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Abstract: A power conversion system needs high efficiency for modern-day applications. A DC–DC
isolated bidirectional dual active bridge-based converter promises high efficiency and reliability.
There are several converter topologies available in the market claiming to be the best of their type,
so it is essential to choose from them based on the best possible result for operation in a variety of
applications. As a result, this article examines the characteristics, functionality, and benefits of dual
active bridge-based DC–DC converter topologies and the other members of the family, as well as their
limits and future advances. A high-frequency transformer is also an important device that is popular
due to high leakage inductance in dual active bridge (DAB) converters. Therefore, a detailed review
is presented, and after critical analysis, minimized leakage inductance in the toroidal transformer
is obtained using the ANSYS Maxwell platform. Furthermore, this work includes a comprehensive
examination of the control approaches for DAB converters, which is important for selecting the most
appropriate technique for a certain application. The outcome of ANSYS Maxwell is integrated with
a DAB-based boost inverter in the MATLAB/Simulink environment, and the results are validated
with the help of an experimental prototype.

Keywords: DAB converter; high-frequency transformer; isolated converters; control techniques; solid
state transformer

1. Introduction

The dual active bridge (DAB) is a converter that is employed in solid-state transform-
ers [1–3], applications like transportation [4,5], and renewable energy [6]. As shown in
Figure 1, a DAB converter is composed of two inverters and a high-frequency transformer
(HFT). This architecture enables input and output isolation while simultaneously reduc-
ing the volume. Furthermore, the voltage and power rating are chosen by design. The
DAB converter is typically used as two DC–AC converters with square or quasi-square
waveform voltage outputs and a phase shift between them. As illustrated in Figure 2,
a bidirectional DAB converter interfaces high-voltage DC buses with low-voltage DC buses
together in microgrids. A DAB can be used as either a buck or a boost and can transmit
power in both directions. A bidirectional characteristic may be created in a traditional
DAB by using an anti-parallel diode with a switching device (MOSFETs or IGBTs). This
arrangement allows current to flow in both the forward and backward directions using
controlled switching mechanisms. Because of its bidirectional capability, it decreases the
system size, and enhances the performance and overall efficiency because it eliminates the
need for two separate converters for forward and backward power flow.
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Figure 1. Topology of a dual active bridge (DAB) converter. 

This topic has recently received a large amount of interest in academia, and many 
research papers on regulating strategies for DC–DC DAB converters have been written. 
A highly efficient DAB converter is required to manage the power flow in both direc-
tions, utilizing switching techniques for better and more efficient system performance. 
Because a DC–DC DAB converter contains two transformation phases (inverter stage and 
rectifier stage), an effective control mechanism is essential. 
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Figure 2. Microgrid with energy storage devices. 

This study reviews and investigates DC–DC DAB converters and their control tech-
niques; it is organized into families by explaining their individual kinds, as well as their 
pros and cons. The rest of this paper is organized in the following manner: Section 2 is 
about a high-frequency transformer being incorporated into a DAB converter and the 
study of the leakage inductance of toroidal transformers in an ANSYS Maxwell envi-
ronment, Section 3 examines isolated converter topologies, Section 4 examines the control 
methodologies of DAB converters, and Section 5 presents the simulation results of a dual 
active bridge-based boost inverter followed up by prototype validation. Finally, Section 6 
discusses the conclusion. 
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This topic has recently received a large amount of interest in academia, and many
research papers on regulating strategies for DC–DC DAB converters have been written.
A highly efficient DAB converter is required to manage the power flow in both directions,
utilizing switching techniques for better and more efficient system performance. Because
a DC–DC DAB converter contains two transformation phases (inverter stage and rectifier
stage), an effective control mechanism is essential.

This study reviews and investigates DC–DC DAB converters and their control tech-
niques; it is organized into families by explaining their individual kinds, as well as their
pros and cons. The rest of this paper is organized in the following manner: Section 2
is about a high-frequency transformer being incorporated into a DAB converter and the
study of the leakage inductance of toroidal transformers in an ANSYS Maxwell environ-
ment, Section 3 examines isolated converter topologies, Section 4 examines the control
methodologies of DAB converters, and Section 5 presents the simulation results of a dual
active bridge-based boost inverter followed up by prototype validation. Finally, Section 6
discusses the conclusion.

2. High-Frequency Transformer in DAB Boost Converter

Another significant consideration is the limitations of HFTs in DAB converters, pre-
dominantly governed by the materials utilized in their development [7]. Currently, the cores
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used in HFTs are made of either ferrite or amorphous materials. Because of their high flux
densities, cores made of amorphous materials allow for smaller inductors and transformers;
hence, the HFT is reduced in size compared to a conventional line frequency transformer
of same power [8]. However, in high-power applications above 100 KVA, commercial cores
have size limitations; therefore, several cores have to be stacked to maintain the power.
Also, the nominal frequency influences HFT power conversion, mostly because losses in
the core increase as the nominal frequency rises [9]. In ref [10], the authors emphasize
the parasitic capacitance of the HFT and its linkage with the other parts of the converter,
where two major difficulties emerge, i.e., electromagnetic interference and resonance. If
a natural resonance frequency is achieved, high harmonic currents can damage certain
DAB components, and if electromagnetic interference is not minimized, converter control
might suffer. As a result, the precise design of the HF transformer is important for the DAB
converter’s proper performance. This may be avoided by distributing the converter parts
properly to avoid overheating the core. Finally, analyzing parasitic capacitances in the
HFT helps to minimize difficulties caused by electromagnetic interference and resonance
through the design of adequate control mechanisms. In HFT design, leakage inductance is
very important. It slows the switching current at the device and prolongs the commutation
time among output diodes. Furthermore, the energy stored in the leaking inductance causes
voltage spikes in the switches. Measurements show a decrease in leakage inductance with
increasing frequency. This is mostly because when frequency rises, the current distribution
inside the conductor changes. At high frequencies, current concentrates on the edges of
conductors, storing leakage energy in a small cross-sectional area. Because the total current
remains constant, the leakage inductance is minimized at high frequencies.

The leakage inductance in the transformer is obtained by the proper design of a high-
frequency toroidal transformer in ANSYS Maxwell, represented in Figure 3a, and as a result
leakage inductance as a function of frequency is obtained as illustrated in Figure 3b. Design
parameters of the HFT are given in Table 1 [11].
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Table 1. Toroidal transformer dimensions [11].

Dimensions and Characteristics Values

Outer diameter do 80 mm
Inner diameter di 50 mm

Core height H 20 mm
Effective length le 197 mm

Effective cross-sectional area Ae 295 mm2

3. Topologies of DAB Converter

This section discusses various topologies of DAB converters. Isolation often occurs
with a DC–AC–DC conversion sequence with two AC–DC stages. For galvanic insulation
on the AC bus, coupled inductors or transformers are utilized for magnetic pairing. For
safety and grounding considerations, isolation is necessary, particularly in applications
requiring a fast rate of transformation to protect the LV side from the HV side. Separate
structures in DC networks can supply various grounding platforms. In terms of similarities
between DC–AC and AC–DC stages, isolated transformer converters are recognized as the
dual active bridge (DAB) categories, irrespective of the bridge type.

3.1. Traditional 2L DAB

The traditional 2L DAB consists of a two-level voltage source DC–DC converter
on a moderate- or slightly high-frequency transformer’s primary and secondary sides.
Four switching devices are used for each bridge, as shown in Figure 4 [12]. Two complete
bridges can generate two 50% square voltage waveforms by switching the complimentary
switch pairs at a desired duty cycle. In a (DC) transmission, power is sent from the source to
the load by the use of a phase shift. The magnitude and direction of power can be observed
by the magnitude and sign of the phase-shifted angle [13]. Due to the ease of soft switching
control and low inertia, modulation control is used in 2L DAB converters. However,
high circulating current is produced if the amplitudes of both H-bridges on both sides of
a transformer are not similar. This result is due to the turns ratio of the HFT i.e., (V1/nV2),
where n is the turns ratio. Therefore, the circulating current will be high, which will result
in the RMS and peak current. The inner phase-shift ratio expands the ZVS range and
reduces the circulating power and current [13]. Various modulation strategies have been
studied in detail in the literature review, like extended-phase-shift modulation (EPS) [14],
double-phase-shift modulation (DPS) [15], and triple-phase-shift modulation (TPS) [13]. In
EPS, like single-phase-shift modulation (SPS), the bridge on the primary side of the HFT
is switched, and the switches on the secondary side of the high-frequency transformer
change their states based on inner phase-shift operation [13], enabling the primary bridge
to generate 3L output AC voltage and the secondary bridge to generate a 2L square wave.
The outer phase shift is responsible for the magnitude of power flow and its direction,
while the inner phase shift helps in ZVS range expansion while reducing the circulating
current [13]. Similarly, in DPS, the switches in the complementary fashion are switched in
both the bridges using a similar inner phase-shift ratio, therefore generating 3L AC voltage
at the output [13]. When compared to the SPS method, using this modulation method
ensures an expanded range of ZVS, reductions in both current stress and output capacitance,
and easy implementation of deadband compensation under specific conditions [16]. In
high-power applications, the DAB converter is preferred over other topologies because it
can achieve zero-voltage switching (ZVS), thus reducing switching losses in semiconductor
devices and helping to achieve high efficiency. Similarly, maximum transfer of power
depends on the leakage inductance of a transformer, hence the elimination of the resonant
capacitor [17]. High dv/dt stress on the isolation of the AC link is the major drawback of
a DAB. The current spike may be generated with a SiC IGBT/MOSFET switching current
ring [12]. In addition, snubber circuits may also be employed to various circuits to produce
static and dynamic voltage-sharing balances to decrease excessive losses [18,19].
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3.2. Three-Phase DAB

The three-phase DAB is the modified version of the typical 2L converter comprising
two full three-phase bridges. On the primary side of the high-frequency transformer (HFT),
a three-phase inverter is connected for the conversion of DC to AC, while a three-phase
inverter rectifier is connected on the secondary side of the HFT. It delivers the six-step
waveform of AC voltage across the center winding of the transformer. The six-step mode
results in a zero-voltage turn-on for inductive loads, and an important decrease of turn-off
loss is achieved by the linked snubber capacitors between the power electronic devices [19].

The three-phase DAB is advantageous in high-power applications compared to some
other options due to the following reasons: a major amount of transfer of power because of
a low RMS current of the transformer, power due to high density, element stress, modularity,
and less ripples in the current and minor filter capacitor [20,21]. With a large phase shift,
the RMS currents can be increased in single-phase modulation, thus resulting in significant
conduction losses. The conversion of non-unity voltage also leads to high circulation of
current and restricted switching range [22]. This can influence the efficiency and stability
of light loads within a wide range of voltages. The foregoing problems cannot be handled
entirely by various sophisticated modulation methods. The only solution to this problem
is the resonant system for low and medium power in three phases and the resonant
immittance system in three phases for high power [20].

3.3. Multilevel DAB

To increase the performance of the conventional DAB converter, the multilevel (ML)
single-phase or three-phase DAB converter is essential. The voltage limitation of power
semiconductor switches can be achieved with the capability to supply more than two volt-
age levels. It is worth noting that ABB has utilized a multilevel three-stage converter
topology for a 1.2 MVA, 15 kV SST prototype [23]. Compared to the 2L DAB, the ML DAB
converter has small dv/dt stresses, resulting in improved efficiency of the overall system
and a high power density [16]. Such converters therefore enable the operation of LV-specific
devices using certain methods, such as minimizing switching and conduction loss and
improving the fault-tolerant capacity [11]. The voltage stress of a switch can be reduced to
half the terminal voltage by means of a good control scheme [24]. The fault-tolerant capacity
means that the system can still operate with reduced performance under the fault condition.
Because flying capacitors are used in most multilevel DC–DC converters, their voltage can
be used as a diagnostic variable for short-circuit fault diagnosis/detection [21]. A further
aspect which causes fewer magnetic losses in converters is that the total harmonic distor-
tion in voltage and current waveforms is reduced [11,25]. The neutral point clamp (NPC)
diode is efficient for high energy density in medium- and high-voltage applications [26].
Furthermore, 3L NPC legs can be placed on either side of the DAB [27,28]. In running
ZVS, an evaluation of modulation systems and components was introduced between the
five-level DAB and the 3L DAB [28]. The 3L NPC DAB is beneficial to the high-voltage
waveform of the transformer, which reduces switching and conduction losses [29]. Each
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switch’s voltage stress is also lowered by 50% of the port voltage on both bridges. A few
research articles on multilevel voltage balancing are available, and the solutions offered are
all about high switching for fundamental frequency. This technique is not appropriate for
NPC DAB converters. Another technique for voltage balancing is the vector adjustment of
active bridges. This is based on detecting the voltage imbalance and the direction of power
flow. Another NPC technology is a blocking capacitor used in active bridges and utilizing
asymmetric voltage pulses on the sides of the transformer [30]. During the zero-voltage
vector period, the optimum switching time allocated to the internal switching pairs will be
changed to permit the charging of capacitors, irrespective of the power flow direction [31].
Nevertheless, a significant problem for the multilevel NPC DAB is the imbalanced voltage
of the capacitors connected in series. This is because one phase among all is connected to
a neutral point [32–34]. While [31] delivers an appropriate control and modulation mech-
anism and offers a suitable equilibrium in a variety of levels of voltage and broad-based
operating circumstances, complexity in control and a large quantity of semiconductor
devices correlate with ML DABs [11].

3.4. Cascaded Multi-DAB

Several low-power and low-voltage converters can be linked in sequence to construct
a medium-voltage cascaded multi-DAB. The required voltage can be achieved by connect-
ing low-voltage cells in series. A transformer is used to give galvanic isolation to every
individual cell for an isolated DC input. Topologies of this type do not need transformers
with low frequency. This converter is therefore appropriate for applications like PVs, fuel
cells, and batteries with independent DC sources [35,36]. In the case of high power density,
cascaded DABs may work at higher frequencies because of low rating of the cells, which
leads to low voltage stress and small filters [36]. Due to a fraction of the net power being
distributed by every cell, the current device’s rating decreases [36]. The input/output side
can be connected in series or in parallel. For high-power and high-voltage applications [37],
parallel input series output (PISO) systems are appropriate and can lower the number of
devices if a diode rectification is swapped for full bridge converters at the output of the
DAB [38]. The series input and series output (SISO) converter consisting of complete bridge
modules is shown in Figure 5. Each model has two H bridges, having four switches at
the primary and secondary sides of the high-frequency transformer and a high-frequency
transformer in the center [38]. In the absence of a quick fault current [37], it provides
adequate performance in fault situations. The primary disadvantages of this arrangement
are the excessive numbers of transformers and switches, leading to a complex control
mechanism and significant driving losses.
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3.5. Modular Multilevel DAB (MMC DAB)

Figure 6 illustrates structure of the MMC DAB converter constructed by two MMCs
with a single center-tapped transformer. An AC voltage source can be imitated by one
of the MMCs; the other, as the current source, may be controlled [39]. The MMC DAB
converter can be constructed with more than two phases, as indicated by the tri-phase
MMC in [37]; therefore, this results in regulation of the same submodule (SMs) in every
arm of the MMC, and the AC voltage is created. SMs may be implemented by several sorts
of bridges for a variety of functions. The most used types are the half-bridge submodule
(HBSM) for unipolar voltages and the full-bridge submodule (FBSM) for better DC fault-
handling of bipolar voltages [39]. In the case of a change in input, the output voltage
and operating power have little effect on MMC efficiency. Due to the multiple-switch
functionality that may exist in the MMC, it can be possible to restrict the working frequency
of the transformer [40] and to have a high total device rating (TDR) [39]. This approach
nevertheless increases the medium-frequency operation, which lowers the size and weight
of the passive components. The management of these multi-modular converters results
in the control of the transfer of power using the transformer sides of two phase-shifted
waveforms [39]. Various modulation methods include quasi-2L (Q2L), quasi-3L (Q3L),
and sinusoidal, which contribute to optimal functionality of the converter [39]. Creating
a transformer design that works for quarterly waveform operation is a difficult task at
medium frequency [39]. The face-to-face assembly of two MMCs allows bidirectional tasks,
but the sizes, costs, and losses of the converter are considerably high.
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Another example of a hybrid converter created by ABB [41] is the combination of
a two-level converter (TLC) and a multi-modular converter (MMC), which results in
a two-level multi-modular converter (TLC–MMC) [40,42]. It may be used for a broad
variety of levels of power and voltage. The small rating of such a device and less switching
losses in the semiconductor device guarantee efficiency. The approach of direct modulation
produces sixth-order voltage and current oscillations. Indirect modulation can solve this
problem. Indirect modulation can accomplish the voltage-balancing of the MMC by inject-
ing circulating currents into the MMC to balance the voltage by the circulation of power
between arms. Voltage is balanced by injecting circulating DC current into the three-phase
leg. Each leg in the MMC has its lower and upper arms and a sinusoidal circulating current
which helps in balancing the voltage between them. Based on the MMC DAB, both DAB
and MMC converters may benefit from small passive components and soft switching,
ensuring a high density of output and high efficiency [43].
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However, it is necessary to have two complete MMC converters, and the MMC DAB
contains double the semiconductor components. This leads to much loss of conduction
and cost. The hybrid MMC settings can fix this problem. Despite the benefits of the TLC–
MMC, the capacitor balancing of the arm conductor requires a special technique of balance
control [41]. A high number of capacitor submodules is also needed, and three single-phase
legs are integrated [44]. All the topologies including its pros and cons with its applications
are summarized in Table 2.

Table 2. Characteristics of DAB converters [22].

Ref. No. Converters Pros Cons Applications Voltage Ratio

[20] Three-phase
DAB

• Power transfer
is high.

• Value of filter
capacitor
is small.

• In single-phase
modulation,
induction losses
are high.

• Circulating current
is high.

• Interconnection of
DC grids.

• Solar applications.

It is based on
series-connected
switches and DC
step ratio.

[27,28] Multilevel DAB

• Low dv/dt
stress.

• Low THD.
• Lower total

device rating
(TDR).

• Unbalancing of
capacitor voltage.

• Complex
control design

• Number of
switches is high

• Solar applications.
• DC transformers. Voltage ratio is high.

[36] Cascaded
Multilevel DAB

• Operations are
performed
under high
frequency.

• Voltage stress
is less.

• Filter
components
requirement
is less.

• Complex
control design

• Increased amount
of components.

• Increased
conduction. losses.

• Offshore wind.
• Solar applications.
• Solid state

transformer.

It depends on the
amount and
connection
of modules.

[38] Modular
Multilevel DAB

• Controlled
dv/dt.

• Small passive
elements.

• Soft switching.

• Large number of
submodules.

• Complex control
for balanced
voltage.

• Interconnection
with DC grid.

• Offshore wind.
• DC transformer.

Module connection-
dependent.

[20,45] Resonant DAB

• High
frequency.

• Soft switching
• Increased

efficiency.

• Increased volume
due to large
number of
components.

• Electric vehicles. Medium-High.

[46] 2L DAB
• Device rating

is low.
• Capacitor

value is small.

• High dv/dt stress
on the AC link
insulation.

• Electric vehicles.
• Solar.

It depends on the
connection of the
switch and DC
step ratio.

3.6. Isolated Resonant DAB

In the range of the turning on and off rotation at peak current, the DAB converter has
restrictions. This affects the efficiency and component sizes in the management of high-
current stress effects. Addressing the challenge, the DAB converter is supplemented with
a series of resonant tanks to guarantee high control flexibility in terms of efficiency [45,47].
The resonant LLC converter was executed in [45], having a resonant inductor, capacitor,
and shunt inductor connected in series, by analogy to the standard DAB DC converter,
in the magnetic transformer inductance [45,47]. Leakage inductance has an influence
with high turning ratios on the transformer, which produces higher overshoots through
the semiconductors. The addition of leakage inductance can be useful in decreasing
losses in the resonant tanks. In [48], a resonant CLLC DAB converter is proposed with
reduced switching losses and improved power supply capabilities of the transformer. It is
preferable to use a resonance tank to increase the voltage along with more powerful soft
switching [46,49,50]. Nevertheless, the DAB converters in series have some disadvantages
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that lead to huge sizes, reduced cost-effectiveness, and a substantial amount of constant
frequency off losses [48,51].

4. Control Methodologies Used in DAB Converter

Based on various variants and topologies, DAB converters have tremendous control
methods [52]. Here we study various techniques to gain an idea of how the control of
a DAB converter is implemented. Table 3 summarizes the control techniques applied to
DAB converters.

Table 3. Review of control techniques for DAB converters [8].

Control Techniques %

PID 34.4
Sliding mode control 21.9

Model predictive control 9.4
Fuzzy logic control 6.3

4.1. Phase-Shift Modulation

Phase-shift modulation control has a history from the primary stage to up to the
present [50] for being a component of strict growth with a view toward improving efficiency
in the techniques and means of obtaining an effective DAB converter. The pros and cons
of the systems indicated in Table 4 are also included. The modern, unified phase-shift
modulation technology is flexible and integrates all prior techniques.

4.2. System Variables Control

The following various control and modulation techniques are part of control stages for
DAB converter. Usually, control factors such as input DC voltages and output load current
can be considered. These variables are used to achieve the ideal values such as the intended
transmission of power under different situations. According to the characteristics of these
factors, they consist of either a DC value or the components of the switching frequency.
In certain situations, authors use variables like high-frequency link variables, including
inverter voltage and inductor current on both sides of a high-frequency transformer. How-
ever, the technique applied for control is rather hard to perform practically, as the situation
requires more-powerful voltage sensors and a high-bandwidth current, and the results of
the converter do not change much.

The following control techniques are based on a slowly varied parameter in the
concerned literature.

• Direct control of power in the DAB [53].
• Control for lowest current stress [54].
• Modulation of zero circulating current [55].
• Control for virtual direct power [56].
• Control for reactive power minimization [57].

Table 4. Phase-shift modulation strategies [58].

Ref. No Modulation Technique Pros Cons

[59] SPS
1. Soft switching control is easy.
2. System is more dynamic.

1. Large circulating current.
2. Zero-voltage switching.

[60] EPS
1. Improved efficiency.
2. Improvement in zero-voltage switching.

1. Circulating currents do exist.

[61] DPS
1. Easier to implement.
2. Excellent dynamic performance.

1. Dynamics and stability increases make
the system more complex.

[62] TPS 1. Broad range of inputs results in great
dynamic performance for load changes.

1. Control complexity.
2. Operating states vary for

buck/boost approach.
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The control goals based on system variables are clearly shown in Figure 7.
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4.3. Proportional–Integral–Derivative Control

The easiest and simplest-to-implement control approach is basic PID control. It has
a great control dynamic with zero stability errors, very rapid responses, and improved
stability as the main solution to the construction of a control algorithm.

In [63], a hybrid PI controller based on a second-order Taylor series estimator for the
offset between the pulse-width modulation of both bridges and an auxiliary PI control is
implemented. The switches are controlled using the single phase-shift (SPS) approach, and
the control strategy is developed using an averaged model. Last but not least, the findings
relied on simulations and included no efficiency analysis.

The study given in [64] in 2012 offered two control approaches depending on a Fourier
series model that aimed to improve the conventional PI control model. The original
setup included a PI controller for output voltage regulation and a feedforward control
approach for inverter power ripple control. Both control strategies used the output voltage
and the leakage current as control variables and decoupled into Fourier series for easier
manipulation. The second solution is a proportional–integral–resonant (PI-R) control
algorithm, in which the PI part regulates the output voltage, and the resonant element
adjusts for the ripple produced by voltage inversion. Using Bode diagrams, both the new
and standard PI solutions were simulated in order to evaluate the control results.

In [65], a boost and DAB converter integrated with a PV and battery, respectively,
along with a PI controller are compared and simulated in MATLAB/Simulink. The goal is
to model the system with its control implementation without any experimental verification

In [66], the authors recommend DAB converters for applications like electric vehicles,
allowing for the reduction of both electrical and control restrictions via the use of an ap-
propriate control scheme. The suggested PI control system regulates the output voltage,
and an experimental hardware prototype based on FPGA and a battery emulator achieved
a 95.6% efficiency.

In [67], a PV and battery-based DAB converter is proposed using proportional resonant
control, and a microgrid is integrated into the output. The author models each system, i.e.,
PV and battery along the microgrid, using the subsystem block in MATLAB/SIMULINK.

The PID controller’s generic block design is depicted in Figure 8. In a conventional
bidirectional DC–DC converter, a PWM is utilized to produce a pulse triggered by a switch.
Because the fire angle is adjusted, a large variation in output voltage is detected due to
a slight difference in input voltage. To solve this problem, the PID controller is proposed [68].
The PID working paradigm is described in [69,70]. Although there was variation in the
input voltage, the output voltage remained the same because the converter output voltage
was correlated with the appropriate set of values, and a triggered signal was sent to a switch
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for the required output voltage. Similarly, in [71], a comparison of the stability of the output
voltage of PID and PI controllers is made for bidirectional converters of electric cars. With
the PI control technique, less fluctuation is noticed in the output voltage for varied input
supply voltages. There is always a balance between the overshoot and stability of output
voltages when selecting a PID or PI controller. PID controllers are very reliable, dynamic,
and suited for several control problems. However, in the face of uncertainty and great
trouble, they do not have the required flexibility. There are numerous applications in which
their efficiency is quite poor, particularly if there is nonlinearity in the system.
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4.4. Sliding Mode Control

The dynamic equation of the converter is not linear because of nonlinear components
in various configurations of the two-way DC converters. One approach to the construction
of the control algorithm is to linearize the system using various linearization methods. This
technique does not, however, reflect the precise model, as it is based on hypotheses and
assumptions. Thus, it is better to utilize nonlinear control methods to regulate bidirectional
DC–DC converters to achieve a stable and dynamic system that can answer to external
disturbances. Sliding mode control is the common nonlinear technique due to its fast,
dynamic response, parameter change robustness, and low external sensitivity [72]. The
generic block diagram for sliding mode control is shown in Figure 9. In [73], a sliding mode
is suggested for a DC–DC bidirectional coupling inductor converter. The sliding-mode
technology suggested tracked the high-performance reference DC voltage on the high side
and proved its robustness against disturbance. In [74], a bidirectional DC converter is
investigated using sliding mode control. Comparison between PI and sliding mode control
is carried out regarding load disturbances and parameter changes.

In [75], a DAB converter using a sliding mode controller and fuzzy logic control
is proposed. The major objective was to regulate the output voltage (Vout) and leakage
inductor current (iLK). The results demonstrate that the response of the fuzzy logic controller
is better than that of the sliding mode controller (SMC) due to smooth battery charging and
discharging. The simulation platform used was MATLAB/SIMULINK and Proteus.

In [76], an SMC used in DAB converter with a DC load is proposed. Dynamic mod-
elling of a converter is used to decay the AC operation of a converter by using a Fourier se-
ries. SMC and PI, incorporating perturbations, were compared for the validation of a model.
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In [77], the authors discussed a hierarchal sliding mode controller (HSMC) to operate
dual DAB converters in parallel at the input but in series at the output (IPOS). The controller
within this recent study was focused on the iLK and Vout of each converter, allowing the
control system to correct for the impacts of power mismatching among the converters. This
method was evaluated through an experiment by perturbing converters with a distinct
profile to confirm the performance of the controller.

The sliding mode control approach is robust and has a good dynamic response.
However, certain restrictions are also present, as correct parameters and state data are
needed. In addition, undesired oscillations within the final frequency and amplitude
might occur in the sliding mode control approach. These unwanted oscillations are called
‘chattering’ [71]. A sliding control method is provided in [78] to decrease this chattering
behavior. Although external disruptions occur, great robustness may be generated, and the
system becomes stable when system oscillations are minimized.

4.5. Model Predictive Control

The prevalent and emerging algorithm for energy conversion systems and power
electronics is model predictive control. Figure 10 illustrates the block representation of
the predictive model. This model is the most appealing control technique compared
to other traditional approaches due to its very quick dynamic response and its fast-
tracking characteristics.
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A medium-voltage direct-current (MVDC) control system for ship power systems is
proposed in [78,79]. A linear quadratic internal (LQI) control is utilized to create a linear
model predictive controller (MPC) for such a solution. The findings suggest that the
reactions to disturbances are adequate. In ref [80], the authors proposed an MPC including
current stress optimization (CSO) for a dual DAB linked in parallel at the output ports.
The solution begin by using a standard voltage-mode control (VMC) technique before
proceeding to a CSO; lastly, an integration of CSO and MPC is suggested. This article states
that the CSO–MPC can manage power in both converters for various operating ranges
without any overshoot and while improving load security.

In [81], the authors proposed a moving discrete-time predictive model and adaptive
control technique to enhance the converter’s efficiency by managing the output voltage.
Such a hybrid approach outperformed a traditional PI controller in terms of robustness and
efficiency, but at a greater computational cost, necessitating an expensive implementation.

A great number of computations are needed for this approach, but today it is easy to ap-
ply using a rapid and powerful microprocessor, and it is utilized in fuel cell/battery/super
capacitor energy management [82]. In [83] bidirectional DC–DC converters are conceived
using a model-based control algorithm, whereby a 2.5 KW model for a double-phase
shift (DPS) combined with PWM-based control approach and predictive method is experi-
mentally tested for efficiency. The converter efficiency was found to be 89.56% using the
double-phase shift technique, while the converter efficiency improved to 92.52% with the
predictive method because of the zero-phase shift of the model-predictive method and the
unity factor between the voltages and the high-frequency transformation currents, which
decreases the total reactive power of the converter.

Different control techniques used in DAB converters are responsible for efficiency
improvement. Figure 11 summarizes the control techniques for DAB converters based on
different energy sources.
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5. Simulation Results

Figure 12 depicts an essential topology of the dual active bridge-based boost inverter
discussed below. The outcomes of these simulations are shown in Figures 13–16. In Table 5,
the simulation and experimental parameters that were employed are shown. Assuming an
input voltage of Vin = 12 V and an output voltage of Vout = 285.6 V, with a modulation index
of MI = 0.85 and a load resistance of RL = 100, the DC voltage is maintained at a constant
value. Table 6 provides the calculated values.
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Table 5. Proposed scheme parameters [10].

Circuit Parameters Values

Input Voltage Vin 12 V (DC)
Output Voltage (DAB) Vout 294 V (DC)

Turns Ratio NP:NS 1:25
Switching Frequency fS(VSI) 10 kHz
Switching Frequency fS(DAB) 10 kHz

DC Capacitance C 10 mF
Leakage Inductance LK 2 uH

Nominal Output Power PO 1 KW

Table 6. Simulated and experimental results [10].

Parameters Simulated Values Experimental Values

Primary Voltage 13 V (red) 12 V
Secondary Voltage 270 V (Blue) 275 V

DAB Output Voltage 286.5 V 256 V
Phase Voltage VP,rms 118 V 98 V

THDV, 1.47% 1.7%
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A total harmonics distortion (THD) value of 1.47% is obtained, as shown in Figure 15,
and the output voltage is almost free of harmonics, as presented in Figure 16.

An experimental prototype, shown in Figure 17, is assembed for the validation of
the simulation results, as shown in Figures 18–21. Low-voltage MOSFETs, high-voltage
IGBTs, and diodes are used in the prototype. The high-frequency transformer is wound on
a toroidal core using 10- and 18-gauge wire on the primary and secondary side, respectively.
A ferrite core with high permeability up to 1000 is selected to reduce the winding complexity
and number of turns. Similarly, the leakage inductance is lower when compared with
a core-type or shell-type transformer. The graph shown in Figure 22 depicts the relationship
between efficiencies and power output for a variety of loads. RL = 10–50 ohms when the
input voltage Vin is 12 V and the output voltage VP,rms is 98 V. It has been realized that the
proposed converter has the potential to achieve an efficiency of up to 85%. However, the
efficiency can further be increased by increasing the switching frequency, which results in
less leakage inductance, and a highly efficient system can be obtained. In [84], a coupled
inductor diode-based boost inverter is presented whose results are compared with the
proposed topology. The intermediated DC voltage in the proposed topology obtained is
286.5 V, while the DC link voltage of the selected topology for comparison is 600 V. Hence,
it resulted in the increased size of the capacitor at the DC link.
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6. Discussion

Several DAB converter topologies have been explored for applications like smart grids,
solid state transformers, and uninterrupted power supplies (UPS). The following essential
characteristics for future use in various applications should be considered: lesser losses,
reduced size, cost-effectiveness, power semiconductor devices exhibiting high temperature
characteristics, and DC fault management. Multi-terminal DC systems are considered
as future smart grids, including many energy sources [85]. In [86], the authors discuss
two excellent topologies, i.e., NPC and DAB. This article discusses only the DAB converter
and its topologies. These topologies manage power among three systems: a PV panel,
a battery, and a fuel cell.

Similarly, the controllers identified in Section 4 are confined to PI, SMC, and MPC.
According to the systematic review, there is an opportunity to apply SMC and other kinds
of controllers, which have previously been validated in DAB converters, to PV systems,
batteries, and fuel cells to enhance system performance. Furthermore, the sorted literature
reveals that a few of the solutions do not make use of the high-frequency transformer’s
voltage multiplication capability, which is dependent on the core of the transformer and
the number of turns. For instance, in [87], the boosting factor provided is two times, which
requires a bulky PV array to obtain an output voltage of nearly 600 V; therefore, an HFT
with a high turns ratio will facilitate a higher voltage at the output, and a small PV array or
single PV module can be interfaced. Similarly, other parasitic parameters of high-frequency
transformers such as leakage inductance and parasitic capacitance can further be improved.
The transformer design results are based on 10 kHz frequency; however, the transformer
can further be operated at much high frequency to reduce the leakage inductance and
maximize the power transfer.

The initial control techniques for DAB converter regulation are PI and PID con-
trollers [88]. Those solutions give a comprehensive explanation of the system model
and schematic design, but they are not verified in the presence of perturbations. Further-
more, in [89–91], PI and PID controllers must take into account the linearization of the
plant model, affecting the controller robustness, and do not often ensure the performance
of a system. Another criterion is met in [92], which design nonlinear control techniques.
Sliding mode control, in particular, offers robustness and stability against parameter varia-
tion, input, and load fluctuations. In [79], the authors have offered MPC solutions, which
are established on realistic models that describe the converter over a large operating range.
This sort of controller, however, has a significant limitation due to the need for comput-
ing resources for the controller to operate, making the controller an expensive solution,
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challenging to integrate into embedded systems, and impractical to design using analogue
circuits. Finally, only DAB converters in marine and railway applications have used this
form of control technique.

7. Conclusions

This work reviews DC–DC DAB converters that are used in energy conversion ap-
plications. Based on their structures, DAB converters are classified by offering the pros
and cons of each kind to identify the appropriate topology. For high voltages, galvanic
isolation is necessary because it improves the operation of switching devices and reduces
circulating reactive power. The DAB and MMC families are the optimum topologies for
bidirectional power flow with galvanic isolation. An MMC combined with a DAB provides
the optimum topology for bidirectional power flow with galvanic isolation and enhances
the overall efficiency of the system. A high-frequency transformer for a high conversion
ratio is discussed in detail, and a toroidal transformer is designed in ANSYS Maxwell with
minimum leakage inductance. Although PID controllers are used in DAB converters, it is
evident that there is a wide scope to investigate more-sophisticated control approaches that
might deliver better outcomes. However, considering the rising demand for renewable
energy devices, increasing efficiency is critical in order to offer more power to the load;
thus, the DAB converter is employed due to the high efficiency obtainable at high voltage
gain compared to standard boost converters. This article compares various control tech-
niques used with DAB-based DC–DC converters, and their advantages and limitations are
discussed. DAB converters have a large scope of application in areas such as uninterrupted
power supplies, grid-connected renewable energy sources, and marine applications, and
they can be extended to solid-state transformers.
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