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Abstract: This work focuses on the geometry effects over the performance of oscillating water column
(OWC)-type wave energy converter (WEC) systems and searches for the OWC geometries that
enhance the energy efficiencies under the same wave conditions. To analyze the hydrodynamic
performances of the WEC systems, an in-house smoothed particle hydrodynamics (SPH) code based
on weakly compressible fluid approach is utilized. The energy efficiency enhancement studies of the
determined OWC device are carried out with a two-step geometry modification procedure. The first
step starts with the validation of the free-surface elevation and orbital velocity time histories. Then,
a three-by-three simulation matrix that depends on the geometrical design parameters of chamber
length and front wall draft is run at three different wave conditions, and the OWC geometry that
produces the maximum energy efficiency is determined. In the second step, the corner regions of
the obtained optimal geometry are chamfered, and another simulation matrix is tested at the wave
condition that yields maximum wave energy. It is observed in this step that the energy efficiency
index can still be improved by 4.3% by only chamfering the back face of the OWC chamber. To
scrutinize the physical grounds of this increase, the correlation between the time-averaged vorticity
and energy efficiency is presented. Finally, the performance of the best configuration is also examined
in three different wave periods, where the suggested geometry shows better performance with respect
to base geometry results in all wave conditions.

Keywords: wave energy; free-surface hydrodynamics; wave energy converters; energy efficiency;
SPH method

1. Introduction

Because of global warming due to the dramatic increase in CO2 levels mainly associ-
ated with the massive fossil fuel consumption, energy production relying on renewable
sources (i.e., solar, wind, and wave energies) has increased tremendously in the last two
decades [1,2]. In 2017, it was reported that almost 20% of the total energy generation of
humankind is based upon the renewable energy sources [3]. Among renewable energy
resources, the high theoretical potential of the ocean energy [4] makes free-surface waves a
prominent candidate for generating green electricity [5].

The most prominent barrier for the commercialization of wave energy converters
(WECs) is the high initial capital and operational expenses associated with harvesting
energy from waves in hazardous offshore and nearshore conditions [6]. Thus far, multiple
efforts have been made to solve these hurdles by introducing various WEC concepts. To
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improve the efficiency of the WECs, various concepts and designs have been developed,
where the number of patents has reached more than a thousand as of 2002 [7]. Despite
the considerable variation in the suggested concepts, WECs are generally categorized by
types of harvesting technology such as oscillating water columns, oscillating wave surge
converters, submerged pressure differential, and overtopping devices [5]. These systems
can be placed along the shoreline as stationary structures or employed as floating structures
on the open seas. General overviews of available concepts and designs for wave energy
converters can be found in [8–11].

The oscillating water column (OWC) is one of the most promising concepts that have
reached the prototype development stage in some regions, e.g., the LIMPET experimental
plant in Islay Island, Scotland [12], the Mutriku power plant in Spain [13], the Pico power
plant in Portugal, and the REWEC3 experimental plant in Italy [12]. OWC systems consist
of a hollow and partially immersed storage that is open to water with an air-trapped
chamber. Ocean waves cause the free surface within the tank to oscillate vertically, which
pressurizes and depressurizes the air inside the chamber. The pneumatic force of this
trapped air enters and leaves the bidirectional turbine located on the device chamber and
turns into electrical energy through power take-off systems [14].

In recent years, several experimental and numerical studies have been conducted to
investigate and characterize the hydrodynamic behavior of WECs from different aspects.
Morris-Tomas et al. [15] performed experiments to study the effect of the front wall
configuration on the hydrodynamic efficiency of OWCs. Chang et al. [16] conducted an
experimental investigation to determine the best geometrical design for the OWC device
to achieve optimum hydrodynamic efficiency. Various geometric parameters were tested.
The results showed that chamber geometry, especially the backplate slope, substantially
influenced the OWC performance.

Although experimental methods capture and reveal such devices’ hydrodynamic be-
havior more realistically, they are frequently regarded to be costly and time-consuming, and
may also suffer from the scale effects at the design stage. As an alternative to experimental
approaches, computational investigation of the hydrodynamic performance of OWCs using
numerical wave tanks is a reliable and less expensive method. Simonetti et al. [17] used a
mesh-based finite volume method in the OpenFOAM environment to analyze a fixed asym-
metric OWC device. The results showed that chamber length, front wall draft, and relative
OWC PTO damping had a strong effect on OWC efficiency. As shown in [18], chamber length
has a substantial influence on OWC performance when compared to other OWC geometric
characteristics. In addition, the angle of inclination in the bottom profile is an important
parameter for shoreline OWC efficiency. Kamath et al. [19] investigated the hydrodynamic
behavior of a 2D OWC under various wave conditions; they used the REEF3D CFD code in
their numerical study. In the simulation, lower wave steepness caused the inner free surface
to move firmly similar to a piston, but higher wave steepness caused nonuniform motion.

One of the important engineering problems that can significantly affect the perfor-
mance of OWC devices and cause strong nonlinearity behavior inside OWC chambers is
the resonant phenomenon (gap and harbor resonance). The modifications of the OWC
geometry and topographical slope can alter the resonant frequency of the water body
inside the chamber. Gao et al. [20] used OpenFOAM to study the impact of topographical
variation on the fluid gap resonance between a stationary box and a vertical wall using
incident regular waves. They discovered that the fluid resonant frequency decreased mono-
tonically as the topographical slope increased. Gao et al. [21] studied the effects of Bragg
reflection on harbor oscillations, which are caused by two types of incoming steady-state
waves. During their simulations, they thoroughly examined the impact of topographic
characteristics on oscillations.

In addition to widely implemented mesh-based computational solutions [19,22–24],
which may have difficulties in capturing the nonlinear dynamics of high free-surface
deformations in the problem area, and the instantaneous response of WEC devices in
severe wave conditions, in the last decade, meshless techniques have attained significant
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interest in providing high-fidelity results [25–28]. Luo et al. [29] reviewed the state of the
art in the application of meshless techniques to solve hydrodynamic issues in marine and
coastal engineering such as wave formation, propagation, and refraction, as well as related
turbulence generation and dissipation, air entrainment, and mass transfer. Fu et al. [26]
used a semi-Lagrangian meshless frame to investigate the sloshing phenomenon in a
two-dimensional numerical tank. Their approach was shown to provide more stable and
accurate results than one with an explicit mesh-based scheme.

Smoothed particle hydrodynamics (SPH) is one of the most widely utilized mesh-
free computational approaches for modeling diverse physical fluid flow conditions [30–34].
He et al. [32] developed a coupled weakly compressible and total Lagrangian SPH (WC-
TL SPH) approach to model the interactions of elastic entities with free-surface flows.
Khayyer et al. [35] briefly reviewed recent progress in the development of totally Lagrangian,
mesh-free computational techniques for hydroelastic fluid–structure interactions in marine
engineering and highlighted some important issues in this context. Almasi et al. [30] pre-
sented a multiphase incompressible smoothed particle hydrodynamics (ISPH) method to
examine complicated multiphysics electrohydrodynamics (EHD) issues. Furthermore, the
SPH technique is commonly employed to research hydrodynamic problems because of
its particular benefits in modeling highly nonlinear free-surface problems [36–39]. Gotoh
et el. [40] provided an update on recent advances in particle methods. They discussed
recent advances in accuracy, fluid–structure interactions, and computational efficiency.
Lyu et al. [41] provided a detailed overview of SPH-based hydrodynamic simulations
for ocean energy systems. The main focus is on three topics: SPH-based numerical fluid
tanks, multiphysics SPH methods for modeling ocean energy systems, and, finally, com-
puting efficiency and capacity. Ozbulut et al. [36] utilized the SPH technique in order to
model a numerical wave tank. A wide variety of test cases with different wavelengths and
steepness ratios for regular and irregular ocean waves were investigated using piston- and
flap-type wavemakers.

The application of the SPH method to model the wave energy converters has also
increased over the past few years [38,42–44]. Crespo et al. [42] simulated wave interaction
with an offshore OWC device in a numerical wave tank by using an open-source SPH code
(DualSPHysics). It was proven that their models can accurately create the free-surface
evolution inside the chamber when the air pressure is neglected. Wen et al. [44] used
an improved SPH model to examine the hydrodynamic performance of onshore OWC
and considered the turbulence effect during their work. It was shown that a sloshing
phenomena could be detected in the OWC chamber when the front wall depth was reduced.
More recently, Ropero-Giralda et al. [38] utilized the SPH method to investigate the
efficiency and survivability of a point-absorber-type WEC device under different regular
wave conditions. Recently, Quartier et al. [38] used the SPH approach to numerically model
an OWC WEC. In order to numerically simulate the power take-off (PTO) system, a force is
applied to a plate that is floating on the free surface of the OWC chamber. This eliminates
the air phase simulation, which is computationally costly in SPH approaches.

Objectives of This Paper

In this study, the weakly compressible SPH (WCSPH) approximation [45] is utilized
to investigate the hydrodynamic characteristics and the energy efficiencies of OWC-type
wave energy converter system. The current geometrical model of the present study is
assumed to be the simplified version of the 3D case due to its longitudinal symmetry,
where the validity of the results can be generalized for the 3D cases by ignoring the
effects of higher-order terms related to the eddy-vortices. The proposed in-house SPH
code is validated by an experimental study [46] consisting of a stationary OWC with an
open chamber. Additionally, a particle resolution and convergence test is also performed
to determine the optimum particle resolution on the problem domain. After achieving
accurate results by utilizing the proposed SPH scheme on an OWC system, a two-step
efficiency enhancement study is performed based on the geometrical modifications of
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the chamber part in the OWC device to obtain the configuration that provides maximum
available wave energy. In the first step, the geometrical parameters (including length of
chamber and front wall draft) are varied to obtain the maximum harvested energy in three
different wave periods. Using the best geometrical configuration that leads to maximum
wave energy production among all wave period conditions, the second step is applied by
chamfering the corner parts of the chamber region, considering all possible configurations.
As a final scrutiny, an investigation to obtain the relationship between the time-averaged
magnitude of vorticity in the OWC inner channel and the hydrodynamic efficiency is
performed through a quantitative comparison among all test cases.

The novelty of this study lies in the systematic and comprehensive analysis of the
OWC system geometric configurations to increase the amount of extracted energy under
equal wave conditions. It can be said as one of the major outcomes of this study that
the proposed SPH scheme can accurately capture the energy level changes even after
applying slight modifications to the chamber corner geometries, where the correlation
between vorticity magnitudes in the flow domain and harvested energy is verified in all
geometry configurations. In conclusion, due to the highly robust and accurate capabilities
of the utilized in-house code of the proposed work, it becomes possible to claim that minor
modifications to the chamber geometry may further improve the overall efficiency of the
OWC system under the same wave conditions.

The paper’s organization is as follows: In the second section, the governing equations,
and the discretized form of these equations based on the proposed WCSPH approach, are
mentioned. Following the definition of the physical and geometrical parameters of the
problem, hydrodynamic efficiency equations of the OWC device are presented in the third
section. In the fourth section, the robustness, consistency, and accuracy of our numerical
method are examined through comparing the experimental and theoretical results found in the
literature [46]. Then, the effect of geometrical modifications on the OWC system is scrutinized
with quantitative and qualitative measures in the fifth section. Finally, the discussions on the
obtained results and concluding remarks are highlighted in the last section.

2. Governing Equations and SPH Modeling

In the present study, the continuity and conservation of linear momentum equations
are employed to govern the motions of barotropic and isothermal fluid domain:

Dρ

Dt
= −ρ∇ · u, (1)

ρ
Du
Dt

= −∇p + µ∇2u + ρg, (2)

where D/Dt is the material time derivative, u represents the velocity, ρ denotes the density, p
is the pressure, µ is the dynamic viscosity, and g is the gravitational acceleration. In passing, it
would be explanatory to state that turbulent fluctuations and associated dissipation within
the computational domain are prudently ignored with the assumption that the smallest
length-scale of turbulent movement does not affect the free-surface deformation, notably.

The governing equations are discretized by the well-known WCSPH approach [47]
which has been widely utilized in many engineering applications with free-surface hydro-
dynamics modeling [38,39,48,49]. To close the governing equation system, the WCSPH
approach utilizes an equation of state that couples pressure and density variations. The
following equation of state is used during the simulations of this study:

pi =
ρ0c2

0
γ

[(
ρi

ρ0

)γ

− 1
]

, (3)

where c0 is the reference speed of sound, ρ0 is the reference density for water equal to
1000 kg/m3, and γ is the specific heat ratio of water, taken as 7. The reference speed
of sound is determined by keeping the Mach number (M) below 0.1, which satisfies the
density variations less than 1% [50]. To guarantee the limited density variations among
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all simulated wave conditions of the present study, the value of c0 is set at 25 times the
maximum wave group velocity, which gives 200 m/s, and satisfies the incompressibility
condition, especially in the regions close to the moving boundary and beach. It should
be remembered here that assigning the physical value of speed of sound in water leads
to undesirable time step values in terms of high computational costs and also leads to a
negligible contribution in the enforcement of incompressibility constraints.

In the SPH method, the fluid domain is represented by a collection of free particles, all
of which contain information about field variables such as density, velocity, and pressure.
The SPH formulation relies essentially on the integral representation of a function, which is
discretizable using a particle approximation [51]. Given particle i, the values of an arbitrary
field variable, which is either a scalar fi or a vector f s

i , are computed by an interpolation
procedure that uses the amounts of the neighboring particles, represented as fj or f s

j . To
clarify the notation used in the rest of the article, note that mixed notation (both direct and
index notations) is used for either the vector or tensor fields. In direct notation, vectors are
denoted by bold lowercase letters, while tensor fields are denoted by bold uppercase letters.
In index notation, italic Latin indices are used to denote vector or tensor components,
and they are always superscripted unless otherwise indicated. Einstein’s summation
convention applies, where repeating indices imply summation over them. According to
the SPH technique, concisely presented here, the value of any field function is computed
by the following procedure:

f s
i =

N

∑
j=1

Vj f s
j Wij, (4)

Wij = αd


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q < 1,
(3− q)5 − 6(2− q)5, 1 ≤ q < 2,
(3− q)5, 2 ≤ q < 3,
0, 3 ≤ q,

(5)

where subscripts i and j represent the particle index, N is equal to the total number of
neighbor particles for particle i. Wij, or in full form Wij(rij, h), is the piecewise quintic
kernel function [27], which depends on the dimensionless parameter q = ||ri − rj||2/h,
h is the smoothing length equivalent to 1.33 times the initial particle distance (δx), and
αd is a coefficient depending on the size of the problem domain. In a two-dimension
domain, αd is equal to 7/(478πh2). Vj denotes the particle volume, which is computed as
Vj = 1/∑N

j=1 Wij.
Before showing the discretization methodology of the governing equations through

WCSPH approximation, it will be convenient to define the applied treatments for function
derivatives. To enhance the accuracy of gradient and divergence operations for any scalar
or vector valued field variables, a corrective SPH (CSPH) formulation [52,53] is included
into the numerical scheme of this work:

∂ f s
i

∂xk
i

αkl
i =

N

∑
j=1

Vj

(
f s
j − f s

i

)∂Wij

∂xl
i

, (6)

∂

∂xk
i

(
∂ f s

i

∂xk
i

)
αsl

i = 8
N

∑
j=1

Vj

(
f s
i − f s

j

) rs
ij

r2
ij

∂Wij

∂xl
i

, (7)

αsl
i =

N

∑
j=1

rs
jiVj

∂Wij

∂xl
i

, (8)

In Equation (8), αsl
i is the second rank correction tensor, which helps to avoid potential

inconsistencies such as particle clustering and truncated support domains at boundaries.
By representing the inverse of αsl

i as Bpl
i , if both sides of Equation (8) are multiplied by
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Bpl
i , the gradient correction of kernel matrix can be found as Bpl

i ∂Wij/∂xl
i, and this can be

described as Bi · ∇iWij in direct notation.
By imposing these CSPH treatments, the described governing equations of fluid

motion can be discretized through WCSPH approximation:

Dρi

Dt
= ρi

N

∑
j=1

Vj
(
ui − uj

)
·
(
Bi · ∇iWij

)
, (9)

Dui

Dt
= −ρi

N

∑
j=1

Vj

(
pi

ρ2
i
+

pj

ρ2
j

)
(Bi · ∇iWij) + Kν

ρ0

ρi

N

∑
j=1

Vj

(
ui − uj

)
·
(
ri − rj

)∥∥ri − rj
∥∥2 (Bi · ∇iWij) + gi, (10)

∇i is the differentiation taken with respect to the position of particle i. In Equation (10),
K = 2(n + 2), where n is the dimension of the problem domain [54] and ν is the kinematic
viscosity, which is taken as 10−6 (m2/s) for water.

In the weakly compressible SPH method, accurate density computation is very critical
because the pressure values are linked to the density values through the equation of state,
and small density disturbances can cause large fluctuations in the pressure field, which in
turn reduces the precision and stability of numerical approach [55]. To mitigate the adverse
effects of oscillatory pressure field distributions during evolution of fluid flow, the density
smoothing treatment, which is frequently used in the SPH literature [56,57], is incorporated
into the present study’s numerical scheme:

ρ̂i = ρi −
∑N

j=1
(
ρi − ρj

)
Wij

∑N
j=1 Wij

, (11)

where ρ̂i represents the corrected density and is computed by interpolation between neigh-
boring particle densities.

As a final correction algorithm, hybrid velocity-variance-based free surface (VFS) and
artificial particle displacement (APD) treatment is employed in the simulations of this
study. The VFS algorithm is applied only to free-surface particles, which aims to ensure
an averaged velocity and avoid excessive scattering on the free surface. The free-surface
particles are defined as the particles with a neighboring particle number less than 65% of
the average number of neighboring particles in the problem area. The velocities of the
free-surface particles are calculated as follows:

δui =
∑N

j=1
(
ui − uj

)
Wij

∑N
j=1 Wij

, ûi = ui − εδui, (12)

where ûi indicates the corrected particle velocity, and ε is a dimensionless constant which
was suggested to be taken between 0.05–0.1 times the initial particle distance (δx) in our
previous studies [36,37,55], and accordingly it is taken as 0.075 δx in all simulations of this
study. On the other hand, the APD algorithm is used for the fully populated regions of the
fluid domain which considerably improves the precision of the interpolation processes of
the proposed SPH method by providing a uniform particle distribution throughout flow
evolution. The formulation of the APD algorithm is defined as [55]:

δri =
N

∑
j=1

rij

r3
ij

r0
2uv∆t, r0 =

1
N

N

∑
j=1

rij , uv = |δui|, r̂i = ri + δri, (13)

where r̂i denotes the updated position vector of the particles that are inside the
supported domain.

In this study, the wall particle velocities are set to the velocity of the boundary and no
additional formulation is applied to fluid particles that are close to the wall boundaries.
The wall boundaries are represented by fixed four-layer solid particles. Due to the inherent
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advantages of the SPH approach in the modeling of free-surface problems, the kinematic
and dynamic free-surface boundary conditions are captured inherently without applying
any treatment. The time integration process is carried through a predictor-corrector scheme,
which is defined in detail in our previous study [27], and the time-step value defined by
the Courant–Freidrichs–Lewy (CFL) condition, described as:

∆t = CCFL
h

c0 + cw
, (14)

where CCFL = 0.4, and cw is the produced wave system’s celerity [36].

3. Problem Definition
3.1. Numerical Wave Tank

In this work, the energy efficiency of the OWC-type wave energy converter device is
examined through generating regular waves by using flap-type moving boundaries. The
simulation cases are chosen to provide intermediate water conditions that avoid shallow
water effects in the wave tank and the high computational costs associated with deep
water conditions. In addition, all test cases are simulated at a constant depth to reduce
the problem parameters in the simulation matrix and focus directly on the geometric
parameters of the OWC chamber. Finally, the value of the wave height is chosen to produce
a comparable variation of the chamber pre-draft (y) heights. Considering all of these design
criteria, the wave properties of this study remain at the upper limit of second-order Stokes
waves according to the Le Méhauté [58] abacus given in Figure 1. The relation between
wave amplitude (ζa) and full stroke of the flap (S0 = 2S) is obtained through the Biesel
transfer function [59]:

S0 =
ζakd[sinh(2kd) + 2kd]

2[kd sinh(kd)− cosh(kd) + 1] sinh(kd)
, (15)

θ0 = arctan
S
d

, (16)

where k represents the wave number and d is the initial water depth at the flap boundary.
To avoid the sudden initial movement of the wavemaker, the wavemaker is set into a
motion with gradually increasing displacement through utilizing a simple mathematical
relation [36]:

x(t) = x0 + z0sin[θ(t)] tanh(ωt), (17)

θ(t) = θ0cos(ωt), (18)

where x0 and z0 represent the primary positions of the wavemaker particles. The change in
the vertical locations of the wavemaker particles are deemed trivial and are not updated. In
Figure 2, two different two-dimensional numerical wave tanks are schematically presented.
The first wave tank (top) is employed for generating the numerical results that are compared
with the experimental study of Iturrioz et al. [46], while the second one (bottom) is utilized
for producing simulation results for all oscillating wave energy converter test cases.

The Stokes second-order regular waves with a period of 3.2 s and wave height of 0.08
m are generated in the simulations when comparing the SPH results with the experimental
measurements provided in [46]. The geometrical details of the baseline OWC device are
described as follows: The overall length of the channel is L3 = 120 m, the distance between
the flap and the OWC front wall is L2 = 110 m, and the distance between the flap and the
toe of the sloping wall is L1 = 102.5 m. The still-water depth at the flap boundary (d) is
equal to 10 m. θ is the 4/10 inclined beach’s angle, and w and y represent the optimization
variables, namely, the chamber length and draft of the front wall, respectively.
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Figure 1. The wave characteristics of simulations with the parameters of d = 10 m and H = 2.5 m for
different wave periods, which are plotted on a Le Méhauté [58] abacus.

Figure 2. The schematic representation of the computational domain, including the validation case
wave tank (top) and the baseline OWC devices (bottom).

Figure 3 represents the schematic view of the OWC chamber with modified slope
walls utilized in the performance enhancement simulations of the OWC geometry. The
blue area inside the chamber indicates the calculation region of the time-averaged vorticity
magnitude which has the equivalent distance D1 = D2 = 2.5 m from both front and back
sides of the OWC walls.
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Figure 3. The schematic representation of the OWC geometry with variable dimensions, where the
blue rectangular box denotes the location at which the vorticity magnitude is computed.

3.2. OWC Hydrodynamic Efficiency

The present study mainly concentrates on the investigation of increasing the harvested
total wave energy in OWC systems by modifying the chamber geometries. Therefore, the
energy losses due to the mechanical efficiency of turbine and energy conversion efficiency
of the PTO system are not considered. To pursue an objective comparison between the
efficiency levels of different OWC geometries, an energy efficiency index formulation is
identified according to the ratio of calculated mean pneumatic power absorbed by the
OWC (without any contribution from the damping effects of PTO system) to the incident
wave power per length multiplied by the chamber width b:

EEI = 100
POWC

Pib
, (19)

where the chamber width is taken as unity. The average pneumatic power harvested by the
OWC can be expressed as follows:

POWC =
1
Ts

∫ Ts

0
P(t)airQtdt, (20)

where Ts indicates the total duration of the simulation, P(t)air represents the instantaneous
differential air column pressure obtained from numerical simulation, Qt is the air volume
flux inside the OWC chamber, and dt represents the time step of the simulation:

Qt = bwv(t) (21)

In Equation (21), w is the length of the chamber and v(t) is the instantaneous vertical
velocity of the free surface in the OWC chamber, which is calculated by averaging the
vertical velocity of the free-surface particles inside the OWC chamber at each time step.

The relationship between the air pressure and air flow rate at the turbine inlet can be
expressed with the following parabolic expression [60–62]:

P(t)air =

{
(kdmqt)2, qt > 0,
−(kdmqt)2, qt ≤ 0,

(22)

where qt is the volume flow rate of air per second per unit width (qt = Qt/b), and kdm is
the damping term in the OWC chamber, which is defined as:
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kdm =
B∗ρair

0.5

w
, (23)

Here, ρair denotes the air density (taken as 1.225 kg/m3) and B∗ is a dimensionless
damping coefficient representing the relation between the pressure drop in the OWC
chamber and the turbine’s flow rate. The damping coefficient depends on the utilized
turbine characteristics which may significantly affect the overall performance of the OWC
device [60]. To keep the simplicity and for the sake of quantitative comparison in the
representation of the energy efficiencies of each OWC geometries, B∗ is considered as unity
in all simulation cases. One can assign the specific value of B∗ to determine the total power
harvested by the OWC for the given wave conditions and OWC device geometries.

The average incident wave power per unit width for the Stokes second-order wave is
indicated as [59]:

Pi =
1
16

ρgH2
i

ω

k
(1 +

2kd
sinh(2kd)

)(1 +
9

64
H2

i
k4d6 ), (24)

where Hi is the incident wave height, ω denotes the angular frequency of the incident wave,
and d is the depth of water. By substituting all of the expressions into the OWC energy
efficiency index, it can be simply calculated as follows:

EEI =
100ρairw(B∗)2

∫ Ts
0 |v(t)

3|dt
TsPi

. (25)

4. Verification and Validation Studies for the OWC Simulations

In this section, the verification and validation of the proposed numerical scheme is
realized through comparing the free-surface deformations and velocity components within
the OWC chamber with the available theoretical and experimental results of the literature.
In the former test case, the time series of the free-surface elevation and velocity components
close to the free surface are verified with the theoretical results of second-order Stokes
waves. For the latter case, the numerical performance of the proposed SPH algorithm is
validated through the comparison of free-surface elevation in the center of the OWC device
with experimental and time-domain results of Iturrioz et al. [46]. Additionally, a resolution
test was also performed to achieve the convergence of the numerical scheme and obtain
the optimum number of particle distribution in the fluid domain.

To verify the characteristics of generated waves in the numerical OWC tank, the
wave kinematic quantities, namely, the free-surface elevation and orbital velocities at
x = 55 m and z = −3 m, are compared with the Stokes second-order wave theory [59].
Considering the second-order wave theory, the theoretical time series of water surface
elevation and orbital velocities of water particles for a defined position (x and z) are
calculated as follows [59]:

ζt =
H
2

cos(kx−ωt) +
H2k
16

cosh(kd)
sinh3(kd)

(2 + cosh(2kd)) cos(2(kx−ωt)), (26)

Vx =
H
2

gk
ω

cosh(k(d + z))
cosh(kd)

cos(kx−ωt) +
3

16
H2ωkcosh(2k(d + z))

sinh4(kd)
cos(2(kx−ωt)), (27)

Vz =
H
2

gk
ω

sinh(k(d + z))
cosh(kd)

sin(kx−ωt) +
3
16

H2ωksinh(2k(d + z))
sinh4(kd)

sin(2(kx−ωt)), (28)

As can be seen from the time series given in Figure 4, the generated waves in the
numerical wave tank are in good agreement with the theoretical wave characteristics.
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Figure 4. Comparison of SPH numerical and theoretical (second-order Stokes) wave surface elevation
and orbital velocities (T = 10 s, H = 2.4 m, and d = 10 m) at x = 55 m and z = −3 m.

The results of the numerical approach proposed in this study are validated and verified
with the experimental and theoretical findings of Iturrioz et al. [46] in terms of the free-surface
time series plotted for the center location of the OWC device given. Iturrioz et al. [46]
presented a simplified time-domain model for a stationary OWC. In this model, they used the
Cummins integro-differential equation to express the motion of a floating body.

To examine the particle size independence of the proposed algorithm, a convergence
study is also carried out with five different particle resolutions. Furthermore, the accuracy
of the numerical simulation results is measured using the root mean square error (RMSE) to
make a quantitative comparison between the performances of particle resolutions, defined as:

RMSE =

√√√√ 1
N

N

∑
i
(ζn,i − ζe,i)

2, (29)

where ζn,i and ζe,i represent the water surface elevation within the OWC chamber for any
ith sample of the numerical and experimental results, respectively, and N is the number of
samples for each simulation.

Figure 5 displays the comparative graph of the numerical simulations with variable
particle resolutions, while Table 1 indicates the RMSE values, computational performances
of each cases. One can say that SPH results of the present study can capture the overall
wave characteristics inside the OWC chamber in all resolutions and produces compatible
free-surface profiles with experimental results with the increasing particle resolutions.
It can also be stated that SPH predicts the nonlinear characteristics of the wave trough
deformations inside the chamber better than the time-domain model solution.

In light of the obtained RMSE values, it can be said that there is no significant difference
between d/40 and d/50 resolutions. On the other hand, using d/60 resolutions results in a
significant increase in computational costs. The d/40 resolution is still accurate enough to
compare with experimental data without increasing the particle number and computation
time. Following the observations and outcomes of the convergence study, d/40 particle
resolution is utilized in all simulations of this work.
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Figure 5. Comparison of free-surface elevation time series of the present SPH results with those of
time-domain and experimental findings of [46].

Table 1. RMSE comparison between the free-surface elevation measured in the experiment and
calculated by the SPH simulations.

Particle Resolutions
[m] RMSE [m] Iteration per Second Performance (h/s)

d/20 0.0134 5.223 0.274
d/30 0.0112 1.579 1.407
d/40 0.0086 0.616 4.797
d/50 0.0084 0.252 14.24
d/60 0.0070 0.146 30.35

5. Results and Discussion

This section presents the simulation results for the OWC-type wave energy converter
device. Initially, a simulation matrix is generated by altering the chamber length and
front wall draft values of the OWC system for three distinct wave conditions, leading to
twenty-seven different configurations. Then, the configuration with the largest EEI value is
chosen as the reference or baseline case for which the effect of corner chamfering on the
wave energy output capacity of the OWC device is investigated.

5.1. Performance Assessment of Chamber Length and Front Wall Draft Configurations

Recall that investigating the impact of geometrical combinations and wave conditions
on the efficiency of the stationary OWC-type wave energy converters constitutes the main
objective of this study. In this context, a three-by-three simulation matrix was created based
on the variation of the characteristic lengths of the system, namely, chamber length (w)
and front wall draft (y). Additionally, whole simulation matrix was run for three different
wave period conditions at each geometrical configuration. It may be convenient to recall
that second-order Stokes waves were generated in all OWC device simulations and wave
heights were set to a constant value of 2.5 m to reduce the complexity of the comparison.
In all cases, the simulations were carried out for 150 s.

The obtained EEI results for all geometry configurations and wave conditions are
presented in Table 2. It can be seen that the anterior wall immersion depth may have a
significant effect on OWC efficiency for the wave period T = 6 s where the EEI values drop
dramatically with the increasing draft values. In the cases of wave period T = 8 s, the EEI
values highly depend on both geometry parameters, where it can be deduced that there is
a tendency of decreasing efficiency with higher draft sizes. In contrast, in the simulation
results of the wave conditions with T = 10 s, the increase in chamber length and draft values
generally leads to a positive effect on the wave energy efficiencies except the maximum
values of both parameters. The comparative analysis on the results of all test cases indicates
that the amount of the harvested wave energy highly depends on the OWC geometry for
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each particular wave condition and the collected energy may be increased by the appropriate
design of OWC geometry according to the dominating wave characteristics of the region. If
the utilized regular wave periods are considered, it can be clearly inferred that these OWC
geometries can be a good candidate for a coastal region with the peak wave period of T = 8
s and average wave height of H = 2.5 m, where the maximum EEI values are achieved for
nearly all geometrical configurations.

Table 2. Obtained EEI values for each OWC geometry and wave period.

Wave Period T = 6 s T = 8 s T = 10 s

Chamber Length 2.3 m 3.3 m 4.3 m 2.3 m 3.3 m 4.3 m 2.3 m 3.3 m 4.3 m

dr
af

t 3.0 m 0.094 0.039 0.012 0.090 0.117 0.077 0.011 0.019 0.029
4.0 m 0.022 0.008 0.005 0.097 0.075 0.059 0.012 0.021 0.034
5.0 m 0.006 0.004 0.002 0.087 0.051 0.029 0.021 0.028 0.025

To provide further details for the EEI calculations of all geometries, the time series of
free-surface elevation, velocity, and air pressure inside the chamber are plotted in Figure 6.
As can be seen in Figure 6, an increase in the front wall draft of the OWC for a fixed
chamber length generally results in a decrease in the EEI index due to a decrease in the
surface velocity of the water and the air pressure in the chamber. For a fixed front wall
draft, a decrease in chamber length generally results in an increase in surface velocity and
air pressure in the OWC chamber, leading to an increase in EEI index.
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Figure 6. Time series of water surface elevation (top), velocity (center), and air pressure drop (bottom)
within the OWC chamber for a propagating wave with T = 8 s.

5.2. Effect of the Corner Chamfering on the Energy Effeciency

Having determined the chamber geometry configuration and wave condition that
yields the maximum EEI value, a systematical investigation of this chamber geometry and
wave characteristic was performed to seek for further improvement in the total efficiency
by only chamfering the corners inside the OWC channel. Thus, seven additional geometry
configurations (see Figure 3) were created, wherefore the dimensional details are described
in Table 3 together with the best geometry of the previous analyses.
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Table 3. OWC geometry variations and measured hydrodynamic efficiency for each of them (base
model, T = 8 s, y = 3.0 m, and w = 3.3 m).

Cases A1 [m] B1 [m] A2 [m] B2 [m] A3 [m] B3 [m] EEI Vorticity [-]

1 0 0 0 0 0 0 0.117 63.96
2 1 1 0 0 0 0 0.106 67.02
3 0 0 1 1 0 0 0.122 63.21
4 0 0 0 0 1 1 0.105 67.24
5 1 1 1 1 0 0 0.115 64.15
6 1 1 0 0 1 1 0.109 65.36
7 0 0 1 1 1 1 0.121 63.75
8 1 1 1 1 1 1 0.113 65.28

As can be seen in Table 3, all simulation cases except for cases 3 and 7 cause a drop in
the OWC efficiency compared to case 1 (base model). Modifying the channel walls’ geome-
try in cases 3 and 7 leads to an increase in efficiency by 3.4 and 4.3 percent, respectively. The
possible reason that lies behind this improvement is considered to be related to the amount
of vorticity levels. To extract the vortical characteristics in all geometry configurations, a
strategy for the objective quantification of vorticities is proposed. According to this strategy,
a correlation between the amount of vorticity generated inside the common region for all
geometries (shown as blue in Figure 3) and the EEI was established. The absolute amount
of dimensionless vorticity (ω∗ = ω(λ/g)0.5 with λ denoting the wavelength) is averaged
over the total simulation time. To extract this correlation and represent the results in a
succinct manner, the dimensionless vorticity and EEI values of each test cases are plotted
in sequential order in Figure 7. It is numerically proven that EEI values are improving
with the decrease in vorticity levels, which is actually an achievement of proper chamfers
applied in the OWC chamber geometry.
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Figure 7. Comparison between efficiency and amount of vorticity recorded within the OWC chamber
for different sloping wall configurations (T = 8 s, y = 3.0 m, and w = 3.3 m). The numbers in red
correspond to the case numbers tabulated in Table 3.

Figure 8 presents the vorticity fields of test cases with maximum and minimum EEI
values whereby one can clearly see that the magnitude of the vorticity field is smaller for
the case with the maximum EEI value. This observation can be attributed to the fact that the
vorticity inherently leads to energy dissipation. The chamfering hampers the formation of
vorticity through providing a streamlined flow pattern and larger space for fluid flow. The
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comparison of test cases 3 and 7 reveals that they have nearly identical EEI and vorticity
values, which suggests that the chamfer formed by the dimensional factors of A3–B3 pairs
does not have a notable influence on the EEI and vorticity magnitude. In all simulations, it
is observed that the existence of the chamfer defined by the geometrical factor of the A1–B1
pair reduces the EEI value.

One can easily observe that there is an inverse relationship between the energy ef-
ficiency and the amount of vorticity inside the determined region. Using the chamfer
configuration of cases 3 and 7 results in lower vortex flow characteristics in the blue region
(Figure 3), and hence leads to lower energy losses in the OWC system. Particularly, the
chamfer on the back wall of the chamber encourages more streamlined flow along the
vertical direction and enhances the free-surface velocity and the air pressure inside the
chamber which can be seen in the time-series graphs given in Figure 9.

(a) time = 120 (s)

(b) time = 122 (s)

(c) time = 124 (s)

(d) time = 126 (s)

Figure 8. Cont.



Energies 2022, 15, 8276 16 of 20

(e) time = 128 (s)

Figure 8. Instantaneous vorticity field and velocity vector representations of test cases with maximum
(case 3, left) and minimum (case 4, right) EEI values for a full period of motion.
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Figure 9. Time series of free-surface elevation (top), velocity (center), and air pressure drop (bottom)
within the OWC chamber for different chamfer configurations (T = 8 s, y = 3.0 m, and w = 3.3 m).

The working performance of the best geometrical configuration (test case 3) was also
evaluated for the wave periods of T = 6, 8, and 10 s. Achieved efficiencies are tabulated
and compared with the findings of base geometry in Table 4. As can be seen from the
table, modifying the channel walls’ geometry to case number 3 leads to an increase in
efficiency in all wave conditions, where the amount of increase depends on the incident
wave characteristics. Figure 10 displays the time series of free-surface elevations, velocities,
and air pressure in the chamber for all simulated wave periods.

When considering the whole OWC device simulation results, it can be claimed that
utilizing the obtained chamber length and draft dimensions together with implying the
chamfer modifications of test case 3 can be a good candidate for a coastal region with the
peak wave period of T = 8 s and characteristic wave height of H = 2.5 m.
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Table 4. Comparison of EEI values for the base geometry and the best performance geometry
configuration (case 3) at each wave period.

Cases T = 6 [s] T = 8 [s] T = 10 [s]

Base Geometry 0.039 0.117 0.019
Optimized Geometry 0.054 0.122 0.020
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Figure 10. Time series of free-surface elevation (top), velocity (center), and air pressure drop (bottom)
inside the OWC chamber for the best performance geometry configuration (case 3) at each wave period.

6. Conclusions

The search for possible energy efficiency enhancement in OWC-type WECs under the
same wave conditions comprises the main objective of this study. A weakly compressible
SPH approach was employed to investigate the hydrodynamic characteristics and the
energy efficiency of an OWC-type wave energy converter system. Numerical simulations
were performed in a two-dimensional numerical wave tank that generates regular waves
using a flap-type moving boundary.

As an initial validation study, the numerical performance of the proposed SPH scheme
was examined by comparing the free-surface elevation in the middle of the OWC device
with experimental and time-domain method results of Iturrioz et al. [46]. To investigate
the particle size independence of the numerical scheme and obtain the optimum particle
size, a convergence study was conducted, where the accuracy of the numerical results was
assessed by comparing the root mean square error with experimental results. The outcomes
of these simulations proved that the proposed SPH scheme can capture the free-surface
time series given by the experimental and time-domain method study of [46]. Secondly, the
free-surface elevation and the orbital velocity time series of the proposed SPH scheme were
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compared with the theoretical second-order Stokes wave theory findings, where highly
compatible results were observed.

Following the validation of the numerical method for the utilized OWC geometry,
a two-step efficiency enhancement study was conducted through systematical geometry
modifications. In the first step, the chamber length and front wall draft were varied to
obtain the best geometry that leads to maximum harvested energy in three different wave
periods. After determining the geometrical configuration that gave the maximum efficiency,
the second-step geometry modification was carried out on the optimal geometry of the
first step. A simulation matrix that consisted of the combinations of chamfered corner
regions of the OWC chamber was run and it was observed that the energy efficiency of the
OWC geometry can be still improved by 4.3%. Furthermore, the enhanced OWC geometry
configuration also harvested more wave energy in different wave conditions with respect
to the base geometry, which had no chamfering at the corners. As a final investigation, a
quantified relationship between the time-averaged vorticity inside the chamber region and
the energy efficiency was built. The vorticity analyses inside the chamber region indicated
that reducing the vorticity magnitudes results in the higher total energy efficiency of the
device, which is an expected outcome of energy conservation laws in physics.

To summarize and make an overall assessment of all test cases, the potential of the
harvested wave energy highly depends on the OWC geometry for each particular wave
condition, and the collected energy may be increased by the appropriate design of OWC
geometry according to the dominating wave climates of the region. Nonetheless, the
inspection of the effect of the water depth is not included in the limelight of this study. As
trials at different water depths will lead to different oscillation characteristics of the free
surface inside the chamber, it may be beneficial to extend the comprehensiveness of this
study to various water depths and wave characteristics in future studies.
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