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Abstract: Adding water to fuel droplets is known to lead to puffing and micro-explosion. Puffing
and micro-explosion lead to a rapid increase in the liquid fuel surface area. This, in turn, leads to an
increase in the fuel evaporation rate and the formation of a homogeneous fuel vapor/air mixture.
The latter is important for improving the efficiency of combustion technologies, including those
used in internal combustion engines. The effects produced by puffing and micro-explosion lead to
a reduction in fuel consumption, improved fuel/air mixing, and a reduction in harmful emissions.
The contributions of puffing and micro-explosion to fire extinguishing have also been discussed in
many papers. In this paper, we review the state of the art in the investigation of composite droplet
micro-explosion and discuss the sufficient conditions for the start of puffing/micro-explosion as well
as child droplet characteristics.

Keywords: composite droplets; emulsions; heating; evaporation; puffing; micro-explosion; critical
conditions; child droplets

1. Introduction

The study of threshold conditions, regimes, and behaviors of heterogeneous droplet
breakup has been a trending topic of the latest research into the atomization of liquids
with different component compositions. Just a few research findings on the behavior
of secondary droplets during the micro-explosive breakup have been published so far,
especially considering the heating schemes with convective, radiative, and mixed heat
exchange. The component composition of secondary droplets is extremely difficult to
predict reliably because the existing experimental setups, as well as hardware and soft-
ware systems, have their limitations, and it is necessary to employ specialized tracking
systems with a set of dye additives. The state of the art in world research indicates that
the atomization of multi-component droplets is studied experimentally and theoretically
in research centers and laboratories in Japan [1–9], Great Britain [10–20], Germany [21–23],
the USA [24–39], Sweden [40,41], Italy [42], Israel [43], France [44–51], China [52–84],
Malaysia [85–93], Saudi Arabia [94], Korea [95–100], India [101–110], Mexico [111], and
Russia [10,112–156]. They obtained new data on droplet shapes, motion patterns, and
dispersion using non-contact optical methods. It is important to study the atomization
processes using optical techniques (PIV, PTV, IPI, SP, PLIF, LIP, two-color LIF, etc.), high-
speed hardware and software systems, specialized tracer particles, and tracking software,
and then to describe these processes in the form of physical and predictive mathemati-
cal models. In many modern papers dealing with micro-explosive atomization, the re-
searchers focus on the experimental research of mechanisms and factors influencing the
micro-explosive breakup behavior of droplets. They usually study mixed and immisci-
ble liquids in a parent droplet [141,157]. Some researchers also deal with fuel-in-water
emulsions [41], fuel blends in which micro-explosion occurs during combustion [158],
as well as slurry fuels [133]. The main impact on the micro-explosive behavior comes
from the following factors: ambient gas temperature [62,133], concentrations of gases dis-
solved in the liquid [5,9], size of the dispersed phase of water droplets in fuel-in-water
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emulsions [42,159–164], component concentration ratio [16,83,104,165], concentration and
size of solid particles [166–171], etc.

The key theoretical research findings are presented in Refs. [11,19,54,57,67,172] where
the authors used their own in-house program codes. These models used experimentally
established criteria to predict the time of breakup delay of multi-component droplets.
Superheating of the inter-component interface [11], reaching the critical droplet size due
to the vapor bubble growth [19,57,67], exceeding the critical thickness of the oil film [54],
reaching the critical value of inertial forces acting on a droplet [172] can be used as such
criteria. They make it possible to predict micro-explosion delays within the established
boundaries with acceptable accuracy. These models have a number of assumptions and
apply some constraints when predicting the breakup outcomes, the secondary droplet
behavior in particular. With this in mind, it is necessary to create an experimental database,
capable of describing the size and velocity distributions of secondary droplets resulting
from the micro-explosion, controlling for the key factors (ambient temperature, component
concentrations, and solid particle size), so that the resulting approximations could be used
in models. It is especially important to develop these methods in the field of resource-
efficient fuel technologies, thermal treatment, and gas-vapor-droplet heat carriers (Figure 1).
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Figure 1. High-potential fields of use for the micro-explosive atomization of liquid droplets.

In contrast to puffing/micro-explosion phenomena, there are well-known combustion-
induced rapid phase transition (CRPT) effects. Combustion-induced rapid phase transition
(CRPT) [173–175] is also an important phenomenon in combustion theory, which is con-
nected with explosion effects. Such effects are usually performed in CH4/O2/N2/CO2
mixtures [173–175]. Pressure dynamics during time have been found to reach peak values
up to 20 times higher than adiabatic values (up to 240 bar) [173]. The use of such critical
pressure in technology leads to severe fire and explosion safety issues [176,177] due to
the increased reactivity of CH4/O2/N2/CO2 mixtures. The occurrence of high-pressure
values has been addressed as a physical phenomenon: the water produced by combus-
tion undergoes condensation at the walls of the vessel and, subsequently, rapid phase
transition [178].

The aim of this review is to summarize the known research findings obtained by the
world scientific community in the field of the micro-explosive breakup of liquid droplets
exposed to intense heating. The focus is on studying the necessary conditions for stable
droplet fragmentation and the characteristics of the resulting secondary liquid fragments.
There are no available similar reviews in the literature. The significance of this research
is summarizing a large amount of experimental and theoretical data in the field of puff-
ing and micro-explosion phenomena from conditions to benefits as part of research in
combustion teary.
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2. Fragmentation Regimes and Critical Micro-Explosion Conditions

Secondary atomization of droplets in multi-component and multi-phase fuel flows is a
promising approach to the development of technologies that can help reduce fuel consump-
tion, anthropogenic emissions, and equipment wear, as well as stabilize fuel atomization
in combustion systems [179–184]. The most effective secondary atomization methods are
as follows: droplet/droplet collisions in intersecting fuel jets [185], droplet/solid surface
(walls, meshes, rings, and ledges) collisions [186], puffing and micro-explosion [46,49,50].
A micro-explosion makes multi-component and multi-phase fuel droplets break up to form
a cloud of child droplets, 1–100 µm in size [179]. This leads to multiple increases in the
evaporation surface and chemical reaction area in a combustion chamber. Here, obtaining
a fine mist by means of a micro-explosion is the optimal case from the perspective of
saving both time and energy spent on droplet heating to fragmentation. In the first stages,
specialists studied internal and external factors that affect micro-explosion conditions. It
was established that the superheating of water at the water/fuel interface above the boiling
point is the main reason triggering puffing and micro-explosion [141]. The research into
composite droplet breakup outcomes is also an important objective (for instance, the size
of the mist cloud and secondary fragments in it). Knowledge of the conditions that lead
to the formation of child droplets with specific sizes and velocities is required for the
optimal operation of process equipment [180,187,188]. The fragmentation of composite
droplets is influenced by a key factor. For instance, the size of the dispersed phase in
emulsions (micro-droplets of water in a drop of a combustible liquid) depends on the child
droplet sizes and velocities, and, hence, on their momentum [164]. The size distributions
of the child droplets obtained in the experiments are near-normal and symmetrical under
the same conditions [164]. Refs. [46,49] mostly focus on the kinetic, thermal, and surface
energy of child droplets. Tarlet et al. [46] determined the thermal energy distribution as
a function of the number of forming child droplets and suggested that the distributions
were logarithmic. Kinetic energy distributions of secondary fragments were established in
Ref. [49], and their log-normal distribution was proposed. The micro-explosive breakup
frequency of emulsions heavily depends on the parent droplet size and the size of the
dispersed phase [89].

Experimental studies [46,50,147,150,156,160,189] are devoted to the processes of puffing/
micro-explosion of slurry and emulsion droplets heated in high-temperature gas. The
threshold temperatures at which this effect emerged were determined for several liquid
and solid organic additives. The breakup of composite droplets was found to increase their
evaporation surface by a factor of 12 to 15. To enhance the efficiency of thermal treatment
technologies, it is essential to carry out experiments on the heating and evaporation modes
of typical compositions. Of special interest are investigations seeking to improve fuel
atomization in economic, environmental, and energy performance [47,190,191].

Figure 2 illustrates typical images showing the known regimes of fuel emulsion droplet
heating, thermal expansion, evaporation, puffing, and micro-explosion. Each of the out-
comes had its own special aspects. For instance, the monotonous evaporation regime was
notable for the rapid heating and evaporation of the droplet without secondary fragments
breaking off (Figure 2a). In the puffing regime, bubble nucleation mostly occurred locally
rather than throughout the entire volume (Figure 2b). Bubble implosion was accompanied
by droplet fragments breaking off the holder. The micro-explosion regime, notable for
intense bubble nucleation throughout the entire volume, occurred at a higher gas tempera-
ture or with a higher concentration of the combustible liquid. At the initial stage, as the
droplet was being heated, the surface remained virtually intact, but then there was a loud
popping sound, and the droplet broke up instantaneously into an aerosol with detectable
vapors. The vapors were detected using a special camera.
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Figure 2. Typical images and schemes of fuel emulsion droplet heating, expansion, evaporation,
puffing, and micro-explosion regimes (Ua = 3 ± 0.1 m/s, Rd0 = 1.2 ± 0.1 mm, ηf = 90 ± 5%) obtained
using the method described in Ref. [116]: (a)—evaporation without fragmentation (Ta = 473 ± 5 K),
(b)—puffing (Ta = 573 ± 5 K), (c)—micro-explosion (Ta = 673 ± 5 K).

Figure 3 highlights the temperature ranges in which different modes of two-liquid
droplet heating, evaporation, puffing, and micro-explosion occurred. The transient areas
are shaded where two outcomes were observed with different repeatability.
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findings from Ref. [141].
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The main physical mechanism of two-liquid droplet breakup involves water superheat-
ing before the droplet fragmentation. The two-liquid droplet temperature fields obtained
experimentally by the PLIF method [141,192] demonstrate that at the water/fuel interface,
water reached its boiling point (i.e., 373.15 K). The combustible liquid temperature near the
water/fuel interface could reach 383–393 K. This illustrates the superheating effect at the
water/fuel interface, which leads to puffing and micro-explosion. At the same time, cases
are known [141,192] when a two-liquid droplet is heated throughout its volume to a tem-
perature of 353–363 K, evaporates monotonously, and does not atomize (i.e., maintains its
integrity). The local superheating of two-liquid droplets is what activates low-temperature
vaporization centers [193,194] and ultimately leads to droplet destruction. The latter is
accompanied by visual effects producing a fine aerosol.

According to the published research findings on micro-explosive breakup [4,45,48,51,
88,135,141,156], a group of factors (concentration of liquids, original droplet size, and the
heat flux supplied to the droplet surface) has a decisive influence on the main characteristics:
duration of the process and child droplets size and number. In the case of emulsion droplets,
the following is also considered important [163,187,195]: the size of the dispersed-phase
droplets (water droplets within a flammable liquid, for instance, kerosene and Diesel fuel)
as well as the type and concentration of the stabilizer.

3. Characteristics of Secondary Fragments

Research into the outcomes of the micro-explosive breakup of composite fuel droplets,
such as the sizes of secondary droplets and the aerosol cloud incorporating them, is
yet another major objective when studying the patterns of micro-explosive breakup. In
particular, the size of the parent droplet influences the features of dispersion. However, the
size of the parent droplet only marginally affects the size of child droplets [89]. Antonov
et al. [130] investigated the impact of the holder material, energy supply scheme, component
concentrations, as well as parent droplet size and type on the characteristics of child
droplets. The results obtained demonstrate that the child droplets produced from the
fragmentation of composite droplets are smaller in size than those produced from the
fragmentation of emulsion droplets of the same original size and composition [130]. It was
also experimentally established [130] that the heating scheme and original parent droplet
size affect the child droplet characteristics more than any other factors under study. The
initial temperature of the water inside the two-fluid droplet also affects the child droplet
characteristics [117]. According to the research findings, the smallest child droplets size and
hence the greatest free surface area of the liquid increase can be obtained under conditions
of the minimum initial temperature of the water and maximum heating temperature [117].
The fragmentation mode (puffing or micro-explosion) is the key factor influencing the size
and number of the child droplets. Micro-explosion usually produces a large number of child
droplets with minimum size, whereas the child droplets generated by puffing are much
fewer in number but larger in size [130,141]. The typical differences in the distributions
of child droplets produced by puffing and micro-explosion were presented in [119]. Just
like parent droplets, child droplets undergo puffing and micro-explosion as well as cascade
secondary atomization [196]. The summarized research findings on how the rheological
properties of water-in-diesel emulsions affect the child droplet characteristics can be found
in Ref. [115]. It was established that the child droplet characteristics depend heavily on the
surface tension and viscosity of a multi-component liquid. By varying these parameters of
liquid components, one can intensify the micro-explosion efficiency by 6–7 times [115].

Some experiments [16,73,82,104,165,197,198] focus on the main ignition and com-
bustion characteristics of multi-component fuel. The emphasis here is on child droplet
size and velocity in an aerosol cloud: they heavily depend on the breakup regime, heat-
ing temperature, oxygen content in the ambient gas, as well as component concentra-
tion [73,76,82,86,104,165,199,200]. Avulapati et al. [165] established that the probability
of large fragments being produced (several-fold larger than the smallest child droplets)
is insignificantly higher during micro-explosion than during puffing. According to the
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research findings in Ref. [104], abrupt explosion mode produces the smallest child droplets.
The child droplets characteristics produced by ejection and bubble rupture are smaller than
those produced by micro-explosion [76]. The ambient gas temperature does not only affect
the breakup regime but also the size of the emerging child droplets. So, Refs. [119,129]
Show that the average size of child droplets decreases with an increase in temperature,
which leads to a significant increase in the free surface area of the water and fuel after
the breakup. The size of child droplets also depends on the composition of the initial
droplet [104]. The child droplet number, size, and velocity can also be affected by the
concentration and structure of solid particles. Ojha et al. [197] present the distributions of
child droplet velocities as a function of their diameters. According to the findings [197],
the child droplet velocities increase, and their sizes decrease with an increase in the pro-
portion of solid additives. By adding solid coal particles to the fuel, one can intensify the
micro-explosive breakup of composite droplets [116]. The smaller the solid particles, the
smaller the average size of child droplets resulting from puffing/micro-explosion. An
increase in the heating temperature does not only change the child droplet size but also
their component composition: with an increase in the gas temperature from 523 to 823 K,
the average proportion of water-only child droplets produced from composite droplets goes
down from 27% to 3% [201]. Research findings of characteristics of secondary fragments
are summarized in Table 1.

Avulapati et al. [16] showed that there are two modes of micro-explosion: with a
stronger and weaker vapor discharge. They differ significantly in concentrations and
vaporization rates. The droplets produced during a strong vapor discharge are smaller
in size, but their relative velocities are higher. Smaller child droplet sizes improve their
intermixing with the ambient air and intensify their evaporation, which is important for the
development of liquid and slurry fuel ignition, combustion, and evaporation technologies.
Combustion processes are often characterized by the normalized diameter [165] and the
droplet normalized square diameter [79,104,197]. These functions are used to illustrate the
fragmentation modes, which help determine the evaporation and combustion rate, as well
as the fragment disruption intensity and velocity relative to the parent droplet surface.

Recent papers in the field of child droplet behavior (in particular, [114]) focus on study-
ing and analyzing the joint effects during the heating, evaporation, and micro-explosion of
a group of composite droplets. When droplets in a fuel aerosol undergo puffing/micro-
explosion, the resulting child droplets interact with parent and child droplets [114] with the
following outcomes: droplets collide with each other to form smaller fragments with the
subsequent micro-explosion of the latter; one droplet breaks up into secondary fragments
that interact with adjacent droplets (chain-like fragmentation of neighboring droplets due
to high kinetic energies and velocities of secondary fragments); puffing occurs together
with micro-explosion; droplets collide in the bounce and separation regimes with the subse-
quent redistribution of the combustible and noncombustible liquids. Figure 4 schematically
shows the joint effects of the micro-explosion breakup of composite droplets in a fuel
aerosol. These effects have a significant influence on the droplet size in the aerosol, so
they are important to consider when designing process equipment. The density of multi-
component droplet arrangement in an aerosol also significantly affects the child droplet
characteristics. The temperature and aerodynamic traces emerging during evaporation
reduce the temperature of the flow behind the droplet. This prolongs the breakup delay
time and leads to changes in the fragmentation regime [120]. By varying the distance
between parent droplets, i.e., the density of their arrangement in an aerosol cloud, one
can control the sizes of secondary fragments of each parent droplet [120]. Fuel fragments
fill the combustion chamber most effectively when the distance between parent droplets
exceeds 8–10 of their radii.
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Table 1. Known data on the characteristics of droplet micro-explosion for different liquids.

References Composition Factors Covered

[16] Diesel fuel–Biodiesel–ethanol emulsion - Fragmentation regimes

[165] Diesel fuel–Biodiesel–ethanol blends - Component concentrations

[104,199]
Ethanol/Jet A-1 blends
Butanol/Jet A-1 blends
Acetone-butanol-ethanol (ABE)/Jet A-1 blends

- Component concentrations
- Type of combustible component
- Fragmentation regimes

[86] GTL–Diesel fuel blends - Component concentrations
- Fragmentation regimes

[200] Biodiesel-acetone-butanol-ethanol (ABE) blends
- Component concentrations
- Heating temperature
- Fragmentation regimes

[46,49,164] Water-in-sunflower oil emulsion - Diameter of the dispersed water
- Surface and kinetic energies
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Table 1. Cont.

References Composition Factors Covered

[89] Water-in-Diesel fuel emulsion - Parent droplet size
- Water content

[130] Two-components and emulsion droplets (Diesel
fuel, rapeseed oil, water)

- Energy supply scheme
- Holder material
- Component concentration
- Parent droplet size
- Parent droplet type

[117] Two-component rapeseed oil/water droplets - Initial water temperature

[115] Water-in-Diesel fuel emulsion - Viscosity, interfacial, and surface tension

[197] Jet A-1 with boron particles - Concentration of solid particles
- Structure of solid particles

[119,129] Two-component and emulsion rapeseed oil/water
droplets - Ambient gas temperature

[116] Composite droplets (rapeseed oil, water, coal
microparticles)

- Concentration, size, and type of solid coal
particles

[79] Biodiesel/ethanol blends
- Ethanol content
- Heating temperature
- Gas flow

[56] two-components and emulsion droplets (Diesel
fuel, rapeseed oil, water) - Joint effects during micro-explosion

Research findings are most often presented using the probability density of child
droplet size and velocity distribution in a certain unified form (for instance, [202,203]).
Zhao et al. [204] present that log-normal or gamma normal distributions describe the
probability density of fragment size distribution. The fragment size distributions as a
function of the fragment number or volume fraction are typical of atomization-related
research [205]. Research findings can also be presented as dimensionless functions. For
instance, parent and child droplet velocities can be presented as a function of normalized
time [206].

Research into child droplet characteristics (size, number, velocities, trajectories, tem-
perature, and component composition) during micro-explosion is one of the vital tasks and
a major logical link in the development of the multi-component fuel phase transition theory.
Today, there is no unified theory of child droplet generation during micro-explosion. To
gain a deeper insight into phase transitions and to introduce these effects into liquid and
slurry fuel combustion technology, it is necessary to develop mathematical models that will
predict child droplet characteristics depending on the factors above.

4. Current Models of Micro-Explosive Droplet Fragmentation

Most of the models of micro-explosive phenomenon use commercial software packages
with built-in specialized numerical methods. Combined application of DNS (discrete
numerical simulation) [18,19,165] and VOF (volume of fluid) [15,20,207] methods is the
most popular numerical approach to the solution of the micro-explosive breakup of two-
liquid droplets in a gas. In-house program codes are also widely used by scientists for
the investigation of the micro-explosion of two-liquid droplets [10,11,113,208]. Several
hypotheses have been formulated on the physical patterns of the micro-explosive droplet
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breakup [18,19,57,113,116,165,209]. Wang et al. [210] experimentally established that micro-
explosion occurs after the appearance of one or two large vapor bubbles near the center
(core) of the droplet. The difference in the component volatiles directly affects the bubble
occurrence. The bubble occurs in a droplet if the droplet is heated to the boiling point of
the least volatile component [210]. Li et al. [211] established that the superheating degree
affects bubble generation inside the droplet and further breakup. The breakup was found
to occur because bubbles expand inside a droplet, and its surface tension decreases due to
superheating [132]. High-velocity convective flows at the liquid/liquid interface serve as
another breakup mechanism [135], which triggers the interface disruption followed by the
droplet breakup. The first and, at the same time, quite simple model of the micro-explosive
breakup of typical two-liquid droplets was based on the water/fuel interface superheating
above the boiling temperature as the criterion of the said breakup [11]. When heated, the
least volatile component (water) concentrates in the core of the droplet. It is superheated to
temperatures sufficient for bubble nucleation, thus triggering the droplet breakup [11].

The widely used models of the micro-explosive breakup, for example, [18,19,57,165,209],
have some limitations related to the input experimental data affecting the numerically
obtained results. In addition, these models do not consider some effects and processes
in the absence of definite experimental data or due to the complexity of the calculation.
Some processes and factors (see Ref. [11] for the main ones) hinder the development of
more complex and generalized models of two-liquid droplet micro-explosive breakup,
including the links between breakup mechanisms and outcomes. For these reasons, it
is of great interest to theoretically study the heating, evaporation, swelling, and micro-
explosive breakup of liquid droplets using the most typical threshold conditions of breakup
(secondary atomization) [18,19,57,165,209]: superheating of the water/fuel interface above
the explosive boiling temperature, critical size (radius) of a bubble before the breakup, and
exceeding the pressure in the vapor film.

The physical and mathematical models of heat transfer before micro-explosion using
several criteria (the criterion of the critical nucleation temperature at the water/fuel inter-
face, the exceeded threshold pressure in the vapor film as the criterion, the critical bubble
size (radius) as the criterion) are presented in Ref. [126]. The first model is based on the
assumption that a two-fluid drop consists of a spherical water droplet in the center and a
fuel film enveloping it.

The heat and mass transfer conditions in a two-liquid droplet in the second model
are described in a similar way to the statement of the first model. The main difference
was in the balance of forces acting on the droplet being heated due to the surface tension,
water vapor pressure, and ambient gas pressure. When the pressure in the vapor film at
the water/fuel interface exceeded the surface tension and ambient gas pressure, this was
regarded as the criterion of micro-explosion.

The critical bubble size (radius) criterion is used in the third model. The assumption
used in the model is that the vapor bubble is located in the center of the water core, and
fuel envelops it. The Eulerian method based on a fixed uniform mesh was used to solve the
problem. The interface was tracked using continuous Eulerian markers by means of the
VOF method [207]. The gas and liquid phases are regarded as a single multi-component
medium. The spatial distribution of phases in the computational domain is obtained by
means of a special function of the marker F(x, y, z, t). The volume fraction of a phase in a
computational cell is taken as 1 if the cell is filled with the phase and as 0 if the cell is empty.
If the interface crosses the cell, then 0 < F(x, y, z, t) < 1.

The micro-explosion criterion for a model based on the critical bubble size (radius)
implies tracking the threshold bubble radius Rbubble. The critical value of Rbubble is set from
the experiments. As a rule, a mesh is added to the videograms for continuous monitoring of
the bubble size. The use of the critical bubble size (radius) as the criterion of micro-explosion
is valid for spherical droplets and when the bubble is located in the center according to the
scheme of the solution space. The criterion of the critical bubble size is associated with the
liquid film around it (δf) reaching a critical thickness.
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The experimental conditions affect the emerging droplet shape, which may be spherical
or ellipsoidal. As a result, it is sensible to consider the droplet shape and initial location
of nucleation in it when modeling the micro-explosive fragmentation. In most of the
experiments, droplets deformed rapidly when traveling in a gas and consecutively took
the shapes of a prolate ellipsoid, sphere, oblate ellipsoid, and sphere (i.e., they underwent
deformation cycles). Thus, to approximate the modeling results to the experimental data,
the characteristics were calculated with varying shapes observed in the experiments, and
the resulting values were averaged. The droplet shape has a significant impact on the
integral micro-explosion characteristics not only because the critical values of the liquid
film thickness are reached faster when a droplet with a bubble becomes prolate or oblate. It
also heavily depends on the growth of the aerodynamic drag force. In particular, the values
of the aerodynamic drag coefficient for the spherical and ellipsoidal droplet shapes differ
by 1.4–1.7 times [208]. The higher the inertia acting on the droplet, the more intensely its
surface deforms in a gas. Liquid heating enhances this deformation [208]. These conditions
intensify the micro-explosion of heated parent and child droplets even more.

5. Relevant Objectives and Solutions

The component composition, size, velocities, trajectories, and other characteristics of
secondary droplets produced during micro-explosive fragmentation have not yet been stud-
ied comprehensively (Figure 5). In particular, according to published experimental data, the
conditions for modes of the breakup of two-liquid droplets were established: evaporation
(Ta = 300–400 K), puffing (Ta = 400–600 K), and micro-explosion (Ta = 600–1500 K) [141].
The most promising modes for the intensification of heat and mass transfer processes are
puffing and micro-explosion. These modes of breakup lead to an increase in the droplet
evaporation surface area by tens and hundreds of times. It has been established that when
droplets are heated on a substrate, the times to puffing/micro-explosion and the number of
secondary fragments are significantly less than in the air flow and in a muffle furnace [140].
Under heating conditions on the substrate, the increase in the droplet evaporation surface
area did not exceed 10–20 times. The times to puffing/micro-explosion correspond to a
high gas temperature (above 1000 K), small parent droplet sizes (below 500 µm), and a
high concentration of combustible liquid (above 90%) [12]. Despite the list of complex
and interesting experimental results, it is necessary to create an extensive experimental
database on the micro-explosions of heterogeneous liquid droplets especially to separate
modes of breakup using nondimensional criteria. The database should contain secondary
droplet characteristics (number, size, component composition, velocities, trajectories, shape,
collision outcomes in a flow, as well as joint effects), their dependences on the parent droplet
parameters, atomization conditions (pressure, flow rate, jet type), and spray heating (heat-
ing scheme and rate, temperature, pressure) to use generalized experimental dependences
for mathematical modeling. It is still a relevant task to develop mathematical models
simulating the micro-explosion of parent droplets based on classical nucleation theory,
kinetic nucleation theory, density functional theory, and heterogeneous nucleation theory,
that would predict the secondary droplet characteristics. Now there is only simple classical
models [113,123,126] of puffing/micro-explosion phenomena related to main conditions
(the critical nucleation temperature at the water/fuel interface, the exceeded threshold
pressure in the vapor film, the critical bubble size (radius)). Unfortunately, such models
could not predict the child droplets after the breakup of parent droplets. The way to decide
these problems is by using direct numerical simulations [6,14,19,20] or molecular dynamics
models [1]. However, in these cases, there are certain requirements to mesh quality and
sizes that are not absolutely clear at the moment.
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Fundamentally, it is necessary to understand how to separate the puffing and micro-
explosion regimes using the modeling methods of molecular dynamics and experimental
data to create a complex multi-component model of explosion and evaporation controlling
for various factors (fast depressurization and fast heating) with a minimum number of
empirical constants, as well as to summarize the research findings using dimensionless
parameters (Reynolds, Weber, Ohnesorge, Jacobi, and Bond number, etc.). It seems relevant
to introduce in-house codes to commercial software packages, for example, Ansys Fluent,
Comsol Multiphysics, Matlab, Mathematica, and OpenFOAM (Figure 5).

From a practical standpoint, it is important to transition to the use of micro-explosion
in power plants, airplane engines, ground-based power systems, etc. (Figure 5). This will
require: (i) creating a database with the characteristics of secondary fragments produced
by the micro-explosion of a small array of neighboring parent droplets arranged in a spray
according to different schemes (the experimental methods and setups should be adjusted
to identify the component composition, size, velocity, and other secondary droplet char-
acteristics); (ii) developing probabilistic models simulating micro-explosions of droplets
in sprays controlling for coalescence, bounce, separation, and disruption of neighboring
parent and child droplets.

6. Conclusions and Perspectives

(i) Micro-explosion is a momentary breakup of a parent heterogeneous droplet into an
array of secondary fragments with a size ranging from several dozens to several hundreds
of micrometers. The breakup is caused by the boiling of the internal water core or several
cores. Researchers typically focus on water as the inert liquid and Diesel fuel (or dodecane),
kerosene (or decane), and Biodiesel (or rapeseed oil) as combustible liquids. The analysis
of the experimental data helped us establish the temperature conditions for the occurrence
of three droplet behavior regimes: evaporation (Ta = 300–400 K), puffing (Ta = 400–600 K),
and micro-explosion (Ta = 600–1500 K). Puffing and micro-explosion are of the greatest
interest in terms of intensifying the heat exchange processes since they can increase the
droplet evaporation surface area by dozens and hundreds of times.

(ii) Research into the characteristics of child droplets produced during the puffing/
micro-explosion of multi-component fuel droplets plays an important role in the further
technological and industrial use of these effects. Controlled puffing/micro-explosion effec-
tively fills the combustion chamber with fuel fragments with the required characteristics
(size, velocity, temperature, and component composition), which provides the optimal
operation of the process equipment and reduces its wear. According to the experimental
data, child droplet characteristics depend on a number of factors, in particular, the parent
droplet size, component composition and rheological properties of the multi-component
fuel, fragmentation regime, as well as the scheme of the energy supply to the droplet. To
introduce the micro-explosion effects into power technology, it is necessary to develop
mathematical and physical models simulating the generation of child droplets.
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(iii) Three classes of mathematical models are singled out, simulating the heat and
mass transfer in a droplet under the conditions prior to the micro-explosive breakup.
The models are based on using the following criteria: superheating of the water/fuel
interface above the explosive boiling point of the noncombustible liquid (water) and the
threshold radius reached by the bubbles emerging in droplets. These models can predict
the transient conditions (threshold temperatures and heating times) between three heating
and evaporation regimes for two-liquid droplets: evaporation without breakup, puffing
(partial fragmentation), and micro-explosion. The predictive models of droplet micro-
explosion can be made more complex to explore the breakup outcomes in detail, i.e., when
studying the number, velocities, trajectories, size, momentum, and component composition
of secondary droplets.

(iv) Despite the large number of papers in the field of puffing/micro-explosion, there
are many open issues and research challenges. In particular, fundamentally, it is necessary
to understand how to separate the puffing and micro-explosion regimes, and from a
practical standpoint, it is important to transition to the use of micro-explosion in power
plants, airplane engines, ground-based power systems, etc.
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