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Abstract: Microgrids (MG) are small-scale electric grids with local voltage control and power man-
agement systems to facilitate the high penetration and grid integration of renewable energy resources
(RES). The distributed generation units (DGs), including RESs, are connected to (micro) grids through
power electronics-based inverters. Therefore, new paradigms are required for voltage and frequency
regulation by inverter-interfaced DGs (IIDGs). Notably, employing effective voltage and frequency
regulation methods for establishing power-sharing among parallel inverters in MGs is the most
critical issue. This paper provides a comprehensive study, comparison, and classification of control
methods including communication-based, decentralized, and construction and compensation control
techniques. The development of inverter-dominated MGs has caused limitations in employing
classical control techniques due to their defective performance in handling non-linear models of
IIDGs. To this end, this article reviews and illustrates advanced controllers that can deal with the
challenges that are created due to the uncertain and arbitrary impedance characteristics of IIDGs in
dynamics/transients.

Keywords: AC microgrids; advanced controllers; autonomous operation; frequency control; impedance
shaping; inverter-interfaced distributed generation; power-sharing

1. Introduction

Electric power generation in conventional power systems includes serious issues such
as high energy losses in power generation and transmission, high generation costs, carbon
emissions, environmental concerns, and high investment costs for grid expansion [1].
Thus, distributed generation units (DGs) that include renewable energy resources (RES)
(photovoltaics, wind turbines, hydrogen) are suitable alternatives and promising solutions
for overcoming the stated challenges [2]. To make the DGs’ operation compatible with the
grid and maximize the benefits of DGs integration in productivity, the economy, energy
efficiency, and the environment, researchers have considered the concept of microgrids
(MG) [3]. An MG is a small-scale local grid capable of operating in both a grid-connected
mode and islanded mode (isolated from the grid) and is capable of managing the transitions
between these two modes.

The main characteristic of the MG is the capability for autonomous operation in
the islanded mode, which improves the reliability of the local grid and can increase the
resiliency of the power system [4,5]. The main variables utilized to control the performance
of an MG are the voltage, frequency, and active and reactive power [6,7]. In the connected
mode, the grid imposes the voltage and frequency, and the MG supplies the power deficit
from the grid and trades the excess power generated in the MG with the grid [8]. In the
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islanded mode, the lack of access to the (stiff) grid has led the MG to perform autonomous
voltage and frequency control [9]; moreover, power-sharing among DG units (for load
tracking) should be implemented to maintain the production–consumption balance [10].

The frequency and voltage should be set autonomously in the islanded MG; however,
power electronics-based inverters that interface DG units to the (micro) grid are used, which
requires new paradigms in voltage and frequency regulations [11]. Notably, employing
effective voltage and frequency regulation methods for establishing power-sharing among
parallel grid-forming (GFM) inverters is the most important problem. Since there is a
compromise between voltage/frequency regulation and power-sharing that imposes power
quality issues and stability challenges, it is vital to ensure the MG’s dynamic stability and the
desired performance while realizing power-sharing through voltage/frequency regulation.

Therefore, the control architecture of an MG is implemented based on hierarchical
control, including the primary, secondary, and tertiary levels [12–16]. Energy management
is executed at the highest level, i.e., tertiary control, according to different power generation
technologies and power ratings for minimizing operation costs with maximum efficiency
and high reliability [17,18]. Furthermore, at the tertiary level, optimal setpoints are deter-
mined depending on the needs of the host power system grid (e.g., for voltage support,
frequency regulation, etc.) [19,20], and this control level is responsible for coordinating
the operation of multiple microgrids that interact with each other in the system [21–23].
The lowest level of hierarchical control is the primary control [24,25]. Primary control is
responsible for controlling the critical variables of the MG (voltage and frequency), and
power-sharing as well as power injection [26–29]. The secondary controller is responsi-
ble for power quality and compensates for the voltage and frequency deviations caused
by the primary control by restoring their values to nominal values while preserving the
power-sharing accuracy [30–33].

The main focus of this article is on the primary control level, which provides various
control methods for voltage and frequency regulation/control and power-sharing. The
review of control techniques is based on their dependence on the communication link and
is divided into two categories: communication-based and decentralized methods without
communication links [34–36]. In this review, various types of conventional classical control
methods based on communication links, without communication links, and also construc-
tion and compensation-based techniques are explained, and the advantages/disadvantages
of these methods are clarified.

The power system components, such as generators and transmission lines, are mod-
elled by their equivalent impedances, which are used for system and stability analysis.
The impedance characteristics of the inverters are also used for modelling, analysis, and
design; however, in inverter-dominated MGs, the impedance characteristics of the GFM
and grid-feeding (GFD) converters arbitrarily change due to disturbances and are uncertain
in transients, e.g., in current limiting and fault ride-through (FRT) transients. Therefore,
large disturbances created in the MG cannot be accurately modelled and, in general, the
mathematical model for power electronics is highly non-linear and uncertain due to the fast
operation and very small time scale. Therefore, using classical controllers in the context of
inaccurate models of inverter-dominated MGs would not be effective, and advanced (non-
linear) methods are needed for impedance shaping or to deal with uncertainties associated
with modelling. This motivated us to review and add some advanced control techniques
that can be used in inverter-based MGs. The classification of the control strategies for the
inverter-based MGs is illustrated in Figure 1.
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The remainder of the paper is summarized as follows. Section 2 presents a brief discus-
sion of communication-based control strategies for the parallel inverter. Control strategies
based on non-communication, i.e., droop control, are described in Section 3. Construction
and compensation control techniques are presented in Section 4 to cover the shortcomings
of the droop-based controllers. Section 5 discusses advanced control techniques that can
deal with the uncertainties and non-linearities of IIDGs in dynamics/transients. Section 6
discusses future trends related to MGs. Finally, Section 7 concludes the paper.

2. Communication-Based Control Strategies for Parallel Inverters

The communication-based control methods require a power management platform
or supervisory control and data acquisition (SCADA) operation. These control methods
are employed to provide power-sharing and voltage control, and their main advantage is
eliminating the requirement for a secondary controller. The supervisory control receives
information from all inverters and tries to maintain a balance in power-sharing between
the inverters. In this regard, several different control techniques based on communica-
tion methods, such as the concentrate control method [33,37–39], master–slave control
method [40–43], and current distribution control method [44–46], are discussed in the
following subsections.

2.1. Concentrated Control

This control scheme cannot operate without a centralized controller to acquire the
synchronization signals, as shown in Figure 2. The load current can be shared when the
phase-locked loop (PLL) is used to ensure synchronization between the grid-feeding (GFD)
voltage source converter and the grid [33]. This reference current needs to be assigned to
all parallel-connected inverters by a high bandwidth communication link (HBWCL).
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Figure 2. Control schematic of the concentrated/centralized communication-based control [33].

In [15,22,35,47–50], a communication-based control technique is presented so that
the current sharing in the transient and steady state can be maintained using this tech-
nique; however, the centralized current controller cannot manage harmonics and prevent
circulating currents among parallel inverters. To address this problem, high bandwidth
communication is necessary; while it reduces reliability and expandability, it provides
stable power-sharing in transient and sustained modes and constant voltage and frequency
regulation [30,51].

2.2. Master–Slave Method

In the master–slave control strategy, one inverter acts as a master and the remaining in-
verters act as slaves. The master–slave control strategy diagram is illustrated in Figure 3. As
suggested in [21,41,52], this technique is mainly based on the oscillating master/dedicated
master. In the dedicated master, one inverter works in the voltage control mode and
other inverters run in the current control mode. The master unit specifies the reference
current for the slave units so that the slave unit follows the reference current. Yet, if the
dedicated master suffers a single point of failure, it will significantly affect the stability of
the whole system. In [21], the master oscillating technique is suggested to overcome this
weakness. The master depends on the maximum inverter active power flow. This proposed
technique improves reliability and increases the power-sharing accuracy, but it may lead to
synchronization errors [53].

2.3. Current Distribution Control

Communication-based current distribution control strategies are employed to accom-
plish voltage regulation and power-sharing among parallel inverters, where power quality
is a concern [16,49,54]. These techniques do not require a central control unit while keeping
the output voltage amplitude and frequency close to the nominal values [35]. Hence, these
control strategies can limit system reliability, flexibility, and scalability, as well as increase
system costs due to the expensive and vulnerable communication link [33]. This technique
can be further classified as depicted in Figure 4. It can be categorized into current limiting,
average current sharing, circular chain control instantaneous current control, one cycle
control, and weighted current distribution control techniques.
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(1) The current limiting control is designed to reduce harmonics and avoid power qual-
ity issues while limiting the output current of the inverter. Novel current-limiting
control techniques are suggested to improve power quality and reduce harmonic
current [55,56].

(2) The average and instantaneous current control techniques are based on inter-unit
communication, in contrast to the master–slave control method. This technique
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requires reference synchronization for the voltage and current at the point of common
coupling (PCC) to have better current sharing and voltage regulation. Figure 5 shows
the structure of this control method. Yet, this technique reduces the flexibility and
reliability of the system [16].

(3) The one-cycle control method combines a vector and bipolar operation with an extra
simple communication link among the parallel inverters. Thus, the circulating current
among parallel inverters can be reduced. This control technique has advantages, such
as constant switching frequency, no reference calculation, simple system wiring, and
lack of need for multipliers, while providing more flexibility [4,57].

(4) The circular chain control method, which is also known as the 3C method, is illus-
trated in Figure 6. In this technique, each unit is connected in a circular configura-
tion that uses internal current control to track the inductor current of consecutive
parallel inverter units for achieving equal current distribution among the parallel
inverters [31,44].

(5) The weighting current distribution control technique has been proposed to achieve
current sharing among inverters with different power ratings. It gets a weighted
output current by simply adding a simple circuit for each inverter. In this technique,
each inverter has current and voltage controllers for a fast dynamic response, stability,
and an improved weighted current controller for achieving current sharing among
the inverters [45,58].
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2.4. Summary of Communication-Based Control Strategies

The merits and demerits of communication-based parallel inverter control techniques
are summarized in Table 1.

Table 1. The merits and demerits of communication-based parallel inverter control techniques.

Control Techniques Merits Demerits

Concentrated control

• Simple control
mechanism.

• voltage and frequency
regulation

• power-sharing in
transient and
steady-state modes.

• High bandwidth links are
required.

• Slow response
• Low reliability and

expendability

Master–slave control

• Output voltage recovery
is simple

• Power-sharing in
steady-state

• Reduce system failure
chances because of slave
inverters.

• During transient, high overshoot
• High bandwidth is required
• Less redundancy
• The efficiency of the technique is

only in close communication
between DGs.

• Dependence of the system on
the master unit.

Current Distribution
Control

• Symmetrical for each
unit

• Constant voltage and
frequency

• Individual control is required
for each inverter

• Communication is required
• Low modularity
• Tracking mechanism error

3. Non-Communication-Based Control Strategies for IIDGs in Autonomous MGs

The decentralized control techniques used for GFM voltage source inverters are based
on the conventional droop control technique known as wireless methods [59]. The droop-
based GFM inverters are responsible for regulating the fundamental variables of MGs (i.e.,
voltage and frequency) and controlling the output power of IIDGs. The classification of
droop-based control methods is shown in Figure 1. In this section, each of these methods is
explained in detail.

3.1. f − P and V − Q Droop Controllers

The conventional droop method originates from the principle of the (physical) power
balance in synchronous generators in bulk power systems. The imbalance between the
prim over mechanical power to the generator and the electromagnetic field (due to output
active power) causes a change in the rotor speed, which appears as frequency deviations.
Similarly, a change in the output reactive power leads to a change in the voltage magnitude.
The frequency–power droop control method is inherent to the operation of conventional
DG units, such as synchronous generators, and it can be artificially created for IIDGs.

According to Figure 7, the relationship between frequency−active power and
voltage−reactive power can be extracted as follows. The power flow from the inverter to
the grid can be mathematically modeled as the following equations [35].[

P
Q

]
=

E
Z

([
E 0
0 E

]
− ψ(δ)

[
V 0
0 V

])[
cos(θ)
sin(θ)

]
(1)
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where

ψ
(
δij
)
=

[
cos(δ) − sin(δ)
sin(δ) cos(δ)

]
; (2)

where Z and θ represent the line impedance and phase angle; E and δ are the inverter’s
output voltage and phase angle; P and Q are the active and reactive power; and V is the
AC bus voltage, respectively.

Energies 2022, 14, x FOR PEER REVIEW 8 of 29 
 

 

 Communication is required 

 Low modularity 

 Tracking mechanism error 

3. Non-Communication-Based Control Strategies for IIDGs in Autonomous MGs 

The decentralized control techniques used for GFM voltage source inverters are 

based on the conventional droop control technique known as wireless methods [59]. The 

droop-based GFM inverters are responsible for regulating the fundamental variables of 

MGs (i.e., voltage and frequency) and controlling the output power of IIDGs. The classi-

fication of droop-based control methods is shown in Figure 1. In this section, each of these 

methods is explained in detail. 

3.1. � − � and � − � Droop Controllers 

The conventional droop method originates from the principle of the (physical) power 

balance in synchronous generators in bulk power systems. The imbalance between the 

prim over mechanical power to the generator and the electromagnetic field (due to output 

active power) causes a change in the rotor speed, which appears as frequency deviations. 

Similarly, a change in the output reactive power leads to a change in the voltage magni-

tude. The frequency–power droop control method is inherent to the operation of conven-

tional DG units, such as synchronous generators, and it can be artificially created for 

IIDGs. 

According to Figure 7, the relationship between frequency−active power and volt-

age−reactive power can be extracted as follows. The power flow from the inverter to the 

grid can be mathematically modeled as the following equations [35]. 

�
�
�

� =
�

�
��

� 0
0 �

� − �(�) �
� 0
0 �

�� �
cos(�)
sin(�)

� (1)

where 

������ = �
cos(�) − sin(�)

sin(�) cos(�)
� ; (2)

where � and �  represent the line impedance and phase angle; �  and �  are the in-

verter’s output voltage and phase angle; � and � are the active and reactive power; and 

� is the AC bus voltage, respectively. 

Pcc

�∡� = � + �� 
�∡0 �∡� 

 

Figure 7. Equivalent circuit of a DG unit connected to the common AC bus. 

In medium and high-voltage grids, � is dominantly inductive, so the resistive part 

of Equations (1) and (2) can be neglected. Therefore, � gives a small phase difference be-

tween E and V (sin � ≈ � & cos � ≈ 1) [60] and thus Equations (1) and (2) can be rewritten 

as  

� ≈
���

�
 (3)

� ≈
�(� − �)

�
 (4)

According to Equations (3) and (4), the active power can be controlled by the fre-

quency (as the frequency variation dynamically controls the power angle), and the reac-

tive power is controlled by regulating the voltage magnitude, as shown in Figure 8 [61]. 
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In medium and high-voltage grids, Z is dominantly inductive, so the resistive part of
Equations (1) and (2) can be neglected. Therefore, δ gives a small phase difference between
E and V (sin δ ≈ δ & cos δ ≈ 1) [60] and thus Equations (1) and (2) can be rewritten as

P ≈ EVδ

X
(3)

Q ≈ E(E − V)

X
(4)

According to Equations (3) and (4), the active power can be controlled by the frequency
(as the frequency variation dynamically controls the power angle), and the reactive power
is controlled by regulating the voltage magnitude, as shown in Figure 8 [61]. Therefore, in
droop-based MGs, the active and reactive power of IIDGs can be controlled by adjusting
the droop coefficients [62–64]. Consequently, the voltage and frequency droop control for
medium and high-voltage grids can be defined according to Equations (5) and (6) [65].

f = fnom − mpP (5)

V = Vnom − nqQ (6)

where, Vnom, fnom, Pmax, Qmax, P, Q, mp, nq are the nominal voltage, nominal frequency, nom-
inal active power, nominal reactive power, average active power, and average reactive
power—which is the f − P and V − Q droop coefficients—respectively.
Equations (5) and (6) can be displayed by drawing the line slope diagram in Figure 8.
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The active and reactive droop characteristic values must be obtained with high accu-
racy because the stability of the system depends on them [66].

mp =
fmax − fmin

Pmax
(7)
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nq =
Vmax − Vmin

2Qmax
(8)

Remark 1. The f − P droop reveals an acceptable performance in terms of power-
sharing accuracy and dynamic response (even in grids with a low X/R ratio where the grid
impedance is not purely inductive) since the sensitivity of the power-to-phase angle is very
high (proportional to V2/Z) [67]; however, the problem is with the reactive power-sharing
via the V − Q droop, as the voltage is not a global variable and changes over the power
network. Furthermore, the cross-coupling between two f − P and V − Q is high when
the X/R ≈ 1, which may make the system unstable if the grid impedance is relatively low
regarding the power rating of the IIDGs.

3.2. Reverse Droop Control

The conventional droop controller is mainly suitable for high-voltage grids based on
pure inductive line impedances. Given this, for low-voltage distribution grids, where the
line impedance is dominantly resistive, the conventional droop is not effective. Thus, the
reverse droop control technique is used based on pure resistive line impedance at low-
voltage distribution grids. Therefore, the active power is controlled by a voltage magnitude,
whereas the reactive power is controlled with the phase angle or frequency [68]. Hence, for
the low-voltage grids when the inductance is negligible and the line impedance is entirely
resistive, bringing Equations (1) and (2) into consideration (sin δ ≈ δ & cos δ ≈ 1) yields:

V = Vnom − npP (9)

f = fnom + mqQ (10)

Equations (9) and (10) can be displayed as the slope of the line in Figure 9.
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Remark 2. The problem with the V − P droop control is that the sensitivity of the power
to the voltage difference at the grid is not high (proportional to the voltage magnitude),
and thus it reveals a very poor dynamic response; moreover, the voltage is a local variable
that is against the accurate active power-sharing in the resistive grids. These two issues
are critical for IIDGs to avoid reaching overload/current conditions. Therefore, the inverse
droop has not been a popular solution and the power system community prefers to use
the conventional f − P and V − Q droops by addressing their shortcomings (i.e., stability
concerns in low-voltage grids with low X/R ratio and inaccurate reactive power-sharing).
Impedance shaping is the most promising solution, which is discussed in this paper in the
advanced controller section.

The simplicity of the droop method is the main advantage, where communication
isn’t necessary among IIDGs. Therefore, high flexibility, plug-and-play, modularity, and
reliability can be guaranteed, however, there are challenges for researchers. These chal-
lenges include the lack of proper harmonic current sharing, performance dependency



Energies 2022, 15, 8580 10 of 29

on grid impedance, poor power quality due to voltage/frequency deviations, and the
problem of circulating a reactive current among IIDGs, voltage regulation, and reactive
power-sharing [69,70]. In complementing and overcoming the disadvantages of the con-
ventional/reverse droop method, improved droop methods are discussed in detail in the
next section.

3.3. Modified Droop Control

To solve the shortcomings of conventional droop and inverse droop control mentioned
in Sections 3.1 and 3.2, modified droop control is introduced, which can be categorized as
follows.

• Power angle droop control
• Virtual flux-based technique
• Voltage-based technique
• Complex droop control technique

3.3.1. Power Angle Droop Control

This technique shares stable power among inverters without frequency excursions [71].
Nevertheless, stability conditions under variable loads have not been studied. In [72], high
gain angle droop control ensures proper load sharing, especially in weak system conditions;
however, it harms the overall stability of the system. The angle droop control technique has
been investigated in detail in [61], namely angle droop without communication to power-
sharing between IIDGs, and secondly, angle droop control with minimum communication
for enabling the feedback controller to establish economic power-sharing, considering a
resistive power grid; however, the angle droop method needs an accurate time frame, e.g.,
GPS, for synchronization of the inverters, which is the major drawback.

3.3.2. Virtual Flux-Based Technique

Researchers have proposed a novel modified control strategy in [73] and [74] that will
act based on the direct virtual flux droop method. The active power, phase angle, and
reactive power are proportional to the flux for increasing the controller’s ability. Figure 10
shows the expressed control scheme, in which by controlling the flux amplitude and phase
angle (instead of the output voltage of the inverter), the appropriate power-sharing can
be achieved. Consequently, this control technique is simple and more effective and does
not require pulse width modulation modulators and multi-closed loops; however, the
fault ride-through of the inverter is questionable and it is not clear how current limiting is
implemented.

Energies 2022, 14, x FOR PEER REVIEW 11 of 29 
 

 

high gain angle droop control ensures proper load sharing, especially in weak system 

conditions; however, it harms the overall stability of the system. The angle droop control 

technique has been investigated in detail in [61], namely angle droop without communi-

cation to power-sharing between IIDGs, and secondly, angle droop control with mini-

mum communication for enabling the feedback controller to establish economic power-

sharing, considering a resistive power grid; however, the angle droop method needs an 

accurate time frame, e.g., GPS, for synchronization of the inverters, which is the major 

drawback.  

3.3.2. Virtual Flux-Based Technique 

Researchers have proposed a novel modified control strategy in [73] and [74] that 

will act based on the direct virtual flux droop method. The active power, phase angle, and 

reactive power are proportional to the flux for increasing the controller’s ability. Figure 10 

shows the expressed control scheme, in which by controlling the flux amplitude and phase 

angle (instead of the output voltage of the inverter), the appropriate power-sharing can 

be achieved. Consequently, this control technique is simple and more effective and does 

not require pulse width modulation modulators and multi-closed loops; however, the 

fault ride-through of the inverter is questionable and it is not clear how current limiting 

is implemented. 

P

Q

P-Q 
Calculation 

+ LPF





Droop 
Coefficients





Reference Voltage

 2 sinE t













V

i

n

n

refV

refP

refQ

ref

ref

 

Figure 10. Virtual flux-based modified droop technique [74]. 

3.3.3. Current and DC Voltage-Based Droop 

MG performance and stability are mainly based on power control strategies; how-

ever, the power control techniques have a slow dynamic response and stability issues. 

Given this, the VI-based droop characteristics have been proposed in [75,76], wherein this 

strategy can provide a fast dynamic response and improve system stability under load 

variation; however, this strategy is valid for small-size inverters with a limited current 

capacity, mainly because the voltage is not a global variable [77,78]. The researchers in 

[79] have proposed voltage-based droop control techniques, as shown in Figure 11. The 

� − � droop is categorized into two control loops, namely the droop control loop Vg-Vdc 

and P-Vg droop and a constant power band control loop. Firstly, power needs to be bal-

anced between the generated power or input DC source, and absorbed power at the AC 

grid side can be balanced by using the Vg/Vdc droop control loop of the GFM voltage source 

inverter. AC power changes are based on the Vdc (DC link) voltage changes of power 

sources.  

�� = ��,��� + �(��� − ���,���) (11)

As for the inverter, the DC side power converter nominal voltage and the grid power 

converter nominal voltage are ���,��� and ��,���, respectively, with � > 0. 

Secondly, the � − �� droop with a constant power band is used to limit the signifi-

cant deviation of the AC voltage [35,76].  

Figure 10. Virtual flux-based modified droop technique [74].

3.3.3. Current and DC Voltage-Based Droop

MG performance and stability are mainly based on power control strategies; however,
the power control techniques have a slow dynamic response and stability issues. Given
this, the VI-based droop characteristics have been proposed in [75,76], wherein this strategy
can provide a fast dynamic response and improve system stability under load variation;
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however, this strategy is valid for small-size inverters with a limited current capacity,
mainly because the voltage is not a global variable [77,78]. The researchers in [79] have
proposed voltage-based droop control techniques, as shown in Figure 11. The P − V droop
is categorized into two control loops, namely the droop control loop Vg-Vdc and P-Vg droop
and a constant power band control loop. Firstly, power needs to be balanced between
the generated power or input DC source, and absorbed power at the AC grid side can be
balanced by using the Vg/Vdc droop control loop of the GFM voltage source inverter. AC
power changes are based on the Vdc (DC link) voltage changes of power sources.

Vg = Vg,nom + n(Vdc − Vdc,nom) (11)

As for the inverter, the DC side power converter nominal voltage and the grid power
converter nominal voltage are Vdc,nom and Vg,nom, respectively, with n > 0.
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Secondly, the P − Vg droop with a constant power band is used to limit the significant
deviation of the AC voltage [35,76].

Pdc =


Pdc,nom − Kp

(
Vg − (1 + b)

)
Vg,nom i f Vg � (1 + b)Vg,nom

Pdc,nom i f (1 − b)Vg,nom ≺ Vg ≺ (1 + b)Vg,nom
Pdc,nom − Kp

(
Vg − (1 − b)

)
Vg,nom i f V ≺ (1 − b)Vg,nom

(12)

where Kp, Pdc, nom, and b are the power droop gain, rated active power of the converter,
and width of the band, respectively. The width of the band is mainly based on the nature of
the renewable energy sources. This droop technique adjusts the output power of the IIDG
unit [80]. The constant power band relies on the characteristics of the generator to avoid
frequent changes in the power of given IIDGs.

3.3.4. Complex Droop Control

In distribution grids that contain feeders with a complex impedance, neither the
resistance nor the reactance of the line can be neglected relative to each other. In some cases,
the line resistance may be equal to or even greater than the line reactance, creating a feeder
system with a low X/R ratio. Compared with the L-type or R-type droop, the RL-type droop
inherently considers the coupling between the active power and reactive power; however,
the power decoupling performance under complex impedances is more difficult [81].
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Therefore, the inverters are seen as RL-type inverters, and Equations (1) and (2), which
describe the complex network, are rewritten as follows

f − fre f = −Kp
X

R2 + X2

(
P − Pre f

)
+

R
R2 + X2 Kp

(
Q − Qre f

)
(13)

V − Vre f = −Kq
R

R2 + X2

(
P − Pre f

)
− Kq

X
R2 + X2

(
Q − Qre f

)
(14)

With small changes in the power angle and voltage magnitude in this control technique,
imbalance and instability occurs. The control technique in [82] has been presented and can
simplify the equations for active and reactive power coupled with complex impedance and
provide an acceptable dynamic performance in low-voltage MGs when X

R ≈ 1. In this case,
the droop functions can be expressed as

f = fre f − Kp(P − Q) (15)

V = Vre f − Kq(P − Q) (16)

Instability and overcurrent due to large circulating transient currents originate from
the oscillatory behavior and the phase angle shift among the inverters. To overcome this
challenge, the authors in [83,84] presented the droop/gain control technique by adding
integral terms and derivatives at the low-voltage distributed droop controller, which
resulted in achieving the desired dynamic response. The equations for this control technique
are given in Equations (17) and (18).

V = Vre f + Kp

(
P − Pre f

)
+ Kpd

dP
dt

(17)

f = fre f + Kq

(
Q − Qre f

)
+ Kqd

dQ
dt

(18)

However, this is only suitable for low-voltage MGs. If the distance between the inverters
increases, then the characteristics of the line impedance have to be changed from a low- to
medium voltage distributed grid, while the current peak could appear due to the initial
phase error [79].

3.4. Summary of Decentralized Droop-Based Control Techniques

A comparison between conventional and modified droop controllers is given in Table 2,
and the merits and demerits of the modified droop control techniques are briefly mentioned
in Table 3.

Table 2. Comparison between conventional and modified droop controller.

Configuration Flexibility Harmonic
Current Sharing Line Impedance Dynamic

Response
Integration to

Renewable Technology
Reactive

Power-Sharing

Conventional
droop High Poor Affect the

performance Slow Poor Good

Modified
droop Low Good Overcome by

virtual impedance Fast Good Better
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Table 3. Merits and demerits of non-communication-based droop control techniques for parallel
inverter.

Conventional Power-sharing Techniques

Concept Merits Demerits Authors

f − P & V − Q

Easy implementation
(plug-play)

communication less
high reliability

Proper power-sharing, voltage and frequency
regulation aren’t provided, physical

parameters of the system also affected
system performance harmonic load sharing,

as well as the slow dynamic response

[2,85,86]

Reverse power-sharing droop

V − P & f − Q

Non-communication
easy to implement
(plug-and-play),

high reliability for the
resistive line.

Limitation: low-voltage grid
Do not utilize maximum RES

Do not provide Q sharing
[78,87]

Modified power-sharing droop

Angle power-sharing droop
with supplementary loop Constant frequency regulation Poor Q power-sharing and communication

(GPS) singles are required [61,71,72]

Derivative with virtual
impedance and conventional

power-sharing control
Virtual impedance with power

transformation frame and
conventional sharing.

Minimizing transient time
accurate power-sharing
Dynamic performance is

acceptable and active/reactive
power control is also not

coupled.

Not easy to proper selection to gain of a filter
and the derivative term

For all DGs: Not easy the selection of same
transformation angle

[60,88,89]

Adaptive power-sharing
droop with derivative

Adaptive power-sharing
controller with optimization

and algorithm
Bifurcation theory and Kura
moto Oscillator non-linear
model and fuzzy adaptive

suppress circulating current
reduced frequency fluctuation

and improve transient.
System stability and
power-sharing are

ameliorated.
Improve frequency and

voltage. stable in certain case

Virtual reactance is necessary, which is based
on the internal voltage controller bandwidth

for minimizing the circulating current.
Therefore, the controlling of output

impedance voltage, and the angle is hard, do
not have significant improvement and

complex control strategy. Complex, applied
in limited cases, no hardware

implementation, power-sharing. Not easy to
implement in multiple DGs

[84,90–96]

Frequency signal-injection
droop

Suitable for linear and
non-linear loads

Voltage controller cannot control the
harmonic problem and not easy to

implement
[23,97–99]

Voltage-based droop

Ideal control for MGs with
low voltage levels that are

purely resistive, and for
power balancing.

Difficulty in practical implementation
Voltage varies during load changes [76,100]

Virtual flux control Simple and ameliorate the
frequency loop The dynamic response is not fast [73,74]

V/I droop control

The dynamic response is
improved, suitable for small
DGs and PQ sharing is also

desired.

Not suitable for the heavy load. Small droop
gain create oscillation. [75,101]

Hierarchical power-sharing
droop control with multilayer

controller

Voltage, frequency deviation
and power-sharing
performance better.

Communication is required [85,102,103]

4. Construction and Compensation Droop Control Method

Modifying some of the droop-based control techniques and taking into account more
limitations has led to the creation of construction and compensation droop control tech-
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niques, which are among the most effective solutions for IIDGs at the MG level. The
classification of the control structure is shown in Figure 1. In this section, the details of each
method are explained.

4.1. Common Variable

To achieve accurate sharing of active and reactive power among parallel inverters, a
common variable-based compensation droop technique is used. This technique works in a
short-distance inverter-grid connection. In [104–106], a reactive power-sharing scheme is
presented, which considers the controller to adjust the common load bus voltage, and the
equation for this strategy is represented in Equation (19).

Vi = Kq

∫ (
Vre f − Vcom

)
dt (19)

where Vi is the voltage magnitude of the inverter as the control input, Kq is the integral gain,
Vre f is the reference signal, and Vcom is the common load voltage magnitude at the input.
The control input is generated by an integral controller that will regulate the common load
voltage to track a reference signal voltage, where the reference signal gives,

Vre f = V∗ − DQQi (20)

where V∗ is the linear function of a local reference signal and reactive power output, Qi.
The steady-state gain is the reciprocal of DQ, which takes into account the steady-state
stability. The Vre f Vcom should be near zero to make sure that the injected reactive power is
at a minimum. Thus, steady-state Q (MVAr) is calculated as:

Q =
V∗ − Vcom

DQ
(21)

As in (21), the reactive power control will not be affected by the MG’s parameters.
Likewise, [106] has proposed a control technique for improving the active power-sharing
control by introducing the integral controller as given in (22), but with the addition of the
input power, Pi.

Vi =
∫ [

Ke(V∗ − Vcom)− KqPi
]
dt (22)

4.2. Signal Injection Loop

The signal injection droop compensation technique is mentioned in [23,97,98], and
the method of this control approach is displayed in Figure 12. Among the benefits of
this approach, the load sharing is suitable for linear, and non-linear loads, and automatic
control of system parameters, such as the line impedance mismatch or inverter parameters.
Furthermore, this approach has drawbacks, such as having high-frequency components
that must be measured and constructed, greater complexity, deviation of the output voltage
amplitude, the creation of inter-harmonics, and resonance caused by an injected signal can
increase transmission loss and deteriorate the power quality [99].

4.3. Power Compensation Loop

A modified control strategy including a power compensation loop, which significantly
reduces the reactive power-sharing error, is investigated in [107,108], and the diagram of
this control method is presented in Figure 13. In this method, it detects reactive power-
sharing faults by injecting real reactive power coupling disturbances that are activated by
low bandwidth synchronization flag signals from the central controller. Accurate reactive
power-sharing is achieved by manipulating the coupling of the real injected transient
reactive power and employing an integrator. The reactive power-sharing accuracy could
be improved when the reactive power-sharing control error is calculated by inserting an
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active power transient coupling term and rectifying the errors by using a slow integral,
which can be described as,

ω = ωo −
(

DpP + DQQ
)

(23)

E = Eo − DQQ +

(
Kc

s

)
(P − Pave) (24)

where the integral gain Kc should be the same for all DG units.
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Figure 13 shows the diagram of the proposed control strategy, where P0 and Q0 are
the measured powers before the low pass filter (LPF). When compensation is not active, the
conventional f − P and V −Q droop methods perform power-sharing. When compensation
comes into play, the traditional droop control is replaced by (9) and (10). In this diagram, the
G unit is the soft compensation gain, and it is proposed for the compensation method, which
can avoid excess power fluctuations and overcurrent during the compensation transient.
The gain G slowly increases to the nominal value at the beginning of each compensation.
After compensation, G slowly returns to zero, meaning that the droop controller slowly
returns to a normal droop control mode.

4.4. Virtual Impedance Loop

In this section, the virtual impedance loop technique is presented as the latest ap-
proach to improve the droop technique and overcome the limitations of line impedance
( X

R ≈ 1) [38,109–117]. As a result, in this approach, by adding virtual inductance, a fast
droop response has been achieved to decouple active and reactive power coupling, stabilize
the frequency adjustment, and maintain the active power balance with minimal physical
line losses [51]. Consequently, the expected voltage can be modified as,

Vre f = V∗ − ZDio (25)

where ZD, io, V∗, and Vre f are the virtual impedance, output current, under no-load con-
dition output voltage, and reference generation voltage, respectively. Figure 14 shows
the purely inductive virtual impedance technique ZD = LD [49], which proposed the
behavior of the controller without considering the steady-state frequency changes and the
transient stability issue, so the transient response is not satisfactory. Recently, modified
virtual output impedance methods have been proposed to improve transient response
and harmonic current sharing [53]. In [24], to overcome the limitations and drawbacks
of [118], integral terms are added to the conventional virtual impedance loop after the
reference signal generator, resulting in an improved transient response. Approaches [24]
and [118] are not applicable for online uninterruptible power supply (UPS) due to incorrect
current distribution. According to the limitations mentioned in [119], to improve harmonic
power-sharing, a decentralized controller with virtual resistive output impedance has been
used in both linear and non-linear load conditions.
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The techniques mentioned so far are classified as classical control techniques. These
control techniques are only designed for particular conditions, and these methods use
control loops/PI-based controllers or other linear controllers.
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5. Advanced Control Strategies for Inverter-Based IIDGs

Today, MGs have experienced extensive progress in integrating renewable energy re-
sources, energy storage systems, and diverse loads. As a result, classical control techniques
are ineffective for dealing with the limitations that develop in MGs and have disadvantages,
such as:

• Distorted/imbalanced conditions and weak grid connection: Inefficiency of classical
control techniques under these conditions and eliminating/countering the uncertain-
ties generated in the upstream grid.

• The effect of the line impedance on power-sharing accuracy: Ineffectiveness of droop-
based control methods and interaction of PI-based control loops under low X/R ratio
line impedance conditions.

• Non-linear loads: In MGs, loads are topologically unknown and parametrically uncer-
tain, and can be a source of unknown dynamics that cannot be accurately modeled by
classical controllers.

• Lack of flexibility for impedance shaping of IIDGs: The GFM and GFD voltage source
converters require different impedance characteristics for stable operation under
different grid conditions; however, there is a lack of a sufficient degree of freedom for
impedance shaping in conventional methods.

As a result, advanced control methods have been presented to solve the challenges
raised, as presented in the sequel.

5.1. Robust Control

Conventional controllers based on PID/PI/PR controllers are inefficient for overcom-
ing disturbances caused by internal and external factors, and, as a result, the stability of the
MG has been affected [120]. Robust control techniques are the best solution for overcoming
the uncertainties, disturbances, and non-linear nature of RESs/loads/power electronic
equipment. A robust controller should be able to consider all the parameter variations
for efficient MG consolidation under different operating conditions. In [121], a robust H∞
controller is evaluated for AC voltage and frequency regulation in an MG under different
loading conditions, and its performance is compared with a droop control method. This
method proposed a multi-level control, including a droop control loop, voltage control
loop, current control loop, and inductance-capacitor-inductance filter control loop and
coupling circuit. In [122], a supervisory controller is proposed to control secondary AC
voltage and frequency in autonomous AC MGs to overcome possible limitations. In [123],
an improved droop-based control scheme is developed to solve the stability problem and
increase the power-sharing accuracy in the grid-connected MG that was investigated. A
robust MG stabilizer (inspired by the power system stabilizer (PSS)) has been proposed
in [124], which dampens low-frequency oscillations (LFO) in MGs that are provoked by the
interaction of droop controllers through the power network.

In the grid-connected operating mode, the grid synchronization is performed by a PLL.
The basic drawback of PLL is instability following disturbances/faults in the upstream
weak grid [125,126]. To deal with this defect, a robust PLL is proposed in [127]. This
controller improves the stability margin of the system under FRT transient conditions and
is robust against grid/MG impedance variations, weak grid connections, and distorted
grid conditions. Furthermore, the robust PLL reveals a better performance in frequency
estimation when being used in the synthesis of virtual inertia and frequency support. The
block diagram of this control method is shown in Figure 15.
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5.2. Fuzzy Control

A fuzzy control system is an approach that applied i f − then rules to implement fuzzy
logic to the fuzzified inputs (in the (0,1) interval instead of 0/I) to deal with uncertainties
in the system parameters. Therefore, this approach is effective for making the controller
adaptive by linking the output (system response) to the wide range of input variables [128].
In [129], a Takagi–Sugeno (TS) fuzzy control is proposed to regulate the AC voltage and
achieve accurate power-sharing in decentralized island microgrids. In [130], fuzzy control
is proposed to improve the frequency response of a wind turbine system, which requires an
accurate model of the tilt angle control, wind storage system, and wind speed. In [131], a
fuzzy controller is applied at the secondary level to reduce voltage and frequency deviations
during disturbances. With the development of MGs and the use of multi-bus MGs, droop-
based controllers for power-sharing have been affected by line impedance [132,133]. Due to
the low impedance of power lines, the conventional droop is inefficient; as a result, a fuzzy-
based consensus control is introduced in [134] to deal with this inefficiency, see Figure 16.

5.3. Sliding Mode Control

Control techniques based on proportional–integral (PI), proportional resonance (PR),
and predictive deadbeat (DB) have not performed well in non-linear systems such as
microgrids. As a result, sliding mode control (SMC) has been developed in non-linear
systems. This control approach has advantages, such as robustness and impermeability
against parameter changes and noise, as well as the ability to determine the sliding mode
in a limited time [135,136]. In [137], an SMC-based control approach is employed to control
the AC voltage and frequency in an islanded AC microgrid with an arbitrary topology.
In [138], a fractional-order SMC provides terminal voltage and frequency regulation of
a DER unit, which also exhibits robustness against unbalanced and/or distorted load
currents. A decentralized SMC strategy is proposed in [139] to improve the stability, power-
sharing, and robustness to non-linear and unbalanced loads in microgrids. In [140], a robust
efficient decentralized voltage/frequency control strategy is presented, which increases
power-sharing and system stability under the influence of unbalanced loads. This control
strategy includes three separate controllers based on SMC and Lyapunov theory to improve
active/reactive power-sharing and voltage regulation. It has been investigated that GFM
inverters reveal arbitrary/resistive impedance at current limiting, which makes the MG
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unstable at FRT transients [141]. To address this issue, sliding mode control is proposed
in [141] to make the MG system securely pass FRT transients. The proposed controller slides
the control system of the GFM inverter on a stable manifold that bypasses unstable modes.
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5.4. Impedance Shaping

The arbitrary output impedance behavior of each of the GFM/GFD voltage source
converters in the islanded/grid-connected conditions and in critical situations, such as
disturbances/faults—which leads to instability—cannot be solved by conventional PI-
based nested control loops [124,142]. In this light, the impedance shaping method is critical
for meeting the required impedance characteristics in isolated/grid-connected conditions,
and to establish decoupled f − P and V − Q loops by avoiding cross-coupling between
them, which can highly affect the stability of the MG. The impedance shaping method is a
promising solution for identifying and improving the dynamic performance of IIDG units
in modern power systems. Yet, only relying on classic control loops in the control system
of inverters is not effective for dealing with serious power grid problems. To address
this issue and facilitate flexible impedance shaping, a new control structure has been
proposed in [143,144], which is called the optimal voltage regulator (OVR), see Figure 17.
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The proposed controller is based on the optimal state feedback control and optimality
refers to the optimal impedance shaping based on the power-sharing control target and the
grid requirement. Furthermore, the proposed controller is able to work in both the GFD
(grid-connected) and GFM (islanded) modes without the requirement of a dedicated PLL
in the grid-feeding mode and change in the control structure in the transition from GFD to
GFM modes.
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Time domain non-linear simulation results in MATLAB Simulink are provided, in
Figures 18–20, to evaluate the importance of impedance shaping and defect performance of
the conventional PI-based GFM and GFD power converters in low-voltage and weak grids.
In Figure 18, the performance of the GFM power converters in an islanded MG with a low
X/R ratio of line impedance (X/R = 1) is shown. After the error/disturbance caused by
microgrid islanding, PI-based control techniques are not able to deal with the disturbance.
As a result, the MG’s variables (frequency and active and reactive powers) have become
unstable and unbalanced. Furthermore, in the GFD mode of operation of the converter
with high output impedance, this control technique is ineffective in dealing with current
limitations, the results of which can be seen in Figure 19. The control structure based
on impedance shaping prevents the collapse of network variables thanks to its flexible
functionality as the GFM and GFD converter. The results can be seen in Figure 20.
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5.5. Summary Heuristic/Meta-Heuristic Algorithms

In addition to the advanced methods, heuristic/meta-heuristic algorithms are used
according to their advanced features for solving the model in advanced control techniques,
which are mentioned in Table 4.

Table 4. Heuristic/meta-heuristic algorithms used in advanced control techniques.

Control Method Control Strategies Highlights of Control Strategies

Advanced control
strategies based on

heuristic/meta-heuristic
algorithms

1. Neural Network
Algorithm

2. Genetic Algorithm
3. Particle Swarm

Algorithm
4. Artificial Intelligence

1. Neural networks are used for voltage and frequency control,
improving power-sharing, and increasing MG stability
margin [145].

2. Genetic algorithm is used to determine the optimized virtual
impedance to minimize the global reactive power-sharing error of
the MG [146].

3. Particle swarm optimization (PSO) is used to solve the design
problem of various MG components and controller parameters as
an optimization problem formulated to increase MG stability that
leads to improved power-sharing and voltage and current
stability [147–149].

4. An artificial intelligence-based (Icosϕ) controller is proposed for
power-sharing and power quality improvement in smart MG
systems, where various uncertainties caused by load changes,
MG battery state of charge, and power tariffs based on power
availability in MGs are considered [150].

6. Future Trends in the High-Performance Inverter-Based Grids

Further investigation of the challenges will help to improve the voltage and frequency
control strategies of IIDGs in MGs. The views and challenges mentioned below can provide
the basis for the design of the AC MGs with advanced control strategies.
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• The dynamics of variable loads still affect the stability of IIDGs in two operating
modes, connected/islanded, at the MG level; as a result, unsolved challenges remain
for achieving voltage and frequency stability at the MG level [151,152].

• The contemplation of sensitivity issues with non-linear droop controller-based strate-
gies [153] is necessary.

• Increased reliability in droop control systems based on robust controllers leads to
accurate sharing of active and reactive powers among high penetration levels of IIDGs.
With the development of research in this field, more solutions can be obtained [154].

• Droop methods with the aim of cost optimization, in which non-linear control methods
and droop gains are variable, are open research fields, and the dynamic stability of the
MG system under the influence of variable droop gains should be evaluated. Consider-
ing that the droop coefficients are adaptively changed based on the cost function using
real-time optimization techniques, different computational and traceable optimization
techniques are needed to increase the reliability of microgrids [152].

• The accurate power-sharing from islanded to grid-connected modes has been in-
vestigated with hybrid control and non-linear loads [155,156] and using intelligent
methods [157].

• The performance and stability of droop controllers in MGs with a networked topology,
as stressed in [158–160], need further investigation and analysis.

• Impedance shaping has been effective in stability analysis and inverter-based DER con-
trol design, including advanced control techniques. Due to the defective performance
of virtual inductance loops [143,161], control methods for IIDG units are presented
in [143,144]. In these methods, a degree of freedom of the optimal impedance-shaping
mechanism is considered. Adaptive impedance shaping considering changes in MG
structure due to plug-and-play, load changes, grid reconfiguration, and transients
from islanded to grid-connected modes are among the open topics in these methods.

• The FRT transients modeling, stability analysis, and stabilization have recently attained
significant attention [141,162] and are a future trend.

• Considering the different applications of battery energy storage systems (BESS) in
MGs, their impact on MG economic dynamics [163,164], the different time scales of
BESS application, and their joint dynamic performances in steady state, modified, and
advanced droop mechanisms are needed for BESS control.

7. Conclusions

In this paper, a technically profound overview of the strategies of communication-
based centralized methods, decentralized droop-based control, construction and com-
pensation techniques, and advanced controllers for voltage and frequency control for
power-sharing among parallel inverters in AC MGs was presented. Among the advantages
of the communication link-based control techniques is the appropriate power-sharing, but
they possess low reliability and redundancy. The decentralized droop-based control tech-
niques are another class of control methods that are superior to the communication-based
method. Among the advantages and disadvantages of this class of controllers are flexibility,
modularity, higher reliability, slow dynamic response, poor power quality, and lack of
proper power-sharing due to uncertainty in the output impedance. Given this, to address
the problems of droop control techniques based on communication/non-communication
links, construction and compensation control techniques have been proposed. Consid-
ering the limitations of conventional control techniques in dealing with uncertainty and
non-linearities, advanced control methods have been proposed to handle these challenges.
Furthermore, in the last section, considering the development of power systems, the future
trends in voltage and frequency control—especially in power-sharing control techniques—
were discussed.
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