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Abstract: This paper shows a practice to raise the reliability of an electric power system by the
installation of distributed generation, taking gasified biomass as fuel. To calculate the reliability index,
a probabilistic load flow was used. This index is determined as the fault probability of the system.
The resolution of this probabilistic load flow combines the method of cumulants and Gram–Charlier
expansion. To achieve the reliability index, simulating a number of contingencies is required; the
greater the number of simulated contingencies, the higher the accuracy of the index obtained. This
probabilistic technique uses the random variables as starting information, so the two generators
and loads are simulated as random variables. The generators of this distributed generation are
biomass-fueled gas engines, commonly found in Spain. The simulations carried out on the IEEE
14-bus Test System, including three biomass generators, show that the inclusion of this type of
generation improves the overall reliability indices of the electrical system.
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1. Introduction

Today’s electrical power systems have shown an unknown and veering behavior,
either in terms of consumer demand or in the faults of their components. By simulating
the incoming data as random variables in the issue, it is possible to identify the sources of
uncertainties in the system.

Probabilistic load flow is the name of the load flow issue that uses random variables
as input [1]. To calculate the load flow issue, different methodologies exist that take these
random variables as initial data. There are certain analytical methods that work directly
with random variables. Moreover, simulation methods exist that still employ deterministic
algorithms to solve the issue, such as the Monte Carlo approach.

Through all the different simulation methods in the present day, the Monte Carlo
approach has priority; this technique is capable of applying the procedure of deterministic
load flows that have been previously created [2].

Numerous analytical techniques, including the point estimate approach [3] and the
method of cumulants [4,5], can be used to solve the probabilistic load flow issue. These
techniques employ the convolution characteristics of the random values and expect power
flow through the lines and the power supplied at the buses, in order to determine the
voltage also as random variables.

According to [6], for the cumulants procedure and [7] for the point estimate process,
the major benefit of utilizing some of these approaches is their computational effectiveness
when processing random variables.

Power system reliability is becoming crucial for the reform of the electrical sector [8].
Nowadays, the electric power system is configured as independent producers that supply
energy to distributors across the existing transmission networks.

Frequently, the system administrator intends to amplify the power network with high-
quality, and therefore costly, producers’ units to satisfy the conditions of system reliability
as a consequence of the security requirements.
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A huge number of factors influence the measurement of the reliability of the system,
creating a laborious issue to be solved. This is conditioned by human creation factors: the
readiness of power plants, level of loads at the buses, contingencies such as buses or lines
out of service, and also, by natural unexpected/inevitability factors: hour of the day, day of
the week, weather or season. In the methods discussed above, the random variables will be
the estimated load and the availability of power plants, and both are essential aspects of an
electric power system.

This article describes a method based on cumulants for enhancing a power system’s
overall reliability. The aim of the issue is to establish minimum rates of the reliability index
in the power system and increase them using distributed generation. The likelihood of a
system failing, the frequency of failures, and the predicted length of time of the failure are
the three most-often-used indices [8]. Only the indicator pertaining to the possibility of
system failure is determined in this paper. Random variables are used to represent the load
fluctuation and power-generating availability of the buses.

It is more complicated to incorporate unforeseen events (such as equipment failures) in
the issue. Fortunately, not every contingency lead to a system crash [8]. Only the scenarios
that will have a larger influence on the system should thus be modelled. This significantly
decreases the range of contingencies to be taken into account.

The quantity of simulated events affects how accurate the reliability index is. As a
result, the quantity of incidents simulated will be directly connected to the level of precision
of the outcomes [9].

Identifying the group of factors that contribute to a system failure is the last stage in
problem formulation. The collection of requirements is determined by the application. In
this article, two conditions are taken into account:

1. Voltage being out of range;
2. A line’s capacity to transmit.

As the title says, the distributed generation used to increase the reliability are gas
engines powered by biomass [10], which are common in Spain.

This work presents, as a novelty, the study of the reliability of an electrical system
combining the use of generators with biomass as fuel and taking into account all the
uncertainties inherent to the electrical system.

2. Probabilistic Load Flow

A set of nonlinear equations represent the load flow; these equations indicate a net-
work’s balance between power produced and consumed in a permanent state [11]:

Pi = Vi∑N
n=1[Vn(gin·cosδin + bin·sinδin)]

Qi = Vi∑N
n=1[Vn(gin·sinδin − bin·cosδin)]

(1)

It is impossible to precisely determine these input values for the problem. Introducing
the entry data as random values in the issue is one technique to identify the system’s
sources of uncertainty.

2.1. Linear Approximation

Using the values expected from the system, load flow equations are linearized around
the solutions provided by the deterministic load flow. Two random variables, X and Y,
are taken into consideration to demonstrate this method. These random variables are
multiplied at some point in the issue to produce the third random variable, Z:

Z = X · Y (2)
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These variables can be broken down into their mean values, X and Y, plus their
deviation from these mean values, ∆X and ∆Y, respectively. Consequently, it may be
assumed that:

X ≈ X + ∆X Y ≈ Y + ∆Y (3)

If the terms of second order are not taken into account, (4) is the result:

Z ≈ XY + X·∆Y + Y·∆X = X·Y + Y·X− XY (4)

Due to the estimated values for X and Y, the variable Z could be linearized as long as
modifications of the random variables are minimal. The load flow’s angles and voltages in
(1) may be calculated using this method. Therefore, it derives these results [4]:

Pi = ∑N
n=1(e

′
in + f ′ in·δi − f ′ in·δn + g′ in·Vi + h′ in·Vn)

Qi = ∑N
n=1(e′′ in + f ′′ in·δi − f ′′ in·δn + g′′ in·Vi + h′′ in·Vn)

(5)

From the predicted value for the variables and system parameters, the coefficients e′,
f ′, g′, h′, as well as e”, f ”, g”, and h” are calculated.

2.2. Moments and Cumulants

By summing up the cumulative values from the method of cumulants, we find a
replacement for the convolution of random values. The advantage in this approach is that
it requires less computation [5,6]. Furthermore, any random variable may be used, not only
those with normal distributions.

The estimated values of specific functions of an aleatory variable X are known as its
moments [12]. These are a group of descriptive mensuration that, assuming that each mo-
ment of X is determined, can be applied to define and calculate the likelihood distribution
of X. The group of constants that indicate the characteristics of X and define its distribution
function are the moments of a random variable and their cumulants (kr) [13]. Nevertheless,
cumulants offer a variety of characteristics that make manipulating them more profitable.

2.3. Resolution Method

The process of solving the probabilistic load flow involves figuring out the solution’s
cumulants. For every order of the variables’ cumulants, the problem’s system of equations
must be solved [6]. The data required to rebuild the CDFs and PDFs of variables are
provided by all cumulants acquired from the solution.

2.4. Gram–Charlier Expansion

This method, Gram–Charlier expansion, is a procedure to define the resulting random
variables [6]. This technique offers an approximation founded on the central moments of an
acquired normal distribution. In fact, it encompasses this expansion’s seventh element [13].

Being ς a random variable with mean µ and standard deviation σ. The CDF F(x)
and PDF f (x) of the standardized factor x = ς−µ

σ may be represented as follows by using
Gram–Charlier expansion:

F(x) = Φ(x) +
c1

1!
Φ′(x) +

c2

2!
Φ′′ (x) +

c3

3!
Φ′′′ (x) + . . . (6)

f (x) = φ(x) +
c1

1!
φ′(x) +

c2

2!
φ′′ (x) +

c3

3!
φ′′′ (x) + . . . (7)

where ck are constants that can be calculated using the following expression:

ck = (−1)k
∫ ∞

−∞
Hk(x)· f (x)·dx k = 1, 2, 3, . . . (8)

3. Reliability Assessment

There are two ways to evaluate the system’s reliability [8]:
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1. At the beginning, to calculate the probability of the system’s faults, we need to test
the system by a number of contingencies. In order to obtain the probability system
failures, a probabilistic load flow is applied for every single incident;

2. The probabilities calculated in the preceding step are merged into the next step to
generate the system’s overall failure probability.

In fact, the reliability index cannot be accurately calculated since only a limited number
of contingencies may be simulated [9]. In this work, a contingency is considered to consist
of one or more lines out of service. Nevertheless, the procedure enables us to estimate the
reliability index’s lower and upper limits. The greater the number of simulated contingen-
cies, the lower the interval of the reliability factor. It should be pointed out that even if it
does not exist any contingency, it is necessary to emulate the case in which all the lines are
performing correctly (ordinary state).

3.1. Failure Probability of Power Systems

The likelihood of a contingency occurring determines the likelihood of failure. The
possibility of system failure is given by the concept of conditional probability, as follows:

Pd =
C

∑
m=1

Pm · Pd
m (9)

where Pd is the general probability of faults associated with the power system, C represents
all simulated contingencies, Pm is the likelihood that contingency m has occurred and
finally, under theses contingencies m, Pd

m is the likelihood that the system will break down,
which is figured out as follows:

Pd
m = 1−

N

∏
p=1

Pp,m

(
Linf

p ≤ Vp ≤ Lsup
p

)
×

L

∏
l=1

Pl,m(Sl ≤ Ll) (10)

So, Pp,m

(
Llow

p ≤ Vp ≤ Lup
p

)
is the likelihood that, given the contingency m, the voltage

of bus p will remain inside the lower
(

Llow
p

)
and upper

(
Lup

p

)
bounds, and Pl,m(Sl ≤ Ll) is

the possibility that, given the contingency m, the apparent power flow along cable l falls
below its transmission capacity limitation (Ll).

3.2. Failure Probability of the Network Lines

An electrical cable can be symbolized by a numeral of independent components
connected in series, parallel, or whichever combination according to the line transmission.
Figure 1 illustrates a transmission line as a series of a components.
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Figure 1. Line of transmission with a series-connected component.

The outage ratio is λt and the ratio of repair is µt for each element t. So, the following
expression determines the functionality of the component t:

At =
µt

λt + µt
(11)

Meanwhile, the probability of line interruption is provided by:

q = 1−
a

∏
s=1

As (12)
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The expectation that the line works properly is the remaining 1 of the expression (12):

p = 1− q (13)

3.3. Probability of Happening for Contingency

The chance of a contingency as a result of a system scenario can be calculated [9]
from the non-availability (q) or availability data (p) for every single line. Every single
configuration has a system state that may be obtained by deleting one or further lines.

The quantity of lines in the system determines how many states there will be. The
maximum number of achievable states for a system of L lines is 2L. The likelihood of
occurrence for a particular state (no stable state) P(m), also named as the possibility that a
contingency m might occur, is expressed as:

Pm = po · ∏
k∈0m

qk
pk

(14)

Being po the estimated probability for the stable scenario:

po =
L

∏
k=1

pk (15)

where 0m is the group of lines implicated in the event m.

3.4. Failure Probability of an Electric Power System

As previously noted, if one or more lines’ maximum transmission capacity is exceeded
or one or more buses’ voltage is outside of the acceptable range, the system is assumed to
have failed after a contingency.

Analyzing the function of the accumulative distribution of the load flow in the line
allows us to immediately calculate the likelihood that the load flow in a specific line will
not surpass the limitations of transference capabilities, based on the equation:

P[X ≤ Lik] =

Lik∫
−∞

f (x)dx = F(Lik) (16)

where f (x) and F(X) is the PDF and CDF, respectively, of the apparent load flow in line ik,
and X is the random variable related to the apparent load flow in cable transmission ik. Lik
is line ik’s maximum of transference capability.

In the same way, the possibility of obtaining the voltage between the acceptable range
may also be calculated from the CDF correlating to the voltage of bus i. The chance that the
voltage of bus I is more than the lower limitation and less than its maximum allowed, as
shown in Figure 2, is defined by:

P
[

Llow
i ≤ X ≤ Lup

i

]
= F

(
Lup

i

)
− F

(
Llow

i

)
(17)

where X is the random variable that represents the voltage of bus i, and F(x) is the cumula-
tive distribution function of the voltage of bus i.
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3.5. Evaluation of the General System Reliability

The final procedure to obtain the general system reliability value is to bring together
the probability estimated in the formulation for lower and upper reliability limits [8]. If the
set of modelled contingencies is Gc and the collection of contingencies that have not been
simulated is Hc and P[Gc] = D, then P[Hc] can be expressed as P[Hc] = 1 − D.

Moreover, suppose a scenario with contingency hc1 and it is a part of the set of
contingency Hc. There exist a couple of possible results: the contingency hc1 causes a system
fault or it maintains the system in a regular state. By assuming that every contingency
of the group Hc results in a system failure, it is possible to calculate the highest limit for
system reliability.

In the same way, to determine the lower limitation of the reliability index, it might be
assumed that every single contingency of set Hc will maintain the power system in the usual
state. As a result, the following expression is the minimum likelihood of system failure:

Pd
low = Pd (18)

where Pd is the system failure probability determined by Equation (9). So, the maximum
limit is:

Pd
up = Pd

low + 1− D (19)

where D = ∑
m∈Gc

Pm, and Pm is the probability that a contingency might occur.

4. Probabilistic Model of Load and Biomass-Fueled Gas Engine

The load variation at the buses and the power-generating availability are simulated
by using random values. The load variation is simulated by a normal distribution. In
article [14], the probabilistic load model is described.

Finite random variables, e.g., the binomial distribution for energy producers with
more than one generator or the Bernoulli distribution for power generation with only one
generator, are used to simulate the availability of the power plants.

The main fuel is olive pruning. This kind of biomass is expected to have a Higher
Heating Value (HHV) of roughly 3.90 MWh/ton [15–17] and is commonly present in Spain.
Due to several factors, including the cultivation area, the nutrients and moisture in the
terrain, etc., this calculated HHV demonstrates some unpredictability. The estimated range
of the calorific value is 3.69 MWh/ton as the lowest and 4.11 MWh/ton as the highest.

A normal random variable can be used to simulate this unpredictability, as demon-
strated in [10]. As a result, the next equations are established:

µG = Fk · µHHV (20)
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σG =
√

Fk · σHHV (21)

The parameter σG is the standard deviation and µG is the mean of normal distribution,
representing the electric power.

5. Simulation Results
5.1. Case Study

A number of simulations for a specific system have already been performed in order
to show how the reliability of the power system has improved. The system used is the
IEEE 14-bus Test System [18], which has 20 lines and 14 buses (Figure 3). To compare the
outcomes, the system has been tested both with and without the DG associated with some
buses. Five contingencies were used in this comparison, after considering 20 contingencies
to see how the quantity of contingencies affects the limits of reliability factor. The lines’
data and transformers are shown in [18].
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Many publications that explored the resolution of probabilistic power flow and ana-
lyzed the reliability of the power network [8,19] have employed this system. The data of
the probabilistic loads are from [19].

The power base is 100 MVA and the voltage is 0.95 p.u. and 1.05 p.u. for lower limit
and upper limit, respectively, in every bus of the system, excluding the PV buses.

The locations of the generators and the buses are shown in Table 1. Additionally, each
group’s power generation, the quantity of generators for every power plant, and the rate of
failure are given.

Table 1. Power generation per group, number of generators per power plant and failure rate.

Bus Failure Rate Group Number Power per Group (MW)

1 0.08 10 50
2 0.09 2 20
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The contingencies analyzed (in the instance of five contingencies), the line that
causes each contingency, and the statistical characteristics of each line are presented in
Tables 2 and 3 to estimate the likelihood that every contingency might occur. The lines’
specifications are based on IEEE [20] criteria. In the case study of 20 contingencies, one
event is taken into consideration for each line. The maximum transmission capacity for
each line is also shown in Table 3.

Table 2. Contingencies considered and number of lines involved in each contingency.

Nº Contingency Number of Lines Involved Lines Per Contingency 1

1 1 2
2 1 3
3 1 4
4 1 7
5 1 9

1 This column shows the number of the line or lines that are involved in a contingency. This denomination refers
to column 1 of Table 3.

Table 3. Statistical parameters of lines/transformers of IEEE-14 system.

Line
Number Bus From-to Transmission

Capability Limit (p.u.)
Number of
Elements Repair Rate, µ, (years−1) Failure Rate, λ, (years−1)

1 1–2 3.3 3 650 500 600 0.5 1 0.5
2 1–5 2.0 3 650 800 500 0.8 1.2 0.5
3 2–3 1.0 3 650 500 600 0.5 1 0.5
4 2–4 2.2 3 650 500 600 0.5 1 0.5
5 2–5 0.5 3 300 650 570 0.5 0.5 1
6 3–4 0.5 3 70 400 600 1.2 0.7 0.9
7 4–5 1.0 3 650 500 600 0.5 1 0.5
8 4–7 1.0 3 400 600 500 0.5 0.6 1
9 4–9 1.0 3 650 500 600 0.5 1 0.5

10 5–6 1.0 3 450 450 450 1 1 1
11 6–11 0.15 3 600 600 600 0.5 0.5 0.5
12 6–12 0.15 3 650 550 600 0.9 0.7 0.8
13 6–13 0.3 3 760 700 720 1.4 1 1.2
14 7–8 2.1 3 400 600 500 0.3 0.5 0.4
15 7–9 0.5 3 500 500 500 1 1 1
16 9–10 0.1 3 650 550 550 0.8 0.6 0.6
17 9–14 0.2 3 650 800 500 0.8 1.2 0.5
18 10–11 0.1 3 620 500 400 0.6 0.6 0.6
19 12–13 0.9 3 80 600 800 2 1 0.5
20 13–14 1.0 3 520 300 480 0.8 1 1.1

5.2. Results

Table 4 shows the probability of occurrence for the contingency when five contingen-
cies are simulated. The chance that an event will happen in the normal state (all the lines
operate properly) is quite high, which means that the system presents a good reliability.

Table 4. Probability of happening for the contingency.

Contingency Probability (%)

Normal 88.5322
1 0.3307
2 0.3193
3 0.3193
4 0.3193
5 0.3193

Generators are connected to improve the system reliability, as shown in Table 5.
This table indicates the average power of the generators and their standard deviation.
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Additionally, the rated voltage for each bus with DG is expressed, since this bus becomes
type PV.

Table 5. System-connected generators.

Bus Power (p.u.) Standard Dev. Voltage (p.u.)

11 0.03 0.00006 1.0435
12 0.06 0.00009 1.0506
13 0.13 0.00013 1.0427

As can be seen as an example in Figure 4, the probability improved the load flow
through the lines so it complies with the transmission capability limit. Furthermore,
Figure 4 depicts the CDFs of power flow through lines 4–5 with and without DG when
contingency 3 occurs. The probability that the power flow is below the limit is measured by
the CDFs. It can be seen that this probability moves from 0.6274 to 0.8471, which represents
an improvement for the system reliability.
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Figure 4. Power flow through lines 4–5 when contingency 3 occurs.

Figure 5 shows another example. In this case, the probability improved the voltage
compliance with the specified limits. Additionally, this figure depicts the CDFs of voltage
of bus 7 with and without DG under anormal state.
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It is noted that, as shown in Equation (17), it is necessary to measure F (1.05) and
F (0.95). In this case, the value of F (0.95) is zero for the system without DG and with DG.
Therefore, the probability of normal voltage is equal to F (1.05). It can be visualized that
this probability moves from 0.1730 to 0.6443, which represents an improvement for the
system reliability.

Table 6 shows the values for the reliability index of system (failure probability). Various
situations are considered: when five contingencies occur without DG and with DG, and
when 20 contingencies occur without DG and with DG.

Table 6. Reliability index.

(%) 5 Contingencies 20 Contingencies

Without DG 90.1400–100.0000 99.1226–99.7411
With DG 46.4107–59.2707 47.5172–48.1358

This table shows that the reliability index improves when DG is connected. Further-
more, the range of values for the reliability index reduces when the number of simulated
contingencies increases.

6. Conclusions

In this article, biomass generators have been used to implement a methodology to
increase the reliability index of an electrical energy system. The general probability of
system outage determines the reliability of the system. Since the reliability of a system
cannot be determined accurately, in this work the values of the interval in which this
reliability index is contained have been determined.

As the limit values of the reliability interval depend on the number of simulated
contingencies, these limits have been calculated assuming that a group of contingencies
maintain the system in a normal state (lower limit) and another group of contingencies
lead the system to a failure (higher limit).

To determine the reliability indicator, the probabilistic power flow tool has been
used. In this work, the probabilistic load flow has been solved by means of the cumulant
analytical method, characterizing the random output variables by means of the Gram–
Charlier expansion.

The entry data to the issue must be random variables, in order to solve the probabilistic
load flow. For this reason, the distributed generation and the loads of the buses have been
represented as random variables with a normal distribution. Power plants are represented
by means of discrete random variables: Bernoulli distribution if it is a single generator or
binomial distribution if it is a plant with several generators. The generators considered as
distributed generation are gas engines coupled to alternators. These engines are powered
by gasified biomass from olive groves, which are very abundant in Spain.

The results have shown that the reliability index improves when distributed generation
is connected. In addition, the interval containing the reliability index is reduced when the
number of simulated contingencies increases.

On the other hand, it would be necessary to simulate all possible contingencies to
accurately determine the reliability index of the system. This is inappropriate given the
high number of combinations of contingencies that can occur, which would lead to a very
high computational cost. Thus, the interval where this index is contained can be accepted
as a valid result.

As future lines of research, it can be proposed to include generation that is not capable
of controlling the voltage of the bus to which it is connected, as can happen with small
photovoltaic and wind generators, in order to take into account this type of generators and
their associated uncertainties. A mix of different types of generators can also be included,
with and without voltage control, and an optimization method can be used to, for example,
place these generators correctly within the system and with a suitable size. The objective
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function of improving system reliability can be combined with other factors, for example,
minimizing system losses, minimizing generation costs, etc.

Unbalances have not been considered in this study. A possible way to study this
would be to apply this methodology to three-phase electrical systems including single-
phase generators.
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Nomenclature
At Availability of the component t
BFGE Biomass-Fueled Gas Engine
bin Series susceptance of branch of bus i to bus n
C Total number of simulated contingencies (or incidents)
CDF Cumulative Distribution Function
DG Distributed Generation
Fk Conversion factor from Higher Heating Value to electrical power in a BFGE
Gc Set of simulated contingencies
gin Series conductance of branch bus i to bus n
Hc Set of non-simulated contingencies
HHV Higher Heating Value
Hk(x) Hermite’s polynomial of order k
kr Cumulant of order r
L Number of lines of the system
Ll Transmission capability limit
Llow

p Voltage lower limit at bus p
Lup

p Voltage upper limit at bus p
N Buses number of the electric system
PDF Probability Density Function
Pd Overall probability of failure in the system
Pi Real power injection at bus i
Pm Probability of occurrence of contingency m
Pd

m Probability that the system fails under the contingency m
Pd

low Lower limit for the probability of system failure
Pd

up Upper limit for the probability of system failure
p Probability that line operates
po Probability for the normal state
Qi Reactive power injection at bus i
q Probability of line failure
Vi Voltage at bus i
Greek symbols
δin Phase angle of voltage from bus i to bus n
Φ(x) and φ(x) CDF and PDF, respectively, of normal distribution of mean µ = 0 and standard

deviation σ = 1, and Φ′(x), φ′(x), Φ”(x), φ”(x) . . . its successive derivatives
λt Failure ratio for component t
µt Repair ratio for component t
µG Mean of electrical power output of the gas engine
µHHV Mean of higher heating value
σG Standard deviation of electrical power output of the gas engine
σHHV Standard deviation of higher heating value



Energies 2022, 15, 8451 12 of 12

References
1. Borkowska, B. Probabilistic load flow. IEEE Trans. Power Appar. Syst. 1974, 3, 752–759. [CrossRef]
2. Rubinstein, R.Y. Simulation and the Monte Carlo Method; John Wiley and Sons: New York, NY, USA, 1989.
3. Li, W. Probabilistic Transmission System Planning; John Wiley and Sons: Hoboken, NJ, USA, 2011.
4. Anders, G.J. Probability Concepts in Electric Power Systems; John Wiley and Sons: New York, NY, USA, 1990.
5. Sanabria, I.A.; Dillon, T.S. Stochastic power flow using cumulants and Von Mises functions. Int. J. Electr. Power Energy Syst. 1986,

8, 47–60. [CrossRef]
6. Zhang, P.; Lee, S.T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion.

IEEE Trans. Power Syst. 2004, 19, 676–682. [CrossRef]
7. Morales, J.M.; Pérez-Ruiz, J. Point estimate schemes to solve the probabilistic power flow. IEEE Trans. Power Syst. 2007, 22,

1594–1601. [CrossRef]
8. Sanabria, L.A.; Dillon, T.S. Power system reliability assessment suitable for a deregulated system via the method of cumulants.

Int. J. Electr. Power Energy Syst. 1998, 20, 203–211. [CrossRef]
9. Meliopoulos, A.P.; Bakirtzis, A.G.; Kovacs, R. Power system reliability evaluation using sto-chastic load flow. IEEE Trans. Power

Appar. Syst. 1984, 5, 1084–1091. [CrossRef]
10. Ruiz-Rodriguez, F.J.; Gomez-Gonzalez, M.; Jurado, F. Optimization of radial systems with biomass fueled gas engine from a

metaheuristic and probabilistic point of view. Energy Convers. Manag. 2013, 65, 343–350. [CrossRef]
11. Gomez-Expósito, A.; Conejo, A.J.; Cañizares, C. Electric Energy Systems, Analysis and Operation; Tailor & Francis Group: Abingdon,

UK, 2009.
12. Canavos, G.C. Probabilidad y estadística. Aplicaciones y métodos; McGraw-Hill: Richmond, VA, USA, 1988. (In Spanish)
13. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, 4th ed.; Macmillan: New York, NY, USA, 1977.
14. Ruiz-Rodriguez, F.J.; Hernandez, J.C.; Jurado, F. Probabilistic load flow for photovoltaic dis-tributed generation using the

Cornish-Fisher expansion. Electr. Power Syst. Res. 2012, 89, 129–138. [CrossRef]
15. Jurado, F.; Ortega, M.; Cano, A.; Carpio, J. Neuro-fuzzy controller for gas turbine in bio-mass-based electric power plant. Electr.

Power Syst. Res. 2002, 60, 123–135. [CrossRef]
16. Lopez, P.R.; González, M.G.; Reyes, N.R.; Jurado, F. Optimization of biomass fuelled systems for distributed power generation

using particle swarm optimization. Electr. Power Syst. Res. 2008, 78, 1448–1455. [CrossRef]
17. Lopez, P.R.; Jurado, F.; Reyes, N.R.; Galan, S.G.; Gomez, M. Particle swarm optimization for biomass-fuelled systems with

technical constraints. Eng. Appl. Artif. Intell. 2008, 21, 1389–1396. [CrossRef]
18. Power Systems Test Case Archive. Available online: http://www.ee.washington.edu/research/pstca (accessed on 1 July 2022).
19. Allan, R.N.; Al-Shakarchi, M.R.G. Probabilistic techniques in a.c. load flow analysis. Proc. IEEE 1977, 124, 154–160. [CrossRef]
20. IEEE Std 493; IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems. IEEE: Piscataway,

NJ, USA, 2007.

http://doi.org/10.1109/TPAS.1974.293973
http://doi.org/10.1016/0142-0615(86)90025-6
http://doi.org/10.1109/TPWRS.2003.818743
http://doi.org/10.1109/TPWRS.2007.907515
http://doi.org/10.1016/S0142-0615(97)00050-1
http://doi.org/10.1109/TPAS.1984.318715
http://doi.org/10.1016/j.enconman.2012.09.002
http://doi.org/10.1016/j.epsr.2012.03.009
http://doi.org/10.1016/S0378-7796(01)00187-0
http://doi.org/10.1016/j.epsr.2008.01.005
http://doi.org/10.1016/j.engappai.2008.04.013
http://www.ee.washington.edu/research/pstca
http://doi.org/10.1049/piee.1977.0027

	Introduction 
	Probabilistic Load Flow 
	Linear Approximation 
	Moments and Cumulants 
	Resolution Method 
	Gram–Charlier Expansion 

	Reliability Assessment 
	Failure Probability of Power Systems 
	Failure Probability of the Network Lines 
	Probability of Happening for Contingency 
	Failure Probability of an Electric Power System 
	Evaluation of the General System Reliability 

	Probabilistic Model of Load and Biomass-Fueled Gas Engine 
	Simulation Results 
	Case Study 
	Results 

	Conclusions 
	References

