. These minute differences between the two models are
vividly illustrated through the comparison of fractal dimensions. Moreover, the difference
in fractal dimensions between the two models has a growing trend with a continuous
decrease in porosity. The comparison of these fractal dimensions adequately reflects the
difference in microscopic pore structure between the two models, and it is proved again
that the fractal dimension is a practical tool for characterizing the pore structure difference
of digital porous media.

5. Conclusions

The process-based models with different pore structures were employed as the basis
of fractal analysis. The box-counting algorithm was utilized to perform the calculation of
the skeleton, pore, and surface fractal dimensions of digital cores. The fractal characteristics
were analyzed, and the quantitative relationships between fractal dimensions and pore
structures were discussed. The following conclusions can be derived:

1. The surface fractal dimension is a useful parameter for characterizing and distinguish-
ing the pore structure differences of the sedimentation model that has a slight change
in porosity.

2. The pore and surface fractal dimensions have significant responses, which proves that
both pore and surface fractal dimensions can be utilized to characterize different pore
structures in compaction and cementation models.

3. The relations of porosity versus fractal dimension can be well fitted by the combination
of linear and logarithmic equations in the compaction model and cementation model.
In addition, the pore and surface fractal dimensions decrease more and more rapidly
with the decrease in porosity.

4. When the porosity is the same, the fractal dimension of the cementation model is
smaller than that of the compaction model. The comparison of fractal dimensions
reflects the difference in microscopic pore structures, indicating that the box-counting
fractal dimension is an effective parameter for characterizing the pore structures of
digital rocks.
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