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Abstract: In this study, a homogenizer in conjunction with a two-stage process was utilized to facilitate
biodiesel production from waste edible oil (WEO). This paper contributes to the improvement of the
yield and the shortening of the reaction time for biodiesel synthesis. Sulfuric acid was used in the first
stage which was the esterification of the free fatty acids (FFA) of the WEO; then the transesterification
reaction of triglycerides took place in the second stage with an alkaline catalysis. The present
investigation aimed to explore the parameters affecting the reactions, including homogenizer speed,
alcohol/oil molar ratio, catalyst dosage, reaction temperature, and reaction time. Under the operating
conditions of the first stage (the reaction temperature was 65 ◦C, the homogenizer speed was 8000 rpm,
the methanol/oil molar ratio was 15:1, and the amount of sulfuric acid was 4 wt%), the acid value fell
to below 2 mg KOH/g after 10 min. The best base-catalyzed conditions in the second stage were:
homogenizer speed of 8000 rpm, NaOH catalyst concentration of 1 wt%, methanol/oil molar ratio of
9:1 (mol/mol), reaction temperature of 65 ◦C, and reaction time 10 min. Consequently, the conversion
rate from WEO to biodiesel achieved 97% after only 20 min, in line with the EU EN14214 standard,
which requires a biodiesel production rate of at least 96.5%.

Keywords: biodiesel; waste edible oil; transesterification; homogenize; esterification

1. Introduction

Extensive use of fossil fuels not only leads to the depletion of petroleum resources and
energy crisis, but also leads to increasingly serious greenhouse effects such as global warm-
ing and climate change due to carbon dioxide emissions, further making the development
of alternative fuels more and more important. The conversion of feedstocks containing
triglycerides and free fatty acids (FFA), such as vegetable oils, into biodiesel is considered
one of the most promising options [1]. The waste edible oil amount accumulated day by
day from restaurants, fast-food stands, or families will become a significantly big source of
poison to the environment if it is not effectively collected and used. Fortunately, this waste
can also be reused to make biodiesel. Biodiesel shows the following general advantages:
(1) it lowers dependence on imported oil; (2) it produces lower harmful emissions (especially
SOx); (3) it limits greenhouse gas emissions; (4) it is a non-toxic fuel and biodegradable;
(5) it can help improve the rural economy (circular economy) due to the use of agricultural
residues; (6) it can be used without engine modifications; (7) it improves combustion
because of the oxygen content; and (8) it provides good engine performance [1,2]. However,
biodiesel has certain disadvantages, such as low calorific value [3], high viscosity [4], high
NOx emission [5,6], and high fuel consumption [3,4]. Fortunately, these problems can be
overcome by adding additives to the biodiesel blend to improve fuel properties [4].
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The processes for synthesizing biodiesel include transesterification, microemulsions,
pyrolysis, and blending [7]. Among them, the most commonly used method is transester-
ification. Transesterification is a catalyzed (acid-catalyzed or based-catalyzed) chemical
reaction of triglycerides with alcohols to produce biodiesel, composed of fatty acid alkyl
esters (FAAE), and glycerol. The alkaline process could produce high-purity, high-yield
biodiesel in 30–60 min [2,8,9]. The major constituents of vegetable oils are triglycerides,
consisting of three long-chain fatty acids esterified to the glycerol skeleton. The reaction of
triglycerides and alcohols results in the release of three fatty acid chains from the glycerol
backbone, which then combine with alcohols to synthesize fatty acid methyl esters (FAME).
During this process, a by-product, glycerol, is produced [10,11]. The use of alkali catalysts
possesses the advantages of low cost and high conversion rate, which is currently the most
common method for synthesizing biodiesel. Unfortunately, a lot of energy consumption
and wash water make glycerol recovery difficult. Additionally, when the content of FFA is
higher than 0.5% by weight, FFA that cannot be converted into biodiesel causes saponifica-
tion, which is a very serious problem. Conversely, acid catalysts should be used in such
cases [12]. Similarly, acid catalysts also have advantages and disadvantages. Acid catalysts,
such as sulfuric acid, can improve the conversion rate, but the time is longer [13]. In general,
both acid- and base-catalyzed reactions possess important advantages compared to that
with only raw materials [14]. Esterification and transesterification reactions may occur
simultaneously in the acid-catalyzed mixtures. Consequently, feedstocks high in FFA (e.g.,
animal fats, waste edible oil), which are often much less expensive, can be used directly
with acid catalysts [15]. Using these cheap feedstocks to produce biodiesel can reduce
costs. The use of WEO as a raw material and acid-catalyzed pretreatment process should
be carried out to enhance biodiesel production. When the FFA content is less than 0.5%
and if the used catalyst is expected to be removed from the remaining oil easily, a solid
base catalyst is chosen to complete the transesterification reaction. In general, a combined
acid-base two-stage catalytic method can be considered to shorten the reaction time [16–18].

Several studies have proven that the catalyst dosage [19,20], alcohol/oil molar ra-
tio [21–23], reaction temperature [24–26], and reaction time [25,26] greatly affected the
transesterification reaction. Thus, they are important factors to be investigated. In addition,
the process can also be accelerated by using ultrasound [16,27,28] or microwave [29–32]
to promote the reaction. In the previous study [25], the optimal reaction conditions in-
cluding methanol/oil molar ratio, catalyst dosage, reaction temperature, and reaction time
were investigated to achieve the highest conversion of biodiesel. It was also found that a
1 min mixing period by ultrasound and a 2 min energizing period by closed microwave
irradiation was the optimal procedure.

Homogenizers are often used in large-scale processing industries. It has been recently
reported that homogenizers have the potential to be easily scaled up and significantly
shorten the reaction time of transesterification [33–35]. However, there are relatively few
studies related to homogenizer systems for biodiesel production, especially using a two-
stage synthesis method. In this investigation, enhancement in biodiesel synthesis was
achieved using a two-step catalyzed process via a homogenizer. This method can be
used when ultrasound or microwave equipment cannot be afforded. To reduce the high
cost of biodiesel synthesis, various ideas were proposed such as the use of WEO [36–38],
the development of various catalysts [39–43], and the modification of the manufacturing
process [44,45]. Here, WEO was chosen as the raw material. This investigation mainly
aimed to find the optimal operating conditions to synthesize biodiesel via a homogenizer
in conjunction with a two-stage process.

2. Materials and Methods

Experimental substances were all purchased from excellent suppliers. Sodium hydrox-
ide 99%, sulfuric acid 99%, and methanol 99.8% were purchased from Shiyaku Company;
zinc oxide (ZnO) 99.8% was purchased from Mallickrodt Company, and Fluka Company
was the supplier of Methyl laurate and acetic acid. Waste edible oils utilized herein were
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gathered from local restaurants in Tainan, Taiwan. Food remaining in the waste edible
oil was first removed by a filtering process. The acid value (AV) and saponification value
(SV) were determined by a standard titrimetry method (AOCS: American Oil Chemists’
Society). The acid value determination included the following steps: 5 g oil was put into a
250 mL cone bottle together with 150 mL mixture of alcohol and ether (volume ratio 1:1
v/v); next several drops of 1% phenolphthalein indicator were added and finally 0.1 N
potassium hydroxide for titration was added. The saponification value (SV) determination
steps were: 2 g oil was put into a 250 mL cone bottle; next 0.5 N potassium hydroxide
alcohol solution was added and mixed well in 1 h before some drops of 1% phenolph-
thalein indicator were added, and finally 0.5 N hydrochloric acid solution was added for
titration. Then, the SV was determined using Equation (1) [29,30], and the AV was calcu-
lated via Equation (2) [33–35]. Where W is the oil weight (g), B designates blank titration
amount (mL), S is sample titration amount (mL), VNaOH denotes the volume (mL) of the
NaOH titrant.

SV =
(B− S)× 56.1× 0.5

W
, (1)

AV =
5.61×VNaOH

W
. (2)

After determining the saponification value (SV) and acid value (AV), which were
287.36 and 4.36 mg KOH/g, respectively, the molecular weight (MW) of WEO could be
calculated as 585.67 using Equation (3) [33–35].

MW = 56.1× 1000× 3
(SV−AV)

. (3)

In the first stage of the reaction process, a homogenizer model Hsiangtai HM–300
Power (Figure 1), whose speed could be set at 3000–9000 rpm, was utilized to improve the
uniformity of the reactants. Additionally, the molar ratio (MeOH to WEO) was controlled
ranging from 6:1 to 18:1, the catalyst dosage was from 1 to 5 wt% and the reaction tempera-
ture was from 50 to 90 ◦C. The homogenizing process was carried out for 2 to 12 min until
the reaction completed. After being washed with ionized water several times, the product
was collected to get ready for the second-stage reaction. The reaction conditions in the
second stage were: alcohol/oil ratio 6:10; catalyst dosage 0.5–1.5%; reaction temperature
55–70 ◦C and reaction time 2.5–12.5 min. After the reaction finished, the FAME layer that
floated up to the top of the mixture was removed in a separating funnel. The methyl ester
biodiesel product was washed at least three times with acetate 30% and deionized water
and finally dried at 105 ± 3 ◦C in an oven.
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Figure 1. Experimental apparatus [33–35].

Some samples were taken for analysis with a Perkin Elmer GC Clarus 600 equipped
with a capillary column (SPBTM-WAX, 30 m × 0.75 m × 1.0 µm) and a flame ionization
detector (FID). Methyl laurate was added to the crude biodiesel as an internal standard, and
then the sample was injected under the following conditions: carrier gas nitrogen; injector
temperature 280 ◦C with a split ratio of 1:20; and temperature of the detector 300 ◦C. The
oven temperature started at 210 ◦C for 4 min, then increased to 240 ◦C at a rate of 4 ◦C/min,
and finally maintained at 240 ◦C for 8 min [39]. Equation (4) could be used to calculate the
conversion rate of the crude biodiesel [16,29,30] as follows:

Conversion(%) =

(
area of FAME

area of reference

)
×weight of reference

weight of crude oil
. (4)

3. Results and Discussion
3.1. Factors Affecting the Esterification Reaction in the First Stage
3.1.1. Effect of Rotational Speed on the Acid Value

The use of a homogenizer at different speeds to facilitate the transesterification reaction
did result in different acid value levels, as shown in Table 1 (operation conditions: catalyst
(sulfuric acid) amount 3 wt%, methanol/oil molar ratio 12:1, reaction time 10 min, reaction
temperature 65 ◦C). The acid value decreased as the speed increased. For example, at the
speed of 8000 rpm, the acid value reduced to 3.46 mg KOH/g. However, increasing the
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speed further to 9000 rpm could not reduce the acid value faster. It was because the speed
of 8000 rpm was good enough for the reactants to be fully mixed with each other.

Table 1. Effect of rotational speed on the acid value.

Revolution (rpm) Acid Value (mg KOH/g)

3000 4.12
5000 3.59
7000 3.57
8000 3.46
9000 3.46

3.1.2. Effect of Methanol/Oil Molar Ratio on the Acid Value

The methanol/oil molar ratio greatly affects the acid value, as shown in Figure 2.
Operation conditions were: homogenizer speed 8000 rpm, catalyst (sulfuric acid) amount
3 wt%, reaction time 10 min, and reaction temperature 65 ◦C. Figure 2 depicts the decrease
in acid value with increasing methanol/oil molar ratio, which is consistent with the study
by Hsiao et al. [16]. More specifically, as the ratio was changed from 6:1 to 18:1, the acid
value decreased dramatically. At a 6:1 molar ratio, the acid value was 3.35 mg KOH/g.
With increasing the molar ratio to 9:1 or 12:1, the acid value decreased slowly and remained
above 3 mg KOH/g. However, at a 15:1 molar ratio, it decreased more rapidly to 2.23 mg
KOH/g. There was almost no change in the acid value at a higher molar ratio of 18:1.
Consequently, for economic considerations and reduction of unnecessary waste, a 15:1
molar ratio (MeOH to WEO) was the most suitable.
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3.1.3. Effect of Reaction Temperature on the Acid Value

Figure 3 indicates the acid value as a function of temperature (50–70 ◦C) under the
experimental conditions: homogenizer speed 8000 rpm, methanol/oil molar ratio 12:1,
added sulfuric acid amount 3 wt%, reaction time 10 min. Results showed that the acid
value of waste edible oil was reversely proportional to the reaction temperature. This trend
is consistent with the findings of Hsiao et al. [16] and Sadaf et al. [46]. With increasing the
reaction temperature, the solubility of methanol in the oil increased and the homogeneous
level reaction system enhanced. This led to an increase in the reaction between free fatty
acids and methanol. Thus, the mass transfer resistance of the two-phase reaction system
is reduced. When the temperature exceeded 65 ◦C, however, the acid value did not drop
significantly. This was mainly because of the 64.5 ◦C boiling point of methanol. When
the reaction temperature got over 65 ◦C, methanol evaporated and escaped quickly from
the reaction mixture. This evaporation slowed down the esterification reaction. Therefore,
the acid value did not significantly reduce at reaction temperatures higher than 65 ◦C.
Additionally, 65 ◦C could be the most suitable reaction temperature.
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3.1.4. Effect of Catalyst Amount on the Acid Value

Figure 4 demonstrates that catalyst amount also has an important effect on the acid
value. The catalyst adopted was sulfuric acid because it not only acted as a catalyst but
also removed esterification impurities such as phospholipids. Thus, it could help simplify
the transesterification of the final product and the biodiesel purification. Furthermore,
using sulfuric acid as a catalyst, the esterification reaction of free fatty acid and methanol
occurred. Although the transesterification reaction of oil and methanol also took place,
the reaction was very slow and could be ignored in the acid catalyst. In Figure 4, the
experimental conditions were: homogenizer speed 8000 rpm, methanol/oil molar ratio
15:1, reaction time 10 min, and reaction temperature 65 ◦C. The acid value decreased with
the increase in catalyst dosage, as found in the previous study [16]. When the amount of
sulfuric acid added was varied from 1 to 5 wt%, the acid value showed a downward trend,
from more than 3.2 mg KOH/g to below 1.8 mg KOH/g (Figure 4). Since an acid value of
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2 mg KOH/g meets the requirement for the transesterification reaction (second stage), it is
recommended to add 4 wt% sulfuric acid.
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3.1.5. Effect of Reaction Time on the Acid Value

Figure 5 demonstrates the acid value versus reaction time under the following experi-
mental conditions: homogenizer speed 8000 rpm, methanol/oil molar ratio 15:1, added
catalyst (sulfuric acid) 4 wt%, reaction temperature 65 ◦C. The reaction time varied from
2–12 min. It was found that the longer the reaction time, the lower the acid value. As both
the waste edible oil and methanol had different polarities, they could not automatically
fully mix. However, when the reaction time increased, more monoglyceride, glycerol, and
fatty acid methyl esters were formed, and they improved the uniformity of the reaction
system. The homogeneous catalytic transesterification reaction was supported and took
place faster. When the reaction time reached 10 min, the acid value dropped below 2.0 mg
KOH/g. Thus, the best reaction period should be 10 min. This optimal reaction time is
shorter than the 40 min found in Hsiao et al.’s study [16] and the 60 min reported in He
et al.’s study [17].
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3.2. Factors Affecting the Transesterification Reaction in the Second Stage

According to the above results, the optimal esterification reaction parameters to reduce
the acid value of waste edible oil below 2 mg KOH/g were the conditions required for
the second stage reaction: homogenization speed 8000 rpm, alcohol/oil ratio 15:1, catalyst
dosage 4 wt%, reaction temperature 65 ◦C and reaction period 10 min. Figures 6–8 show
the effects of different parameters on the conversion rate of transesterification in the second
phase of the overall process.

3.2.1. Effect of methanol/oil molar ratio on the biodiesel conversion

Figure 6 shows the effect of the methanol/oil molar ratio on the biodiesel conversion
rate under the operating conditions: homogenizer speed 8000 rpm, catalyst amount 1 wt%,
reaction time 10 min, reaction temperature 65 ◦C. In this step, the methanol/oil molar
ratio was set at 6:1–10:1 for testing. The trend of the methanol/oil molar ratio affecting
biodiesel conversion is similar to previous studies [16,17]. As can be seen, the reaction was
not complete at a 6:1 molar ratio and the conversion rate was very low, only 76.78%. Thus,
an additional amount of methanol (corresponding to a larger molar ratio of methanol to oil)
is suggested. At a 9:1 molar ratio, the conversion rate reached 97% and met the standard
EU EN14214 which required the biodiesel production rate to be at least 96.5%. Based on
cost considerations, the molar ratio of 9:1 was considered an acceptable value.
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3.2.2. Effect of Catalyst Amount on the Biodiesel Conversion

Table 2 demonstrates how the biodiesel conversion rate varied with the catalyst
amount. As is widely recognized, in the transesterification process, highly efficient catalysts
are usually used, such as alkali metal oxides and hydroxides. In this article, homogenizer
speed 8000 rpm and sodium hydroxide were used for an economic point of view. The
reaction conditions were: catalyst amount 0.5–1.5 wt%, methanol/oil molar ratio 9:1,
reaction temperature 65 ◦C for ten minutes. At 1.0 wt% catalyst, the conversion rate reached
the highest, 97%, and it was lower when the catalyst dosage was less than or greater than
1.0 wt%. With a catalyst dosage above 1.0 wt%, a small amount of biodiesel was gel-like,
which caused more alkali saponification reactions and more colloidal substances. The
viscosity of the mixture increased and even the liquid eventually turned into a gel, making
separation of the final product more difficult. This also added a water-washing step,
resulting in more wastewater. The optimal catalyst dosage (1.0 wt%) is the same as the
study by Hsiao et al. [16].

Table 2. Effect of catalyst amount on the biodiesel conversion.

Catalyst Amount (wt%) Conversion (%)

0.5 78.02
0.8 90.34
1.0 97.00
1.2 88.45
1.5 80.25
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3.2.3. Effect of Reaction Temperature on the Biodiesel Conversion

During the entire process, the reaction temperature affects not only the performance
of the first stage, but also that of the second stage. The reaction temperature is generally
close to the boiling point of methanol, but can also be below room temperature, in the
transesterification reaction. To explore how temperature affected the transesterification
process, experiments were performed with a temperature setting of 50–70 ◦C. Furthermore,
the operating conditions were set as follows: the rotating speed of the homogenizer was
8000 rpm, the methanol/oil molar ratio was 9:1, the addition amount of sodium hydroxide
was 1 wt%, and the reaction time was 10 min. Figure 7 depicts that raising the temperature
below 65 ◦C helped to improve the conversion. At temperatures above 65 ◦C (greater
than the boiling point of methanol), however, disturbances appeared. The higher the
temperature was, the more quickly methanol evaporated. At this time, the original mixed
reactants were separated, methanol and oil could not be mixed well, and the conversion
rate decreased. Hence, 65 ◦C was the optimal reaction temperature, which is in agreement
with previous studies [16,30].

3.2.4. Effect of Reaction Time on the Biodiesel Conversion

Figure 8 depicts that the role of the reaction time on the transesterification reaction is
also considerable. The operating conditions were as follows: homogenizer speed 8000 rpm,
methanol/oil molar ratio 9:1, catalyst amount 1 wt%, reaction temperature 65 ◦C. As
can be seen, the oil conversion rate was only 72.3% after the reaction time of 2.5 min.
With a prolonged time period, the conversion increased rapidly. Based on the reaction
mechanism of transesterification, the reaction was reversible. After a certain reaction time,
the equilibrium of the forward and reverse reaction rates would be reached. In this case,
further prolonging the reaction time could not effectively increase the conversion. Note
that the conversion rate was 97% within a 10 min reaction time, which meets the standard
specification of biodiesel (EU EN14214). In addition, after the time period exceeded
10 min, the reaction gradually achieved equilibrium, and the conversion rate did not
increase significantly. This optimal reaction time (10 min) obtained in the second stage
(transesterification) is much shorter than the results of previous studies, which were 40 min
and 50 min in [16] and [46], respectively.

In summary, the conventional acid-catalyzed method took at least 4 h to synthesize
biodiesel from waste edible oil [47], while the whole process of the enhanced method in this
study only took 20 min in total, which is much shorter. Furthermore, the optimal reaction
time (20 min) obtained in this study via a homogenizer-assisted two-stage conversion
process was also much shorter compared to the 140 min reported by Hsiao et al. [16].
Their study also used a two-stage catalytic process, but with traditional mechanical
stirring methods.

3.2.5. Reaction Rate Constant k

In this study, the reaction was considered to have a single direction, and this first-order
reaction could be expressed as [30]:

uME + 3CH3OH k→ ME + GL. (5)

where ME is methyl ester, uME is unreacted matter, and GL is glycerol.
Equation (5) could be rewritten as:

− d[uME]
dt

= k[uME]. (6)

Merging Equations (5) and (6) led to:

ln[uME, 0]− ln[uME, t] = kt, (7)
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wherein [uME, 0] and [uME, t] were the initial waste oil concentration and the concentration
of the unreacted waste oil at time t. Equation (7) was adopted to calculate the reaction rate
constant k [48]. Equation (7) also depicted the value of (ln[uME, 0]–ln[uME, t]) as a linear
function in terms of time t, as shown in Figure 9. The results in Figure 9 could be employed
to calculate the k value according to temperature given in Table 3.
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Table 3. Reaction rate constant k versus reaction temperature.

Temperature (◦C) Rate Constants k (min−1)

50 0.2116
55 0.2324
60 0.2599
65 0.3515
70 0.3437

Table 3 illustrates the reaction rate constant k as a function of temperature for the
NaOH-catalyzed transesterification reaction of WEO. Raising the temperature from 50 to
60 ◦C led to a slight augmentation in k from 0.2116 to 0.2599 min−1. However, the k value
significantly increased to 0.3515 min−1 at 65 ◦C. This was mainly due to the increase in
the average molecular kinetic energy, which made the collisions between molecules more
efficient, and the reaction accelerated. In addition, at this temperature, the reaction system
reached the boiling point of methanol, so the disturbance in the system started to increase.
With further raising the temperature to 70 ◦C, however, the reaction rate constant decreased
as the reaction system approached equilibrium. Additionally, methanol began to leave out
of the reaction system at this time. Therefore, the reaction rate constant began to decline
above 65 ◦C.
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4. Conclusions

(1) When waste edible oil was used to produce biodiesel by a two-stage transesterifi-
cation process assisted by a homogenizer, in the first step (acid-catalyzed stage) the
acid value was effectively decreased lower than 2 mg KOH/g within only 10 min
with the following suggested operating conditions: homogenizer speed 8000 rpm,
methanol/oil molar ratio 15:1, added catalyst amount 4 wt% (sulfuric acid) and
reaction temperature 65 ◦C.

(2) In the second step (the base-catalyzed stage), the conversion rate of biodiesel reached
97% after 10 min and met the standard value (at least 96.5%) of EN 14214 with the
following reaction conditions: homogenizer speed 8000 rpm, alcohol/oil molar ratio
9:1 (mol/mol), sodium hydroxide addition level 1 wt% and reaction temperature at
65 ◦C.

(3) Additionally, by increasing the reaction temperature from 60 to 65 ◦C, the reaction
rate constant changed significantly from 0.2599 to 0.3515 min−1.

(4) Synthesizing biodiesel from waste edible oil took at least 4 h via the conventional
acid-catalyzed approach [47], while the whole process of the improved method in this
study only took 20 min in total, which is a very considerable time reduction. Note
that the optimal reaction time (20 min) herein is also much shorter compared to the
140 min reported by Hsiao et al. [16], who also utilized the two-stage catalytic process,
but instead used a conventional mechanical stirring approach.
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