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Abstract: In generation expansion planning, reliability level is the key criterion to ensure enough
generation above peak demand in case there are any generation outages. This reliability criterion must
be appropriately optimized to provide a reliable generation system with a minimum generation cost.
Currently, a method to determine an optimal reliability criterion is mainly focused on reserve margin,
an accustomed criterion used by several generation utilities. However, Loss of Load Expectation
(LOLE) is a more suitable reliability criterion for a generation system with a high proportion of
renewable energy since it considers both the probabilistic characteristics of the generation system
and the entire load’s profile. Moreover, it is also correlated with the reserve margin. Considering
the current fuel supply situation, a probabilistic model based on Bayes’ Theorem is also proposed to
incorporate fuel supply unavailability into the probabilistic criterion. This paper proposes a method
for determining the optimal LOLE along with a model that incorporates fuel supply unavailability
into consideration. This method is tested with Thailand’s Power Development Plan 2018 revision 1 to
demonstrate numerical examples. It is found that the optimal LOLE of the test system is 0.7 day/year,
or shifted to 0.55 day/year in the case of considering the fuel supply unavailability.

Keywords: generation expansion planning; reliability criterion; loss of load expectation; reserve
margin; fuel unavailability

1. Introduction
1.1. Motivation and Literature Review

Generation expansion planning (GEP) is a method for determining the future charac-
teristics of a power system. It is a process used to determine the optimal types of energy
technologies, size, and construction time needed to bring new power generation units [1]
into the electrical power system to meet the demand forecast in the future. Global warm-
ing problems, carbon neutrality, and net zero emission targets have been set by several
countries with the goal of reducing greenhouse gas emissions [2]. Thus, high penetration
of renewable energy sources, especially from solar and wind power, is highly anticipated.
In order to have the ability to integrate a high level of these variable renewable energy
sources into the power system, complex optimization models must be developed to take
economic, technical, environmental, and other pertinent constraints into consideration as
part of long-term generation expansion planning [3].

During the GEP process, it is necessary to maintain the installed capacity of the system
at a certain level above the peak demand since any generation unit can be forced into an
outage [4] by unexpected problems, e.g., component failure or shortage of fuel supply. The
amount of this excess capacity usually results from the level of system reliability criterion
considered in the GEP process. There are two concepts applied to generation expansion
planning, the deterministic method and probabilistic method [4]. For the deterministic
method, reserve margin, a percentage of additional generation over system peak demand,
is usually used as the reliability criterion to account for randomly occurring failures [5].
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The advantage of the reserve margin is that it is easy to calculate. Its concept of reliability is
also simple and easy to interpret. Thus, the reserve margin is used as the main reliability
criterion for many power utilities, such as 15% for Thailand [6], 22% for South Korea [7],
20–28% for Peninsular Malaysia [8], 15% for Taiwan [9], and 10% to 20% for many utilities in
the USA [10]. The reserve margin is used as a planning constraint in many GEP models that
are tested with national level power systems. Wierzbowski et al. proposed a mixed integer
linear programming (MILP) model for considering power system reserves and tested it
in the Polish power system [11]. Neshat et al. proposed a hybrid model for Iran’s power
system [12]. Koltsaklis et al. proposed an MILP model using Greece’s power system as the
test case [13]. Heuberger et al. proposed an MILP model that was applied to the United
Kingdom’s power system [14]. Chen et al. proposed a model applied to the northwestern
grid of China [15]. Although easy and simple, when determining the reserve margin, only
a single data set comprised of the peak load and its associated total capacity of the system
is considered. Therefore, the behavior of generation units as well as load characteristics
are not considered in the reserve margin calculation. For this reason, reserve margin is not
quite appropriate for use with generation systems that rely on a high level of renewable
energy sources due to their intermittent behavior and limitations.

For the probabilistic method, the forced outage rate (FOR) of generation units, which
accounts for component failure behavior, is usually considered. FOR is used with a load
duration curve (LDC) to calculate system reliability indices, such as Loss of Load Ex-
pectation (LOLE) [5], Expected Energy Not Served (EENS) [5], and Expected Unserved
Energy (EUE) [16]. LOLE is considered a reliability criterion in many power utilities, e.g.,
0.3 days/year for South Korea [7], 1 day/year for Peninsular Malaysia [8], and 0.1 day/year
for power utilities in the USA [10]. They are also considered in many GEP models. However,
due to their non-linear characteristics, these models are usually tested with simplified test
systems or are considered using linearly estimated values instead. Hemmati et al. proposed
a multistage mixed-integer nonlinear programming (MINLP) model, tested on a 2850 MW
test system [17]. They also considered LOLE in an MINLP model in microgrids [18].
Sirikum et al. proposed an MINLP model tested with a 1600 MW scaled-down version
of Thailand’s generation system [19]. Opathella et al. proposed an MILP model with a
linear approximation of LOLE as a constraint [20]. Aghaei et al. proposed a multi-period,
multi-objective generation expansion planning (MMGEP) model using the Z-method to
evaluate LOLE [21]. Hanna et al. proposed a microgrid investment planning model with
sequential Monte Carlo simulation to accurately evaluate non-linear reliability indices [22].
EENS has also been considered in several recent GEP models. Oree et al. used EENS to
determine unmet demand costs [23]. Hamidpour et al. consider minimization of EENS
as one of the objective functions of the proposed generation and transmission expansion
planning [24]. Abushamah et al. consider an expected energy not supplied cost for reliabil-
ity evaluation [25]. An indirect approach is also introduced to incorporate LOLE into GEP.
For example, Abdalla et al. proposed an algorithm that uses adjustable reserve margin
as a reliability criterion in the MILP model [26,27]. Firstly, the LOLE of the GEP results is
calculated and compared to the LOLE criterion. If the LOLE result is not acceptable, the
reserve margin constraint is adjusted and the GEP is repeated iteratively until the LOLE
result is acceptable.

Since the probabilistic nature of generation components and entire load models are
taken into account, the probabilistic method can provide more appropriate reliability
criteria than the deterministic method, especially for power systems that rely on a high
proportion of renewable energy. For example, LOLE and LOEE are considered as reliability
constraints in an optimization method to create an optimal design and energy management
of the hybrid systems, including the photovoltaic panels, wind turbines, and fuel cells [28].

Apart from the selection of the system reliability criterion, either reserve margin or
LOLE, setting up the value of the criterion is also important. Too high of a reliability level
leads to over-investment, resulting in excessive power generation costs, which are then
passed through the electricity tariff structure. However, under-investment leads to the
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opposite situation [5], in which, although the cost of electricity can be lower, the level of
reliability of the system might not be acceptable.

To determine optimal reliability criteria, a customer interruption cost is introduced
and combined with the power generation cost to create the total system cost as a function of
reliability as described in [29]. The customer’s interruption cost is a customer cost caused by
failures in the electricity supply system [30]. This cost can be computed from EENS and the
Interrupted Energy Assessment Rate (IEAR). With this concept, the total cost of the power
system at different reliability criteria can be evaluated and compared, as demonstrated in
Figure 1. Consequently, the optimal reliability index is the one that provides the minimum
total system cost. This concept is used in several publications. For example, Billinton used
this concept to determine the optimal reserve margin of a 240 MW reliability test system
with a 185 MW peak load [29]. The Brattle Group also used this concept to determine the
optimal reserve margin of a wholesale electric market of the Electric Reliability Council
of Texas (ERCOT) in 2014 and 2018 [31,32]. Energy and Environmental Economics, Inc.
used this concept to determine the optimal planning reserve margin for the El Paso Electric
Company in 2015 [33].

Figure 1. Concept of optimal reliability criteria determination with minimum cost.

Although the concept mentioned above is used in several publications, the optimal
reliability criterion discussed in many publications is reserve margin. In addition, the
objective function of the aforementioned problem is to minimize the total system cost. This
total cost is the sum of the utilities’ investment cost and the customer’s interruption cost.
It is not only the cost that a utility actually pays. Thus, sometimes, it is not so convincing
for some power utilities to include this cost in their calculation. With these concerns in
mind, the concept of reliability improvement’s benefit, which is another perspective but
equivalent when determining the optimal reliability level, is considered in this paper. In
addition, LOLE, which is a more appropriate reliability criterion, is also focused. Although
reserve margin and LOLE are different criteria, the GEP result obtained from using LOLE as
the planning criterion can provide a minimum reserve margin as an outcome or vice versa.
For example, Abdalla et al. chose to adjust the minimum reserve margin in the robust GEP
model to obtain the power system with acceptable LOLE [26,27]. However, it should be
noted that this relationship is based on the characteristics of a given generation system,
since different power systems having the same LOLE can have a different minimum reserve
margin. Moreover, if the minimum reserve margin is used as the planning criterion, the
maximum LOLE output might not be the same value as the LOLE criterion used in the first
GEP since the maximum LOLE and the minimum reserve margin might not occur in the
same year.

In GEP, fuel supply is typically assumed to be always available in order to reduce the
complexity of the problem. Only the future price of each fuel, reflecting the future market
situation, is forecast. However, apart from the market situation, international conflicts can
also lead to fuel shortages or unavailability [34]. As conventional generation units need
a continuous fuel supply, fuel unavailability can cause interruption to these generation
units. The scale of this interruption could affect the reliability of the power generation
system. Thus, it might be necessary to consider fuel supply availability in generation
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expansion planning if the generation system relies heavily on any specific fuel, especially
in Thailand where natural gas accounts for more than 55% of the fuel mix. This can be done
by adjusting the probabilistic reliability criterion with the probability of fuel unavailability,
using a concept based on Bayes’ Theorem.

1.2. Our Contribution

The contribution of this paper can be summarized as follows:

• Propose a methodology for determining the optimal LOLE criterion of a power system
using the concept of power system net benefit.

• Discuss a method to evaluate an equivalent reserve margin from this optimal LOLE.
• Introduce a probabilistic model based on Bayes’ Theorem to incorporate the impact of

fuel unavailability into the LOLE.

These concepts and methods are tested with Thailand’s power generation system using
input data from Thailand’s Power Development Plan 2018 revision 1 (PDP2018r1) [35].

The rest of the paper is organized as follows: Section 2 describes the materials and
methods used in this paper. They comprise the concept of power system net benefit, used
in the evaluation of the optimal LOLE. Moreover, the data of the test system is given. Then,
Section 3 presents the results with discussions. Finally, Section 4 provides the conclusion of
the study.

2. Materials and Methods

In this section, firstly, the reserve margin and LOLE calculation methods are introduced.
Then, the concept of power system total benefit used to evaluate the optimal LOLE is also
presented. Lastly, data and assumptions for Thailand’s PDP2018r1, used as a numerical
example in the next section, are given.

2.1. Reserve Margin and LOLE Calculations
2.1.1. Reserve Margin

The reserve margin is a deterministic reliability index defined as the percentage of
generation capacity value over system peak load. The capacity value is defined as the
fraction of the installed capacity that is considered reliable. It is a concept used to quantify
the relatively reliable capacity of a generating resource during a considered period, typically
the peak load hours [36]. For conventional power plants, this value is normally 100%. For
intermittent renewable power plants, this value is lower. In Thailand, capacity value is
called dependable capacity [37]. With capacity value considered, the reserve margin can
be calculated by using (1). More details about capacity value are provided in Section 2.4.6.
Capacity value is calculated from the multiplication of a generation unit’s installed capacity
and its capacity credit, which is called the dependable factor in Thailand.

Reserve Margin =
Capacity value − Peak load

Peak load
(1)

2.1.2. Loss of Load Expectation

Loss of load expectation (LOLE) is the expected number of days in a year that load loss
or generation deficiency occurs. It can be calculated from the Capacity Outage Probability
Table (COPT) and Load Duration Curve (LDC) using (2) [5]. The COPT is created from all
dispatchable generation units’ capacity and their Forced Outage Rate (FOR). The LDC is
generated from the hourly load curve of the considering period. Thus, generation units’
characteristics and the entire load model are considered in the LOLE calculation. Examples
of COPT and LDC are shown in Table 1 and Figure 2.

LOLE =
N

∑
j=1

pitLDC(Oi) (2)
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where:

N is the number of states of COPT;
pi is the individual probability of outage capacity state j;
tLDC(Oi) is the duration of the load loss due to the outage capacity Oi (h).

Table 1. Example of a Capacity Outage Probability Table.

Capacity Outage (MW) Capacity Available (MW) State Probability

O1 Installed capacity—O1 p1
O2 Installed capacity—O2 p2
...

...
...

ON Installed capacity—ON pN

Figure 2. Example of Load duration curve with tLDC(Oj) calculation.

2.2. Reliability Improvement’s Benefit

As mentioned earlier, the customer’s interruption cost is not an actual cost that a
utility actually pays. Thus, sometimes minimizing the total system cost is not so convincing.
In this paper, the concept of maximizing reliability improvement’s benefits is considered
instead. This problem yields exactly the same solution as the optimal reliability level, either
reserve margin or LOLE, as that of the minimizing total system cost problem. Indeed, it
can be easily proven that these two problems are mathematically identical.

The concept of reliability improvement’s benefit starts from the central idea that the
utility invests in the generation system to serve its customers, and later transfers this cost
to the customer through the electricity tariff. High investment costs yield a high level of
reliability, which helps reduce customer interruption costs. Thus, the total benefit, or net
benefit, of the power system is the difference between the reduction of the customer’s
interruption cost and the utility’s investment cost in the generation system. The net benefit
of the power system is illustrated in Figure 3. Since a power system with a higher LOLE is
less reliable, the trend of LOLE is in the opposite direction to the reliability level. With this
concept, the optimal level of LOLE is the level that provides the highest net benefit. This net
benefit can be calculated using (3) by comparing the reduction of a customer’s interruption
at any LOLE level from the base case value with the additional utility’s investment cost
from the base case.

Net Benefitj =
(
CIC0 − CICj

)
− AICj (3)

where:

CICj is customer’s interruption cost of a generation system at a reliability level of j;
CIC0 is customer’s interruption cost at the base case, or current generation system;
AICj is net present value of the utility’s additional investment cost in the generation system
of every year in the generation planning period, to have the reliability level of j.
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Figure 3. Concept of optimal reliability criteria determination from the total benefit of a power system.

The CIC is calculated from the net present value of the multiplication of EENS and
IEAR for every year in the generation planning period, as shown in (4).

CIC =
N

∑
y=1

IEARy × EENSy

(1 + r)y (4)

where:

N is the number of years in the generation planning period;
IEARy is the interrupted energy assessment rate of year y (THB/MWh);
EENSy is the expected energy not supplied of year y (THB);
r is the discount rate (%);

2.3. Impact of Fuel Unvailability on Loss of Load Expectation

In a normal situation, it is reasonable to assume that the availability or unavailability
of each fuel is independent from the others since each fuel comes from different sources
with different logistic approaches that are not related to each other. Thus, to take fuel
unavailability into consideration during the LOLE calculation, Bayes’ Theorem can be
used. Total LOLE considering fuel unavailability can be evaluated using (5). This formula
can be done since LOLE is also a probability. If multiple fuel supplies’ unavailability are
considered, the LOLE and its probability of unavailability of each case can be directly
combined to determine the net LOLE.

LOLE = LOLEall−avail × (1 − Punavail( f )) + LOLEunavail( f )× Punavail( f ) (5)

where:

LOLEall−avail is the LOLE of a generation system in which all fuels are available;
LOLEunavail( f ) is the LOLE of a generation system in which only the fuel f are unavailable;
Punavail( f ) is the probability of unavailability of the fuel f .

2.4. Data and Assumptions

In this section, data from the generation system and planning assumptions are pro-
vided as a case study. The generation system used as the case study in this paper is that of
Thailand’s Power Development Plan 2018 revision 1 (PDP2018r1), published in 2020 [35],
at the end of 2017. The planning period of PDP2018r1 is from 2018 to 2037, and it is a
generation system with a total installed capacity of 46,090 MW. Details of the generation
system and assumptions are provided in the next section.

2.4.1. Load Model and Load Forecast Data

To create an hourly load model from 2018 to 2037, a full-year hourly load curve and
load forecast data are needed. In this study, Thailand’s actual full-year hourly load curve of
2017, with a peak load of 30,303 MW, is used as the load model. This hourly load curve is
shown in Figure 4. Load forecasts from 2018 to 2037 are provided in PDP2018r1, as shown
in Figure 5.
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Figure 4. Full-year hourly load curve of 2017.

Figure 5. Peak demand and energy demand forecast of PDP2018r1.

2.4.2. Existing Generation Units

In this case study, the generation system as of 31 December 2017 is used as the initial
(existing) system for generation expansion planning. The names of the generation units
in this initial system can be found in PDP2018r1 [35]. A summary of these data can be
found in Appendix A. Apart from the generation units, Pumped Hydroelectric Storage
(PHS) is also included in the existing generation system. Parameters for these PHS units
are provided in Appendix B.

2.4.3. Committed Generation Unit

Committed generation units are generation units that are already planned for commis-
sioning into the existing generation system. These units can be divided into two groups,
which are committed units with signed contracts and committed units according to policy
or plans. The list of all committed units can be found in PDP2018r1 [35]. A summary of
these data and retired units can be found in Appendix C of this paper.

2.4.4. Additional Generation Units

According to PDP2018r1, additional generation units are generation units without
signed contracts that are planned for commissioning into the generation system. These units
are forecast to be included in PDP2018r1 by the generation expansion planning procedure.
In this study, the PDP2018r1 with these additional units is used as the base case. However,
the initial plan does not call for these additional units to be commissioned for other
considered cases. Thus, alternative planning with different criteria and assumptions can be
carried out by replacing these missing additional units with other candidate generation
units. A summary of these units can be found in Appendix D of this paper.

2.4.5. Candidate Generation Units

Candidate generation units are pre-defined generation units that will be selected for
commissioning into the system when:
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• the reliability criterion violates the target reliability level, or
• there is no optimal solution provided by unit commitment/economic dispatch.

A list of candidate units usually consists of generation units with different generation
types, fuel, or technology so that different options are available to complete generation
expansion plans with different constraints. Details of candidate units can be found in
Appendix E of this paper. The 100 MW unit is used for the optimal LOLE evaluation
method, and the 700 MW unit is used for the actual GEP process. Generation units
mentioned in Sections 2.4.2–2.4.5 are classified and modelled as described in [2].

2.4.6. Capacity Credit

In Thailand, capacity credit is called the dependable factor. It is the ratio of available
capacity with respect to the installed capacity of any generation unit during a peak load
period that represents the degradation of system reliability [38]. In PDP2018r1, there are
two peak load periods, in the daytime at 2 P.M., and at nighttime at 7 P.M. The dependable
factors of the generation units considered in PDP2018r1 are shown in Table 2 [6,35]. In
PDP2018r1, these dependable factors are created by a deterministic method from an average
value of the hourly power output at the specific hour of several renewable energy power
plants [37].

Table 2. Dependable factors or capacity value of renewable energy generation units.

Fuel Type Dependable Factor (%)
for Peak Load at Daytime

Dependable Factor (%)
for Peak Load at Nighttime

Conventional (NG, Coal) 100% 100%
Biomass (existing, new) 52, 80% 52, 80%
Biogas (existing, new) 28, 70% 28, 70%

Solar PV (existing, new) 42%, 50% 0%
Wind power 14% 18%
Small hydro 29% 29%

Municipal solid waste 47% 47%

2.4.7. Fuel Availability

In this Thailand power generation system, there are two main fuel supplies that are
considered to be critical since most of the conventional generation units rely on these
fuel supplies. Specifically, the critical fuel supplies are the western natural gas network
from Myanmar and the eastern natural gas network from the Gulf of Thailand. The
probabilities of availability and unavailability of these fuel supplies are shown in Table 3.
These probabilities can be estimated from the historical record of outage time of each gas
source, as shown in Appendix F.

Table 3. Fuel supply with its equivalent availability.

Fuel Supply Probability of Unavailability Probability of Availability

Western gas network 0.018853 0.981147
Eastern gas network 0.000076 0.999924

2.4.8. Planning Constraints

To ensure availability, reliability, and acceptable emissions levels, the following con-
straints are considered in generation expansion planning in this study:

• Planning horizon: 2018–2037;
• Full-year hourly power balance constraint.

Using generation units with generation profiles in the system, a full-year hourly energy
and power balance between supply, storage, and demand is applied to every year in the
planning horizon to ensure system adequacy without capacity shortage.



Energies 2022, 15, 7854 9 of 17

• Reliability constraint.

In this study, LOLE is used as the reliability criterion for generation expansion planning
during the optimal LOLE evaluation process. The value of LOLE is varied to find the
optimal LOLE. The reserve margin is also used as a reliability criterion during the reserve
margin determination process. The value of the reserve margin also varied to match with
the optimal LOLE.

• Carbon dioxide emission constraint.

According to PDP2018r1, a carbon dioxide emission constraint is provided in average
kilograms of carbon dioxide emission per kilowatt-hour of electricity. The average carbon
dioxide emission constraint used in this study is shown in Figure 6, and the carbon diox-
ide emission factor of each fuel is provided in Appendix G. The constraint is gradually
decreased to reduce the greenhouse gas emissions from the power generation system.

Figure 6. Average carbon dioxide emission constraint.

3. Results and Discussion

In this section, the results from the proposed methods tested with the case study are
presented and discussed. Firstly, the reliability indices of the original case study, with every
committed and additional generation unit, are shown as the base case. Secondly, the optimal
LOLE of the case study is evaluated. With the optimal LOLE, reserve margin is determined
in the following section. This reserve margin is then compared to the reserve margin
determined with consideration of fuel supply availability in the last section. Discussion of
the results is provided in each section.

3.1. Reliability Indices of The Original Case Study

The original case study, PDP2018r1, is Thailand’s official power development plan for
2018 to 2037, with every generation unit commissioned as planned, without the addition
of any candidate generation units. The capacity mix of PDP2018r1 is shown in Figure 7.
Reliability indices, reserve margin, and LOLE of the plan are also provided, as shown in
Figure 8.

As shown in Figure 7, installed capacity from renewable energy increases from 26% in
2018 to 46% in 2037. The main portion of this new renewable energy capacity is from solar
generation units, which increased by 12,000 MW throughout the planning horizon.

As seen in Figure 8, although the daytime reserve margin of the power system from
2028 onwards is quite high, at around 15% to 20%, the nighttime reserve margin is signifi-
cantly low. This is caused by the solar generation units, which cannot generate electricity at
night, not to mention that the peak load period might change from the afternoon time to a
different period in the future. For these reasons, it can be concluded that the use of reserve
margin as a planning criterion is not appropriate, especially in a power system with a high
level of renewable energy penetration and disruptive technologies in the power system,
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since the value of reserve margin is subjective, especially the dependable factor. Thus, in
this study, LOLE is introduced as the planning criterion instead.

Figure 7. Capacity mix of PDP2018r1.

Figure 8. Reliability indices of PDP2018r1.

3.2. Optimal LOLE

Using data from the case study without additional generation units and methods
described in Section 2.2, levelized power generation cost (PGC) and levelized customer
interruption cost (CIC) of the power generation system throughout the planning horizon
associated with LOLE criteria can be calculated, considering the 100 MW generation unit
as the candidate unit. Given that the case with LOLE criteria of 1.1 days/year is the base
case in this study, levelized power generation cost and customer interruption cost of each
case are compared with the base case and shown in Figure 9. Please note that the LOLE
index in Figure 9 is sorted from lowest reliability level to highest reliability level.

Figure 9. Total benefit associated with LOLE criterion of the case study.

From Figure 9, it can be seen that the optimal LOLE for the case study is 0.7 day/year.
With this optimal LOLE as the reliability criterion, a GEP is carried out using data from the
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case study and a 700 MW natural gas unit as the candidate unit. Additional generation capac-
ity and reliability indices of the generation expansion plan are shown in Figures 10 and 11.
Please note that this GEP will be referred to as the LOLE 0.7 day/year case.

Figure 10. Additional generation capacity of the PDP2018r1 and the case of LOLE 0.7 day/year.

Figure 11. Reliability indices of the generation expansion plan with LOLE < 0.7 day/year case.

From Figure 10, it can be seen that 7700 MW of additional capacity needs to be added
to fulfill the less than 0.7 day/year reliability criterion and other planning constraints.
This additional capacity is almost the same as the 6900 MW of additional capacity of the
original PDP2018r1. However, compared to the original plan, the additional capacity of
the LOLE 0.7 day/year case can be delayed by several years since the planning constraints
can still be fulfilled by the generation system in 2030 and 2031. Furthermore, as seen in
Figure 11, the LOLE index of the LOLE 0.7 day/year case is maintained within the reliability
criterion. It can also be seen that the trends of LOLE and the reserve margin indices are not
perfectly negatively correlated since the LOLE index is affected by the generation system
characteristics, unlike the reserve margin index. Therefore, the minimum reserve margin
index might not occur in the same year as the maximum LOLE index.

3.3. Equivalent Reserve Margin from Loss of Load Expectation Criterion

The equivalent reserve margins of the LOLE criterion from 0.1 to 1.1 days/year can
be evaluated by performing the GEP with a reserve margin criterion that provides the
maximum LOLE not greater than the value of the LOLE criterion. The results using
Thailand PDP2018r1 can be demonstrated in Figure 12. It can be seen from this figure that
the lower the LOLE criterion, the higher the equivalent reserve margin. With this equivalent
reserve margin, a generation system with the same LOLE criterion can be obtained by
performing the GEP using this equivalent reserve margin as the planning criterion.
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Figure 12. Reliability indices of generation expansion plan with LOLE < 0.7 day/years.

3.4. Loss of Load Expectation with Fuel Supply Unavailability

To demonstrate the effect of fuel supply availability, firstly, generation expansion plans
with minimum reserve margin criteria from 17% to 21% are made, and their maximum
LOLE indices are evaluated. These LOLE indices are illustrated by the green solid line
shown in Figure 13. Then, the LOLE index for each case of fuel supply unavailability
is evaluated with the method described in Section 2.3 and fuel supply availability data
shown in Table 3. Three cases are considered in this paper. The first case is considering
the unavailability of the western natural gas network. The second case is considering
the unavailability of the eastern natural gas network. The last case is considering both
unavailability. The LOLE indices with fuel supply unavailability are also shown in Figure 13.

Figure 13. LOLE with natural gas supply unavailability.

Considering Figure 13, it can be concluded that the LOLE criterion of the system with
fuel supply unavailability consideration needs to be adjusted to maintain the equivalent
level of system reliability. For example, with both western and eastern natural gas networks
unavailable, a LOLE criterion of 0.55 day/year should be selected to maintain the reliability
level equivalent to a LOLE criterion of 0.7 day/year without consideration of fuel supply
unavailability, as shown in the black dashed line.

4. Conclusions

This paper proposes a method for evaluating and identifying the optimal LOLE for
generation expansion planning using the concept of power system net benefit. The relation-
ship between the reserve margin and the LOLE is also explained and used to evaluate the
equivalent reserve margin criterion for any specific LOLE value. Lastly, the impact of fuel
supply unavailability on the LOLE is demonstrated, based on Bayes’ Theorem.

In this paper, the LOLE is selected as the reliability criterion since it is a probabilistic
index which considers both generation system characteristics and the overall load model,
unlike the reserve margin, whose value is determined by only peak time period and also
highly dependent on deterministic assumptions such as dependable factor or capacity
credit. Thus, the LOLE is more suitable as the reliability criterion than the reserve margin
is. With the method described in Section 2.2, power system net benefit can be evaluated
by comparing the customer’s interruption cost and the utility’s investment cost in the
generation system planned by considering the LOLE criterion and the base generation
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system. The net benefit of each generation system with different LOLE criteria is then
compared to determine the maximum point, which is identified as the optimal level for the
LOLE criterion. The proposed method is tested with Thailand’s PDP2018r1. It is found that
the optimal LOLE of Thailand’s modified PDP2018r1 system is 0.7 day/year. Moreover,
with the result discussed in Section 3.3, LOLE can also be represented by an equivalent
reserve margin.

Lastly, since the LOLE is a probabilistic index and the probabilities of fuel supply
unavailability are independent from each other, the impact of fuel supply unavailability can
be evaluated using Bayes’ Theorem. The impact of eastern and western natural gas supply
unavailability on the LOLE of the case study is being evaluated. It is found that if fuel
supply is not reliable, it might be necessary to adjust the LOLE criterion of the generation
system to maintain the same level of generation system reliability.
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Appendix A. Existing Power Generation System as of December 2017

Table A1. Thailand’s power generation system as of December 2017.

Fuel Type Number (Unit) Total Capacity (MW) Lifetime (Years) Heat Rate (Btu/kWh) FOR
(%)

Lignite 7 2180.0 30–39 10,600 5.00
Bituminous 14 2406.6 21–30 8300–9100 5.00–7.00

Eastern natural gas 20 13,217.0 21–35 6800–9500 4.00–7.00
Western natural gas 11 7647.0 20–26 6800–9400 4.00–6.00

Other natural gas 76 7537.7 21–27 6800–8400 4.00–7.00
Import coal 3 1473.0 30 9100 6.00

Diesel 7 60.7 25–30 8300–10,400 7.00–10.00
Fuel oil 2 320.0 21–30 8300–10,400 7.00–10.00
Hydro 17 2926.8 50 - 3.58–6.76

Import hydro 4 2104.6 25–50 - 3.58–4.00
PHS 1 500.0 50 - 2.86

Renewable Energy - 5417.0 - - -

Table A2. Thailand’s renewable energy generation units as of December 2017.

Fuel Type Total Capacity (MW) Lifetime (Years) FOR (%)

Biomass 1659.4 21–25 7.90
Biogas 319.7 25 10.58

Solar PV 2572.6 25 0.60
Wind power 589.7 25 0.80
Small hydro 100.6 25–50 15.79

Municipal Solid waste 175.0 25 7.90
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Appendix B. Committed Generation Units

Table A3. PHS parameters.

Parameters Value Unit

C-rate 0.125 -
Round-trip efficiency 75 %
minimum state-of-charge 0 %
maximum state-of-charge 100 %

Appendix C. Committed Generation Units

Table A4. Committed conventional generation units (MW).

Year Lignite Bituminous Other Natural Gas PHS DR Imported Hydro

2018 600 20 622 500
2019 1856.8 1843
2020 1476
2021 10 1550
2022 1310 514
2023 1280
2024 90 2100
2025 30 1380
2026 600 700 700
2027 2640
2028 700 700
2029 700
2030
2031
2032 354 700
2033 202 700
2034 859
2035 700 1025
2036 860 700
2037 700

Table A5. Committed renewable generation units (MW).

Year Biomass Biogas Solar Wind Small Hydro Waste

2018 105.4 26.4 0.3 763 42 109
2019 243 20 154 135 1.25 41
2020 242 300 295 49
2021 348 166 162 16 14
2022 160 133 140 90 400
2023 160 100 154 90 18
2024 100 100 130 90
2025 6
2026 298 4
2027 50 4
2028 850 6
2029 1930 2
2030 400 1200 4
2031 300 50 2500 2
2032 100 100 750 130 3
2033 1000 150 2038 3
2034 200 140 28 6
2035 500 725 300 5 15
2036 280 50 490 657 2 14
2037 50 175 128 1 9
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Table A6. Retired conventional generation units (MW).

Year Lignite Bituminous Natural Gas Oil Imported Hydro Biomass

2018 −560 −10 −346
2019 −1464 −5
2020 −1256 −8
2021 −10 −232
2022 −712
2023 −1077
2024 −540 −270 −360 −82
2025 −1080 −90 −2880 −145
2026 −58
2027 −2617 −56
2028 −1289 −196
2029 −126 −179
2030 −103
2031 −63
2032 −1347 −734 −83
2033 −2134 −74
2034 −710 −315 −23
2035 −1510 −948 −956
2036 −670 −3
2037 −660 −254 −22

Appendix D. Additional Generation Units

Table A7. Additional generation units (MW).

Year Lignite Bituminous Natural Gas Imported Hydro

2030 700
2032 2100
2033 1000
2034 1000
2035 700
2036 700
2037 700

Appendix E. Candidate Generation Units

Table A8. List of candidate generation units.

Fuel Type Number (Unit) Total Capacity (MW) Lifetime (Years) Heat Rate (Btu/kWh) FOR
(%)

Natural Gas Infinite 100 25 6284 4.0
Natural Gas Infinite 700 25 6284 4.0

Appendix F. Availability of Fuel Sources

Table A9. Availability and unavailability of natural gas sources in the western gas network.

Natural Gas Source Probability of Unavailability Probability of Availability

W1 0.012612 0.987388
W2 0.006307 0.993693
W3 0.000009 0.999991
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From the fact that Thailand’s western gas network is not sufficient to supply the desig-
nated power plants if at least one gas source is unavailable, the probability of unavailability
of the western gas source can be calculated from

1 − (0.987388 × 0.993693 × 0.999986) = 0.018853

Table A10. Availability and unavailability of major natural gas sources in the eastern gas network.

Natural Gas Source Probability of Unavailability Probability of Availability

E1 0.002681 0.997319
E2 0.011412 0.988588
E3 0.002097 0.997903
E4 0.001010 0.998990

From the fact that Thailand’s eastern gas network is not sufficient to supply the
designated power plants if two or more major gas sources are unavailable, the probability
of unavailability of the eastern gas source can be calculated from

1 − P0 − P1 = 1 − 0.982876 − 0.017047 = 0.000076

where
P0 = (0.997319 × 0.988588 × 0.997903 × 0.998990) = 0.982876

P1 = (0.002642 + 0.011346 + 0.002065 + 0.000994) = 0.017047

Appendix G. Carbon Dioxide Emission Factor

Table A11. Carbon dioxide emission factor.

Fuel Carbon Dioxide Emission Factor (kgCO2/MMBtu)

Lignite 95.9
Bituminous 94.4

Eastern natural gas 57.3
Western natural gas 57.3

Other natural gas 57.3
Import coal 95.9

Diesel 76.6
Fuel oil 79.7
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