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Abstract: The study was carried out on a group of 85 public buildings, which differed in type of
use, construction technology and heating systems. From the collected data, a set of qualitative and
quantitative variables characterizing them in terms of heat demand was extracted. In this paper, the
authors undertook to test the suitability of a model based on rough set theory (RST), which allows
the analysis of imprecise, general and uncertain data. To obtain input data for the RST model in
quantitative form, the authors used an alternative approach, which is a method based on the thermal
properties of buildings. The quality of the predictive model was evaluated based on the following
indicators, such as the coefficient of determination (R2), the mean bias error (MBE), the coefficient of
variance of the root mean square error (CV RMSE) and the mean absolute percentage error (MAPE),
which are accepted as statistical calibration standards by ASHRAE (American Society of Heating,
Refrigerating and Air-Conditioning Engineers). A quality-acceptable predictive model must meet
the calibration conditions: MBE ±5%, CV RMSE < 15% and R2 > 0.75. For the analyzed RST model,
the following values of evaluation indicators were obtained: MBE = −1.1%, CV RMSE = 11.8% and
R2 = 0.91. The evaluation results obtained gave rise to the conclusion that the method used, which is
based on a limited amount of data describing buildings, gives good results in estimating the unit rate
of energy demand for heating.

Keywords: energy characteristics of buildings; energy consumption; rough set theory; model based
on thermal characteristics; public buildings

1. Introduction

The energy performance of a building is a set of data to estimate the total energy de-
mand of a specific building, guaranteeing its intended use [1]. This definition applies to all
types of buildings for which energy consumption must be estimated. Energy performance
calculations for buildings can be carried out using various methods, which can be divided
into engineering calculations [2–10], statistical models, data-driven models [11–28] and
hybrid models [29,30]. Analysis of the literature has shown that the most commonly used
methods are statistical and artificial intelligence models based on neural networks, fuzzy
logic and rough set theory. These models mainly focus on estimating energy consumption
and thermal comfort in simulated or existing energy-efficient buildings very often equipped
with renewable energy sources (e.g., heat pumps, photovoltaic panels and ceramic solar
panels) [31–33] or passive and multifamily residential buildings [22,28,34,35]. The authors
noted that there is a lack of accurate studies of actual buildings in the literature [11,34], for
which it is difficult to obtain reliable and accurate data without technical documentation or
taking an inventory of the building. The papers [20,22,25,28] presented the usefulness of
methods for estimating energy in multifamily residential buildings made with large-plate
technology using models using artificial neural networks [22], Takagi–Sugeno fuzzy mod-
eling [28], or models based on rough set theory [20,25]. The models used in the indicated
works used input data in quantitative (continuous) form, such as partition area, floor area,
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heated volume, shape coefficient of buildings, heat transfer coefficients and heating system
power demand, among others. The input parameters, i.e., the heat transfer coefficient U
[W/m2K], or the A/Ve (the ratio surface to volume) ratio for the indicated models were
obtained from engineering calculations, which were then used in modeling heat consump-
tion in buildings. The obtained forecasting results for the indicated methods in multifamily
residential buildings are summarized in Table 1, where the indicators for evaluating the
quality of the models are compared.

Table 1. Comparison of model quality assessment indicators.

Models

Index

MAPE
[%]

MBE
[%] CV RMSE [%] R2

BORUTA algorithm and RST [20] 9 ÷ 11 2.4 ÷ 5 5.5 ÷ 6 0.8 ÷ 0.85
ANN [22] 23 ÷ 29 4 ÷ 13 14 ÷ 24 0.6 ÷ 0.8
MARS [22] 17 ÷ 35 4 ÷ 14 15 ÷ 37 0.3 ÷ 0.8

SRT [22] 16 ÷ 27 5 ÷ 12 14 ÷ 28 0.4 ÷ 0.8
RST [25] 14 ÷ 18 −16 ÷ 2 18 ÷ 32 −

Takagi–Sugeno [28] 12 ÷ 25 −4 ÷ 12 7 ÷ 29 0.7 ÷ 0.9

For the studied group of objects, the best results were obtained for the method based
on rough set theory using the BORUTA type data selection algorithm, where, for example,
the mean bias error (MBE) was 2.4 ÷ 5%, while for the Takagi–Sugeno fuzzy model it was
−4 ÷ 12%. For accuracy, the quality of the models was tested on a group of multifamily
residential buildings characterized by similar parameters, both in terms of construction
(large plate buildings), or type and use, as well as heating system (district heating network
and district heating substations). In this paper, the authors undertook to test the usefulness
of the chosen model, which is a model based on rough set theory (RST), in buildings other
than multifamily residential buildings. Rough set theory was developed for the analysis of
imprecise, general and uncertain data. An attempt was made to evaluate the suitability
of this model for estimating energy performance in public buildings. According to the
regulations [36], a public building is understood to be a building intended for, among other
things, public administration, culture, education, health care, social and welfare, collective
residence, banking service, commerce and postal services. An office building and a social
building are also considered public buildings. The aforementioned buildings differ in
their function, use and type of construction, as well as in the heating systems used. In
the case of real buildings, when there are difficulties in obtaining reliable and accurate
technical data describing building characteristics, operation and energy consumption for
heating purposes, wishing to shorten tedious and time-consuming engineering calculations,
other solutions should be sought to estimate energy consumption in this type of building.
Therefore, it is advisable to test new methods based on a small amount of general data,
which are present both in quantitative form (for example, the characteristic dimensions of
the building, shape coefficient of buildings, power requirements for heating and seasonal
energy consumption) and qualitative form (for example, the type of building, the type
of construction, the method of use and the type of heating system). To obtain input data
for the model based on rough set theory (RST) in quantitative form, the authors wanted
to use an alternative approach, which is a method based on the thermal properties of
buildings [37,38]. So far, this method has been used to estimate the power demand for
heating buildings that do not have complete building documentation. Importantly, only one
variable describing the building is needed to determine it, which is the heated volume [6].
It should be noted that, according to the literature review, the approach of combining
the thermal model with the rough set theory has not been used in energy assessment of
buildings before, so it is a novelty in this type of research.

To assess the quality of the adopted predictive model, such indicators as R2, MBE,
CV RMSE and MAPE were used, which were adopted as statistical calibration standards
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accepted by ASHRAE [39,40]. This will help answer the question of whether the method
used, which is based on rough set theory, is suitable for estimating energy demand for
heating public buildings and what accuracy/quality of prediction can be achieved.

2. Materials and Methods
2.1. Subject of the Research

The study was conducted in public buildings located in northeastern Poland, in a
temperate continental climate (Dfb) [41], in the area of the IV and V climatic zones [42],
for which the design outdoor temperature is in the range of −22 to −24 ◦C. According
to ASHARE 169-2021 standards, the area is located in thermal climate zone 6A [43]. The
number of degree-days in a standard HDD heating zone ranges from 4076 to 5032 ◦C·d [44].
According to the Central Statistical Office [45], there are about 57,000 public buildings in
Poland. On this basis, a minimum sample size of 81 objects (for a confidence level of α = 0.95
and a maximum error of 10%) was determined in which to conduct research. The research
was carried out in 85 public buildings such as schools, care and educational institutions,
public administration buildings including offices, buildings used for cultural purposes
and collective residences. These buildings have been designated as P1 to P85, where P
stands for public building and 1-85 stands for the number of the test object. These buildings
were constructed in three technologies, which can be defined as traditional masonry,
made in large-block technology (for example, “Żerań Brick”) and in prefabricated system
large-panel. Between 2016 and 2021, these buildings underwent thermal modernization,
consisting of thermal improvements to the building envelope of the building body and
the modernization of heating systems. The supply of heat for heating was carried out by
means of central heating systems, where different types of heat sources were used, such
as district heating substation, gas boiler room, oil boiler room, solid fuel boiler room and
heat pumps. For the purposes of the study, information on energy audits carried out with
the participation of the author [46] was collected, describing the buildings tested, such as
heated volume (Ve), heated surface (A f ) and shape coefficient of buildings (A/Ve), as well
as the amount of annual energy consumption for heating (QH,f), converted to standard
season conditions. Since some of the data describing the buildings are in qualitative form,
it was decided to present them as follows:

Type of building: 1—schools, 2—care and educational institutions, 3—public adminis-
tration buildings, 4—buildings used for cultural purposes, 5—collective residence;

Construction technology: 1—traditional masonry, 2—large-block (for example, “Żerań
Brick”), 3—prefabricated system (large panels);

Heating system: 1—district heating substation, 2—gas boiler room, 3—oil boiler room,
4—solid fuel boiler room, 5—heat pumps.

The basic parameters describing the surveyed public buildings are summarized in
Table 2.

Table 2. Basic parameters of the surveyed buildings.

Object

Parameters Describing Public Buildings

Type of
Building

Construction
Technology

Heating
System

Heated Volume
of Building

Ve [m3]

Heated Surface
of the Building

Af [m2]

Shape Coefficient
of Buildings A/Ve

[m−1]

Annual Energy
Consumption for Heating

QH,f [MWh]

P1 5 2 1 10,430 3676 0.46 485.3

P2 1 3 1 14,473 4317 0.44 297.9

P3 1 1 2 1578 506 0.61 44.1

P4 1 1 1 15,161 4220 0.52 1118.3

P5 1 1 5 3131 775 0.62 33.4

P6 1 1 3 7542 2384 0.56 293.3

P7 4 1 2 938 304 0.87 10.1

P8 3 3 2 16,743 4220 0.33 130.9
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Table 2. Cont.

Object

Parameters Describing Public Buildings

Type of
Building

Construction
Technology

Heating
System

Heated Volume
of Building

Ve [m3]

Heated Surface
of the Building

Af [m2]

Shape Coefficient
of Buildings A/Ve

[m−1]

Annual Energy
Consumption for Heating

QH,f [MWh]

P9 5 1 3 9638 3542 0.29 439.3

P10 1 1 2 3601 1059 0.63 116.5

P11 4 1 4 445 167 0.88 16.1

P12 1 1 4 4000 1000 0.54 245

P13 1 1 4 8081 2005 0.52 74.2

P14 4 1 4 905 306 0.61 34.9

P15 1 1 1 26,110 4364 0.17 349.2

P16 2 2 1 6337 2400 0.56 115.2

P17 1 3 1 18,093 3242 0.35 337.2

P18 1 1 5 8441 2129 0.51 70.3

P19 1 1 5 5927 1535 0.42 67.6

P20 3 1 3 2776 974 0.48 60.4

P21 1 3 4 21,288 6437 0.48 759.6

P22 1 1 1 2721 664 0.45 35.2

P23 3 2 1 3765 1202 0.44 123.9

P24 3 1 4 581 161 0.66 13.7

P25 4 1 2 2158 907 0.92 74.4

P26 3 1 4 3275 919 0.41 51.5

P27 1 1 4 1733 585 0.89 72.6

P28 4 1 4 1509 531 0.72 11.7

P29 2 2 1 5825 1937 0.71 230.6

P30 1 1 1 1063 319 0.75 49.2

P31 1 1 4 1816 516 0.73 111

P32 1 1 5 7061 2005 0.39 78.2

P33 1 1 5 7249 2129 0.52 68.2

P34 3 1 4 3275 919 0.41 52.4

P35 3 1 3 2376 675 0.93 43.2

P36 1 1 4 2023 770 0.37 110.9

P37 1 1 3 3024 975 0.74 117

P38 1 1 2 2880 1059 0.63 119.7

P39 1 3 3 14,057 4194 0.29 520.1

P40 3 1 1 2143 693 0.82 69.3

P41 1 2 2 12,364 2197 0.43 162.6

P42 1 1 4 16,876 4729 0.41 250.7

P43 3 1 1 1630 556 0.75 26.7

P44 1 1 2 6754 1731 0.54 290.9

P45 1 1 1 1561 404 0.65 57

P46 1 1 1 6486 3056 0.58 168.1

P47 1 1 3 2805 883 0.79 31.8

P48 4 1 4 1131 306 0.61 34.9

P49 5 1 2 27,879 7268 0.35 850.4

P50 3 2 3 3228 974 0.48 60.4

P51 3 2 1 22,768 6532 0.45 300.5
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Table 2. Cont.

Object

Parameters Describing Public Buildings

Type of
Building

Construction
Technology

Heating
System

Heated Volume
of Building

Ve [m3]

Heated Surface
of the Building

Af [m2]

Shape Coefficient
of Buildings A/Ve

[m−1]

Annual Energy
Consumption for Heating

QH,f [MWh]

P52 3 2 1 4707 1202 0.44 123.9

P53 1 2 4 21,095 4729 0.41 250.7

P54 3 1 3 3633 781 0.49 97.7

P55 1 1 3 11,756 1790 0.33 363.4

P56 5 1 1 7556 2281 0.74 225.9

P57 3 1 1 2143 693 0.82 69.3

P58 1 1 3 3024 975 0.74 117

P59 1 3 4 2762 914 0.54 125.3

P60 1 1 1 7918 2048 0.52 129.1

P61 1 1 4 2271 516 0.73 111

P62 1 1 4 2529 770 0.57 110.9

P63 1 1 2 2500 677 0.58 58.9

P64 4 1 5 1137 407 0.72 11.9

P65 1 1 5 32,476 9644 0.22 356.9

P66 1 1 1 16,399 5395 0.42 1494.5

P67 2 3 4 12,699 3344 0.51 441.5

P68 1 2 4 12,184 2848 0.43 370.3

P69 1 1 5 1467 465 0.86 15.4

P70 5 1 1 7651 2670 0.39 275.1

P71 1 2 1 19,544 5545 0.28 476.9

P72 1 1 2 2903 907 0.54 66.3

P73 3 1 4 2689 765 0.49 29.1

P74 1 1 2 1339 475 0.43 50.9

P75 5 1 5 6018 2030 0.61 99.5

P76 1 1 1 6331 2064 0.48 229.2

P77 3 3 1 11,560 3456 0.38 134.8

P78 1 1 3 2191 695 0.6 77.9

P79 1 3 4 18,247 3527 0.38 328.1

P80 1 1 4 8086 2308 0.47 196.2

P81 1 1 1 28,807 8610 0.39 809.4

P82 1 2 2 3420 836 0.46 59.4

P83 1 1 4 4304 1414 0.54 189.5

P84 1 1 3 9638 3542 0.29 170.1

P85 1 1 1 989 277 0.77 42.2

The analyzed group of buildings is characterized by an average value of heated surface
of 2094 m2 and heated volume, the average value of which is 7525 m3. The coefficient
of variation for these parameters is 94–98%, which indicates a very high diversity in the
studied buildings. Annual energy consumption for heating ranges from 10 to 1494 MWh,
with an average value of 199.9 MWh. Therefore, to be able to compare the facilities with each
other, it was necessary to calculate the value of the unit energy consumption index. This
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indicator is the final energy demand index for heating FE, expressed in kWh·m−2·year−1,
which was calculated according to Equation (1):

FE =
QH, f

A f
(1)

where FE is the “index of final energy demand for heating”, [kWh·m−2·year−1]; QH, f “the
final energy demand for the heating season”, [kWh]; and A f the surface of temperature-
controlled rooms, [m2].

The energy performance FE of the studied group of public buildings is shown in
Figure 1.
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Figure 1. Comparison of the final energy demand index for heating for the studied group of
public buildings.

The value of the indicator of final energy demand for heating FE varies from 22 to
277 kWh·m−2·year−1, with an average value of 96.5 kWh·m−2·year−1. The lowest value
of the indicator was characterized by buildings heated by heat pumps, for which the
average value of the FE indicator is 37 kWh·m−2·year−1; the most energy is consumed by
buildings with a heating system where the heat source is solid fuel boilers. The average
value of the indicator for these facilities is 110 kWh·m−2·year−1. An important parameter
considered in the thermal calculation of a building is the design heat load (power demand
for heating) expressed in kW. Calculation of the design heat load in accordance with the
standard [43] requires the collection of detailed data regarding the materials used in the
building partitions, the area through which heat loss occurs and the ventilated volume.
Gathering such data requires checking technical documentation, and in the absence of
such documentation, taking an inventory of the building, which requires time-consuming
measurements of the building. The data collected from the audits in quantitative form
(Table 2) characterizing the surveyed public buildings are very general. These data do not
contain detailed information about the building envelope, the area fields through which
heat losses occur or the values of ventilation air flows and thus do not allow engineering
calculations to be made to determine the design heat load of the buildings. Therefore, the
authors decided to use the relationship that was used in the works [37,38] in estimating
the power demand for heating buildings, which was called “thermal characteristics”. This
quantity was determined empirically on the basis of statistical data [6,37]. For buildings
whose heated volume is greater than 1000 m3, this relationship can be written in the form
of Equation (2):

∅h = 0.064· 6
√

V5
e ·s (2)
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where ∅h —is the approximate power requirement for heating the building, [kW];
Ve —heated volume of the building calculated according to external dimensions, [m3];
s —correction factor depending on the outdoor design temperature, [−]; its value is re-
spectively: 0.9 for −16 ◦C; 0.95 for −18 ◦C; 1.0 for −20 ◦C; 1.05 for −22 ◦C and 1.1 dla
−24 ◦C [47].

The presented relationship was used to calculate the value of approximate power
demand for heating the analyzed public buildings. To calculate this value, the data in Table 1
on heated volume of building were used. The results of the calculations for individual
buildings are shown in Figure 2.
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The power demand for heating buildings calculated based on thermal characteristics
ranges from 11 to 404 kW, with an average value of 112 kW.

2.2. Calculation Method for Energy Demand for Heating a Building

The values of the FE index [kWh·m−2·year−1]—energy demand for heating and ∅h
[kW]—approximate power demand for heating, calculated from Equations (1) and (2),
which are presented in Figures 1 and 2, and entered as the set of features characterizing
the tested objects. They replaced the heated volume Ve and the heated surface A f because
these parameters (Ve and A f ) were used to calculate these indicators. Features that describe
buildings are in qualitative form, such as the type of building, construction technology
and heating system. Quantitative parameters include the final energy demand index for
heating FE (Figure 1), the approximate power demand for heating the building (Figure 2)
and the shape coefficient of buildings A/Ve (Table 2). The developed database of public
buildings was randomly divided into two subsets in a ratio of 80/20. This created a training
set (information system) containing 68 objects and a test set consisting of 17 objects.

The objects within the training set are presented in the form of a decision table (Table 3),
where the characteristics of the buildings (conditional attributes) are denoted by symbols
C1–C5 and the index of final energy demand for heating, which is a decision attribute,
is denoted by the symbol D. Table 3 contains selected sample objects (from a subset of
68 buildings) included in the information system and how they are described.
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Table 3. Information system (decision table).

Object Number
Condition Attributes Decision

Attribute

C1 C2 C3 C4 C5 D

1 5 2 1 157 0.45 132

2 1 3 1 206 0.44 69

30 1 1 3 55 0.74 120

68 1 1 5 30 0.85 33

For the aforementioned attributes, domains were determined according to the follow-
ing assumptions:

C1—type of building (1—schools, 2—care and educational institutions, 3—public adminis-
tration buildings, 4—buildings used for cultural purposes, 5—collective residence);

C2—construction technology (1—traditional masonry, 2—large-block, 3—prefabricated system);
C3—heating system (1—district heating substation, 2—gas boiler room, 3—oil boiler room,

4—solid fuel boiler room, 5—heat pumps);
C4—the approximate power requirement for heating the building, [kW];
C5—shape coefficient of buildings, [m−1];
D— index of final energy demand for heating, [kWh·m−2·year−1].

The groups of variables presented in Table 3, which are conditional attributes, were
used to build a model for predicting final energy demand for heating buildings based on
rough set theory (RST) [48]. This is a tool used to describe imprecise, uncertain knowledge
and to model decision-making systems [49]. The attributes describing the buildings under
study are characterized by a variety of ways of encoding the given features, which occur in
both qualitative and quantitative forms. In this case, the integration of the valued tolerance
relation (VTR) proves helpful [50]. The introduction of the valued tolerance relationship
(VTR) into the rough set theory (RST) has made it possible to determine the upper and
lower approximations of the set with different degrees of indistinguishability relations [51].
This makes it possible to compare two sets of data and obtain a result in the range from
0 to 1, the level of indistinguishability. This range is a membership function derived
from the assumptions of fuzzy set theory. The closer the score is to 1, the more similar
(indistinguishable) the objects are in terms of the analyzed characteristic, and the closer to
0, the more distinguishable they are [50–52]. In the prediction model used, decisions are
made based on the following relationship: if certain conditions are met, a certain decision
is made (according to Boolean inference). For example, for object 1 (Table 3): if (C1 = 5) and
(C2 = 2) and (C3 = 1) and (C4 = 157) and (C5 = 0.45) then (D = 132).

The presented method does not impose complex rules for controlling the considered
features and the results of analysis. Only two main coefficients are used to control the
importance of the conditional features in relation to the decision feature and the decision
rules created: quality and accuracy of approximation—easy to apply and interpret. The
general course of model construction using rough set theory (RST) is shown in Figure 3. A
detailed description of the predictive model based on quantitative and qualitative variables
is presented in the papers [51,52].
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3. Results and Discussion

Once the representative decision rules were selected (Figure 3), it was possible to
proceed to determine the index of final energy demand for heating FE. The buildings in
the test set were used for this purpose. For the set of 17 public buildings constituting the
test objects (selected randomly from a set of 85 buildings labeled P1 to P85 in Table 2),
the conditional attributes C1–C5 were assumed; then, with the application of the valued
tolerance relation VTR, the decision rule membership levels were determined, so that
the appropriate value of the FE indicator could be selected. The results obtained are
summarized in Figure 4, where the values of heating demand indicators determined from
the predictive model (RST) are compared with each other with actual values.
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Figure 4. Comparison of the values of the FE heating demand index determined from the RST model
with actual values.

Analyzing the results shown in Figure 4, it can be concluded that the model calcula-
tions differ from the actual data in the range of 1 to 56 kWh·m−2·year−1, with a mean value
of 12.5 kWh·m−2·year−1. The confidence interval for the studied group of facilities ranges
from 5.4 to 19.6 kWh·m−2·year−1.

Assessment metrics were calculated using Equations (3)–(6) [39]:
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where “yi—is the actual value (quantity) in the facility i, and yP
i —is the forecast value

(quantity) in the facility i. The difference between yi and yP
i is divided by the actual value yi

and m is the index of number of test object; ng is the number of objects (m = 1, 2, 3, . . . , ng)”.
According to ASHRAE Guideline [40] criteria, for the model to be considered well-

calibrated, the value of the evaluation indices should not exceed:

• MBE index ± 5%,
• CV RMSE index 15%.

However, the value of the coefficient of determination should be R2 ≥ 0.75.
The results shown in Table 4 indicate that the model for estimating energy demand

for building heating has acceptable quality, despite the use of a limited set of variables.
According to the adopted methodology, acceptable models were considered those for which
R2 was above 0.75, MBE was within ±5% and CV RMSE was below 15%. The obtained
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error values give reason to conclude that, in the absence of building documentation, the
approximation method gives good results in estimating energy demand for heating public
buildings. These results are comparable to previous studies conducted on multifamily resi-
dential buildings, where similar and ASHRAE-acceptable indicator values were obtained
for two models such as the Takagi–Sugeno fuzzy model [28] and the RST model using the
BORUTA algorithm for quantitative feature selection [20].

Table 4. Model quality characteristics.

Assessment Indicator Results

R2 0.91

MBE (%) −1.1

CV RMSE (%) 11.8

MAPE (%) 17

4. Conclusions

On the basis of a group of 85 public utility buildings subject to thermal moderniza-
tion, differing in the type of use, construction technology and heating systems, a set of
qualitative and quantitative variables characterizing buildings in terms of heat demand
was distinguished. These variables were used to assess the usefulness of the model using
the rough set theory (RST) for the prediction of heat demand for heating. The obtained
prediction results allowed for the formulation of the following conclusions:

• Model calculations differ from actual data by an average of 12.5 kWh·m−2·year−1, with the
confidence interval for the study group of sites ranging from 5.4 to 19.6 kWh·m−2·year−1;

• For the analyzed model, the values of the evaluation indicators proposed by ASHRAE
are as follows: MBE = −1.1%, CV RMSE = 11.8% and R2 = 0.91. One can express
confidence that the method presented in this article gives good results in estimating
the unit energy demand rate for heating;

• The presented tool can be used to quickly analyze energy consumption in the case
of incomplete data or lack of building documentation for existing public buildings,
which are characterized by a wide variation in terms of volume and heated area;

• The presented method can be used to check the correctness/accuracy of engineer-
ing calculations for determining the design heat load of buildings and the energy
performance of public buildings that have undergone thermal improvements.
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