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Abstract: Data on transport usage is important in a wide range of areas. These data are often
obtained manually through costly and inaccurate interviews. In the last decade, several researchers
explored the use of smartphone sensors for the automatic detection of transport modes. However,
such works have focused on developing centralized machine learning mechanisms. This centralized
approach requires user data to be transferred to a central server and, therefore, does not satisfy a
transport mode detection mechanism’s practical response time and privacy needs. This research
presents the Federated System for Transport Mode Detection (FedTM). The main contribution of
FedTM is exploring Federated Learning on transport mode detection using smartphone sensors. In
FedTM, both the training and inference process is moved to the client side (smartphones), reducing
response time and increasing privacy. The FedTM was designed using a Neural Network for the
classification task and obtained an average accuracy of 80.6% in three transport classes (cars, buses
and motorcycles). Other contributions of this work are: (i) The use of data collected only on the curves
of the route. Such reduction in data collection is important, given that the system is decentralized
and the training and inference phases take place on smartphones with less computational capacity.
(ii) FedTM and centralized classifiers are compared with regard to execution time and detection
performance. Such a comparison is important for measuring the pros and cons of using Federated
Learning in the transport mode detection task.

Keywords: transport mode detection; Federated Learning; smartphone; smart cities; artificial Neural
Networks

1. Introduction

Urban mobility has a central role in the dynamics of modern cities [1–6]. Data
about transport mode usage are fundamental in a wide range of research areas, such as
greenhouse gas emissions [7], public transport services demand [8,9], consumers’ response
to changes in transport cost [10] and urban planning [3]. This way, automated methods for
transport mode identification can catalyze the development of systems that fit the needs of
contemporary cities. Sensors, artificial intelligence, geospatial technologies and big data
enable technologies for developing services and infrastructure in smart cities [11–14]. In this
context, the growth in smartphone usage by individuals and the quality improvement
of mobile Internet networks bring the possibility of employing cellphone sensors as data
sources in machine learning systems [15,16].

Several solutions have been investigated to explore the problem of identifying transport
modes [17–24]. Most works use traditional machine learning algorithms to classify transport
modes, such as Decision Trees [18], Random Forest [19,20], Bayesian Belief Networks [23]
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and Recurrent Neural Networks [24]. It should be noted that such works propose specific
solutions with a typical dataset, being unable to identify transport in different situations.
Other works use only a data source such as GPS [17,20,24] or are limited to using a fixed set
of rules based on the data characteristics [17,25], not adapting to changes in the environment
and generating a low generalization level for transport mode identification.

Although the works mentioned above have explored different scenarios, they all
share a common limitation: A large amount of data is required, which is transferred to
a powerful central server to train and generate the identification model. User privacy
can be compromised when data is sent to generate the model. Recent studies explored
decentralized scenarios to classify transport modes to address this limitation [15,22,26–28].
Both Martin et al. [27] and Ferreira et al. [15] proposed architectures in which the classifier
model is moved to the client-side to transport mode detection locally. However, data still
must be moved to the server-side at training rounds. The need to move training/inference
data to a central server has several disadvantages: (i) concentrating all the user’s data on a
central server increases the concerns about data privacy; (ii) in a real-life scenario, a large
amount of data must be processed to deliver results in real time, increasing the coast of a
central server; (iii) since data is collected from mobile devices, there must be a good mobile
Internet connection to transfer the data to a central server, which can be challenging in
some cities and neighborhoods.

The use of Federated Learning (FL) is one of the promising ways to solve the cited
problems of centralized methods. FL is a machine learning approach that enables the use
of traditional machine learning algorithms in a decentralized environment, in which the
user data do not leave their source device [29]. Unlike centralized machine learning, in
Federated Learning, data are not sent from their origin to a centralized server [29,30]; all the
training is conducted locally and only the resulting parameters are transferred. The central
server is responsible for combining these parameters into a final model and delivering this
result to client applications. Hence, FL’s main characteristic is that client data do not leave
the source device, increasing privacy and data security [29,31]. Furthermore, in FL, the
time spent on training and inference tends to be lower than in centralized methods [32],
leading to a shorter response time in transport mode detection. Furthermore, collaboration
is easier on FL since storage and processing costs are divided among clients [32]. This way,
the system can be escalated to significant amounts of users, increasing the global accuracy
of the model; meanwhile, no client data are shared. These characteristics are essential to
the task of transport mode detection in a real-world scenario.

This research presents the Federated System for Transport Mode Detection (FedTM).
FedTM explores using smartphone sensors to apply FL to transport mode detection.
The following are our main contributions achieved in this research:

• A Federated Learning mechanism is developed to address the issue of transport
mode detection;

• Centralized and decentralized machine learning algorithms are analyzed and compared,
with a focus on the decentralized approach;

• Sensor data are captured only during curves. Thereby, there is less energy consumption
by the sensors and the data set generated is smaller, which facilitates processing by
smartphones, which have less processing power than centralized servers.

The sensors employed as data sources are accelerometers, gyroscopes and GPS.
The centralized models analyzed are Support Vector Machines (SVM), Decision Trees (DT),
Random Forests (RF), Gradient Boosting (GBM) and Neural Networks. In the federated
model, only Neural Networks are analyzed.

The remainder of the paper is structured in the following way. Section 2 presents a
literature review on methods proposed to solve the transport mode detection task. Section 3
presents the FedTM’s architecture and characteristics and how data were collected and
pre-processed. In Section 4, FedTM is compared to centralized approaches on execution
time and detection performance to be validated. A statistical comparison of the models is
carried out as well. Finally, Section 5 summarizes the main conclusions of the research study.
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2. Related Works

Some studies [17,23,33–36] have made use of additional information supplied by the
maps of the Geographic Information System (GIS). However, the data from the GIS are not
always available and for this reason, the information from the GIS was not used in this
research study.

Chen et al. [17] developed GIS-based algorithms to detect transport mode and travel
purpose in New York City using GPS data. The data were segmented and each segment
was classified by a set of rules based on each mode characteristic. Six transport modes were
analyzed with a success rate varying from 28.6% to 95.8% and a mean of 79.1%. The main
disadvantage of this work is that the algorithm is composed of fixed rules created based on
the study context, so it cannot evolve automatically like machine learning systems.

Feng and Timmermans [23] explored the use of GPS and accelerometer data in the
Bayesian Belief Network to detect transport mode in London. They used the accelerometer
sensor to enrich the feature space since GPS alone has some issues such as signal loss and
difficulty differentiating similar classes. This model was used to classify eight modes and
resulted in inaccuracies from 88% to 99%.

Reddy et al. [18] designed a fusion model with Decision Trees and employed the
Hidden Markov Model (HMM) by making use of data from the GPS and accelerometer to
classify the mode of traveling, which included stationary, walking, running, cycling and
driving. This model achieved a degree of accuracy of 93.6%.

Stenneth et al. [20] designed a model using Random Forest with GPS and a system
of geographic information to classify the stationary travel mode, walking, cycling and
traveling by car, bus or train. They tested five classifiers (Naive Bayes, Bayesian Network,
Decision Trees, Random Forest, Multilayer Perceptron) and achieved the best precision rate
of 93.5% with Random Forest.

Zhou et al. [19] used data from the accelerometer and GPS to classify the mode
of transport. Records of the date, time and acceleration data were obtained along three
axes (i.e., x, y and z) and data on the geographic coordinates were taken from the GPS of
smartphones. The Random Forest model was employed to classify the mode of transport
and achieved a degree of accuracy of almost 94%.

Nirmal et al. [37] proposed a system to detect and display the users’ transport modes
in a real-time map. They tested five classifiers (Decision Trees, Random Forest, Support
Vector Machine, Gradient Boosting and Neural Networks), achieving higher accuracy of
94% with Random Forests. The data are collected at the user’s smartphone and immediately
sent to the server. The classification task is carried out on the server side and the map
database is updated. Even though the system was designed to offer a real-time response to
the edge user, concentrating the classification task in a central server may lead to slower
responses in moments of high demand for classification.

Martin et al. [27] studied the impact of dimension reduction techniques (more precisely,
principal component analysis and recursive feature elimination) on GPS and accelerometer
data. They employed Random Forest and K-nearest neighbors for the classification task.
Their goal was to simplify data as possible to easily be processed in thin clients such as a
smartphone. The main limitation of their work is that it was not defined how data would
be shared between servers and clients for the training rounds.

Ferreira et al. [15] explored accelerometer and GPS sensor data for transport mode
detection using Random Forests models. In the training phase, the smartphones collect
data, then send it to a central server that trains the Random Forest model. As soon as
the training is done, the model is distributed to the client applications installed on the
smartphones that can now classify transport modes in real time, with no need for Internet
connection and with lower timing issues since the whole procedure is carried out locally.
When the user has good Internet access, all the data collected during the application usage
are sent to the server to be used in new training rounds and be available for future research.
The success rate of this system ranged from 82.11% to 97.28%, depending on the transport
mode analyzed.
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In most of the studies cited in this work, different degrees of precision were achieved
when classifying transport modes. All these studies employed a central server to gather the
data generated by the sensors and then move to the next phases of training and classification.
The approach followed by [15] is the one that came closest to a fully decentralized environment:
the classification is carried out locally in the edge devices (smartphones), but data must be
sent to the server to train the model.

Centralizing the transport mode detection task has some limitations: (i) moving
the data to a central server generates concerns about data privacy and security; (ii) data
processing and storage are costly in a big data scenario; (iii) smartphones need a good
Internet connection to send a sensor’s data and receive the classification results in real
time. This way, this research explores the use of distributed Neural Networks to identify
transport modes, analyzing the trade-off between accuracy and privacy by comparing the
distributed model to some centralized ones. Table 1 summarizes the characteristics of the
cited works and FedTM.

Table 1. Related works characteristics.

Reference Decentralized Local Detection In-Device Training Data Privacy Real-Time

[13] No No No No No
[16] No No No No No
[19] No No No No No
[15] No No No No No
[32] No No No No Yes
[23] Yes Yes No No No
[11] Yes Yes No No Yes

FedTM Yes Yes Yes Yes Yes

Furthermore, in previous research studies, two sensors were used to determine the
mode of transport and collect the data throughout the whole journey made by the vehicle.
In other words, the different devices for data collection were conditioned by the route
followed by the vehicle and thus required a considerable amount of energy consumption.
Unlike the case of the other studies discussed, this research relies on a fusion of five
smartphone sensors to pick up the information provided by the vehicles and the data
collection was only carried out when the driver of the vehicle took a curve. This meant that
there was less energy consumption on the part of the smartphone.

3. Federated System for Transport Mode Detection-FedTM

This section introduces FedTM, a federated system for transport mode detection.
FedTM is a system whose main objective is to classify the transport modes using data from
smartphones, without such data having to be moved to a central server. For this, FedTM
was developed using Neural Networks and FL. FedTM allows a classifier model to be
trained and deployed on smartphones without transferring data to the server. In addition,
our system shortens training time in a decentralized environment, with a high hit rate
using only data collected during curves in the route.

The rest of this section is organized as follows. Section 3.1 gives an overview of the
FedTM. Section 3.2 presents the concepts and technologies used in the FedTM and the
system itself in more detail. Section 3.3 describes how the data used in this work were
collected. Finally, Section 3.4 explains how the pre-processing of the raw data is carried out.

3.1. Overview

To solve the task of transport mode detection, FedTM modelled a federated Neural
Network. This federated model is shared among all clients and both training and inference
are carried out locally on the smartphone. Figure 1 illustrates an overview of the FedTM.
The central server is only responsible for coordinating the process (Label A, Figure 1). In the
FedTM architecture, the smartphone is the client device and it generates the sensors’ data
for transport mode detection during curves along the user trip. These data are processed
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only locally, so training and inference occur in the user’s device (Label B, Figure 1). In
this way, it is possible to decrease the response time and increase privacy in the transport
mode detection.

Figure 1. Overview of FedTM.

On the client side (Label B, Figure 1), a local model is trained with the local data
that never leaves the device. Each client updates the server using parameters from its
own locally trained model (Label C, Figure 1). The server (Label A, Figure 1) aggregates
these clients’ updates into a new global model. The global update is then delivered to
all clients (Label D, Figure 1) who can now detect transport mode. This way, clients
enjoy a classification model trained with all the client’s data but no training or inference
data exchange.

This way, FedTM is an appropriate solution to the transport mode detection task
whenever greater data privacy, faster training time, less server-side processing and more
decentralization are essential requirements of the system, being aware that these aspects
come at the cost of a lower accuracy score.

3.2. Mechanism for Transport Mode Detection in FedTM

Machine Learning (ML) technology relies on training data to be used in the learning
process. Generally, these data are generated and owned by different parties. A traditional
solution to train an ML model is to transfer all the data to a centralized server responsible
for the training process [29].

When it comes to transport mode detection, this traditional approach to data processing
faces some challenges. Moving user data to a central server may compromise privacy and
data security [29]. The smartphone data used in transport mode detection can track users’
mobility habits. This way, data concerns assume significant relevance for developing
such systems. Beyond this, the network that transfers data to the server may affect the
user’s experience, leading to high response times [27], particularly relevant in the case
of transport mode detection since the data source is a mobile device with no guarantee
of a good Internet connection. Furthermore, with the advance of big data in smart cities,
processing and storing significant amounts of data in a central server can become very
costly [38]. This high cost of processing and storing data may impede employing a transport
mode detection system in a real-world scenario.
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A mechanism for transport mode detection in FedTM was modeled based on FL to
solve these challenges. FL is an ML approach developed to train a global model. At the
same time, the training data remains distributed over its source devices (in our case,
smartphones) [39], creating a federation of participating devices (called clients that are the
smartphones in FedTM) coordinated by a central server. Each smartphone has its local
training dataset, never uploaded to the central server. Instead, each smartphone trains a
local model. After this training, these different models are shared and combined to reach a
consensus for the final model. This communication of trained models must be carefully
designed to ensure the privacy and safety of the original data and the model itself [40].

FedTM has a higher level of privacy during the training phase of the learning process
because the FL employed adds noise to client updates to ensure that it is impossible to
generate the original training data and guarantee clients’ anonymity [40]. Furthermore,
since data are not centralized in one node, FedTM is less likely to suffer mass data leaks.
In addition to the privacy benefit, FedTM reduces the amount of network usage if the
training dataset is large. This happens because the per-client traffic is equal to the number
of training rounds times the size of each update and each update’s size is generally tiny
compared to the whole training dataset [40]. This way, even smartphones with low-quality
Internet access can join the FedTM without giving up a good user experience.

In FedTM, there are two phases: model training and model inference. The flowchart
present in Figure 2 illustrates in detail the training process of FedTM. First, the server
starts the training process by sending the clients (smartphones) a request to join the FedTM
training process (Label 1.1, Figure 2). The client available sends a response to the server
(Label 2.2, Figure 2). Once the minimum number of clients necessary is reached, the server
sends the initial parameters to the participants’ clients (Label 1.4, Figure 2). These initial
parameters may be random (in the case of the first training of the system) or the current
version of the global model of the FedTM. On the client side, labelled training data are
collected, pre-processed and used in local training (Label 2.4, Figure 2). This training phase
generates a local model for each FedTM client. The clients send updated information to
the central server to combine these local models into a more generalized global model
(Label 2.5, Figure 2). Then, the server aggregates this information into a global model
(Label 1.6, Figure 2). This process repeats for a defined number of training rounds. When
all rounds are finished (Label 1.7, Figure 2), the server sends the final global model to all
clients (even to those that did not join the training process) (Label 1.8, Figure 2).

Figure 2. Flowchart of the training process in FedTM.

At FedTM inference time, the smartphones use the global model provided by the
central server to classify their unlabeled data. During the whole process of training
and inference, the only data exchanged between server and smartphones are the initial
parameters (that may be random, in the case of the first training phase of FedTM or the
current global model) and updates of local and global models (Labels 1.4, 2.5, 1.8, Figure 2).

Due to its decentralization characteristic, in which training and inference are carried out
locally on the users’ smartphones, FedTM has some advantages in transport mode detection:
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• It is harder to track a user’s mobility habits since the sensor’s information does not leave
the smartphone;

• Only the updated parameters are shared, reducing the total amount of network usage;
• Processing and storage coasts are divided among clients, making the system resources

cheaper and more easily scalable;
• Response time in transport mode detection is lower since there is no need for remote

requests at inference time.

A fully connected Neural Network classifier was developed to check transport mode
detection in a decentralized learning environment. For this, we used the TensorFlow https:
//www.tensorflow.org/ (accessed on 29 November 2022). library from the Python language.
The FedTM’s Neural Network first layer receives all 24 features. It has one hidden layer
of 48 neurons with a relu activation function. Its output layer employs softmax as an
activation function. The Adam Optimizer was employed to optimize the accuracy of the
model. This Neural Network architecture is illustrated in Figure 3.

Figure 3. FedTM’s Neural Network architecture.

To implement its Neural Network in a federated manner, FedTM used the Flower https:
//flower.dev/ (accessed on 29 November 2022) framework. This framework offers abstract
methods for the developer to implement the learning logic at the server and client sides.
It also provides strategies to combine the partial training models generated by the client
processes. In FedTM, the Flower server was configured to have two rounds of Federated
Learning with a minimum of three clients per round. The aggregation strategy adopted in
FedTM (Label 1.6, Figure 2) was the Federated Average (FedAvg), which the Flower library
already implements. Each client takes one step of gradient descent on the local model using
its data in this strategy. Once the client training is done, the server generates the global
model as the weighted average of the local models trained by the clients. This FedAvg
repeats according to the number of training rounds defined.

3.3. Data Acquisition

For training and validation of the FedTM proposal, a labeled dataset of smartphone
sensors data was used. The data collection was carried out in Brazil in Belem-PA and
Bujaru-PA from 30 May 2018 until 7 June 2018. Three transport modes were used: (i) car,
(ii) bus and (iii) motorcycle. Five drivers were selected to diversify the drivers’ profiles:
two for cars, two for motorcycles and one for buses.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://flower.dev/
https://flower.dev/


Energies 2022, 15, 9256 8 of 17

A co-driver went along with the driver during the route. Data were collected only
during curves (see Figure 4). At the beginning of each curve, the co-driver was responsible
for the activation of the data collection. When the curve was completed, this passenger
ended the collection process. Only one person was designated for this task.

Figure 4. Activated sensors at the beginning of the curve.

The sensors’ parameters collected are listed in Table 2. The following smartphone sensors
were employed: accelerometer, GPS, magnetometer, gyroscope and velocity. Accelerometer,
gyroscope, GPS, magnetometer and velocity were used at 10 Hz. The accelerometer,
gyroscope and magnetometer supplied the information shown in the three axes (x, y and
z). The GPS sensor calculated the bearings between latitude and longitude points, while
the velocity sensor provided information about the vehicle’s speed.

Table 2. Parameters collected using smartphones sensors.

Sensors Parameters

Accelerometer Accel_x, Accel_y, Accel_z
Gyroscope Gyro_x, Gyro_y, Gyro_z
Magnetometer Magnetic_x, Magnetic_y, Magnetic_z
GPS Latitude, longitude
Velocity Speed

3.4. Data Pre-Processing

A lot of information is generated for each interval curve, depending on sensor
frequency and duration. The mean value and the standard deviation for each parameter
were calculated to group these data. In addition, the attributes from Equation (1) were
standardized as follows:

xnew =
x− µ

σ
(1)

where
xnew New value of an instance after standardization
x Current value of the instance
µ Arithmetic mean of the parameter
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σ Standard deviation of the parameter

This way, the final dataset used in this work has the features listed in Table 3.

Table 3. Parameters of the dataset.

Accelerometer Gyroscope Magnetometer Localization Velocity

accX_mean gyroX_mean magX_mean lat_mean speed_mean
accX_std gyroX_std magX_std lat_std speed_std

accY_mean gyroY_mean magY_mean long_mean -
accY_std gyroY_std magY_std long_std -

accZ_mean gyroZ_mean magZ_mean - -
accZ_std gyroZ_std magZ_std - -

4. Results and Discussions

This section evaluates FedTM and compares it to centralized solutions. The goal is to
check how good FedTM is in the task of transport mode detection relative to other approaches.
This test comparison is handy since FL systems generally have lower performance than
a centralized system. Comparing FedTM with centralized models makes it possible to
evaluate the trade-off between accuracy and privacy. In addition to the classification
performance tests, the training time of FedTM will be measured and compared with a
centralized version of the FedTM Neural Network. This test aims to check the hypothesis
that the training time is lower than centralized methods due to the decentralization and
parallelization characteristics of FedTM.

The remainder of this section is organized as follows. Section 4.1 presents the setup
for the testing, including the dataset division, the model parameters and the computational
environment. Section 4.2 presents the results of the execution time and detection performance
tests. It also includes the analysis of FedTM performance compared with centralized approaches.
Furthermore, this subsection presents a statistical comparison of the centralized models and
FedTM using the Kolmogorov–Smirnov test to check the similarity of these classifiers.

4.1. Setup

The dataset used to train and validate FedTM has 132 samples after pre-processing.
This dataset was divided using the hold-out method, with 75% of the samples for training
and 25% for validation. The FedTM tested has three clients during the training process.
Since the training dataset is unbalanced, random oversampling techniques were employed
to balance the FedTM training data.

This Neural Network employed in FedTM has a hidden layer of 48 neurons with a relu
activation function and the output layer uses softmax as an activation function. The Adam
Optimizer was employed to optimize the accuracy of the model. The FedTM’s model’s first
parameters (those used to initialize the clients before the first round of training) are random
values defined by the Flower library as default. In order to assess the performance of the
FedTM, other centralized models were used for comparison. The centralized classifiers
comprise a Neural Network with the same parameters as FedTM and other traditional
ML classifiers already listed in the Introduction section. These traditional classifiers were
implemented with the aid of the scikit-learn https://scikit-learn.org/ (accessed on 29
November 2022) library and their configuration parameters are shown in Table 4.

The computational environment in which the tests were taken has the following
configuration. CPU: Intel(R) Core(TM) i3-4005U CPU@1.70 GHz. GPU: none. Memory
capacity: 8‘GB. Operating system: Linux version 5.4.0-107-generic (buildd@lcy02-amd64-058)
(gcc version 9.4.0 (Ubuntu 9.4.0-1ubuntu1 20.04.1)).

https://scikit-learn.org/
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Table 4. Parameters of the centralized models.

Parameter RF GMB SVM DT

N estimators 10 100 - -
Criterion Gini impurity - - Gini impurity

Min sample split 2 2 - 2
Max depth 5 3 - -

Max features
√

n - - 16
Learning rate - 1.0 - -

C - - 10 -
Kernel - - rbf -

Gamma - - 0.1 -
Splitter - - - Best

Min sample leaf - - - 1

4.2. Results

This subsection presents the evaluation results of FedTM and the centralized models
used for comparison purposes. First, transport mode detection performance will be
presented and analyzed. Then, the training time of FedTM will be compared to the training
time of a Neural Network with the same configuration. This way, it will be possible to
validate the hypothesis of FedTM being faster in the training phase. Finally, a statistical
comparison of the models’ equivalence using Kolmogorov–Smirnov will be presented.

4.2.1. Transport Mode Detection Performance

In order to verify the performance of the FedTM transport mode detection, the metrics
of accuracy, precision, recall, f1 and kappa scores were used. This evaluation was performed
ten times with the dataset shuffled. Table 5 shows the mean values of these metrics with a
95% confidence interval.

Table 5. Metrics of FedTM and centralized classifiers on transport mode detection.

Metric RF GMB SVM DT Neural Network FedTM

Accuracy 0.994 ± 0.008 0.970 ± 0.0 0.909 ± 0.0 0.93 ± 0.03 0.909 ± 0.021 0.806 ± 0.029
Precision car 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.967 ± 0.032 0.94 ± 0.03 0.898 ± 0.022
Precision bus 0.988 ± 0.0146 0.941 ± 0.0 0.842 ± 0.0 0.918 ± 0.039 0.915 ± 0.016 0.897 ± 0.032

Precision motorcycle 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.946 ± 0.076 0.874 ± 0.069 0.612 ± 0.057
Recall car 0.982 ± 0.023 0.909 ± 0.0 0.818 ± 0.0 0.827 ± 0.077 0.818 ± 0.0 0.727 ± 0.044

Recall motorcycle 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.981 ± 0.018 0.938 ± 0.042 0.788 ± 0.039
Recall bus 1.0 ± 0.0 1.0 ± 0.0 0.833 ± 0.0 0.983 ± 0.031 1.0 ± 0.0 1.0 ± 0.0

F1 score car 0.99 ± 0.012 0.952 ± 0.0 0.9 ± 0.0 0.888 ± 0.053 0.874 ± 0.013 0.802 ± 0.033
F1 score bus 0.994 ± 0.008 0.97 ± 0.0 0.914 ± 0.0 0.946 ± 0.021 0.925 ± 0.024 0.837 ± 0.028

F1 score motorcycle 1.0 ± 0.0 1.0 ± 0.0 0.909 ± 0.0 0.958 ± 0.048 0.929 ± 0.043 0.756 ± 0.042
Kappa 0.99 ± 0.012 0.951 ± 0.0 0.849 ± 0.0 0.887 ± 0.048 0.855 ± 0.031 0.701 ± 0.044

The metrics presented in Table 5 show that FedTM underperforms all centralized
approaches analyzed. That is expected behaviour since centralized training is more accurate
than FL once information is lost when different models are combined [29]. This way, FL
presents a trade-off in which its benefits of bigger data privacy and lower processing at the
server side come at the cost of a decrease in the model’s performance.

Some characteristics of the metrics presented in Table 5 are worth being noticed. First,
the bus is the transport mode with the worst metrics in traditional models (SVM, DT, GBM
and RF). When using Neural Networks, the motorcycle and the car are the worst indices.
According to the motorcycle precision, about 39% of samples classified as motorcycles are
not motorcycles (false positives). According to the car recall, only about 72% of cars are
classified correctly, despite the high precision in classifying cars (about 89%). This indicates
that the Neural Network used in the FedTM classifies many cars as motorcycles, hurting
the rates of both classes. The buses, in turn, perform well, with good recall and accuracy
metrics. Finally, the FedTM kappa metric, which measures how far the model is from a
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completely random model, is 15 percentage points below the centralized Neural Network,
demonstrating the performance loss due to decentralization.

Figure 5 shows the confusion matrices for each model analyzed. It shows that FedTM
and the other classifiers misclassify cars. Motorcycles are classified correctly, but some cars
and buses are classified as motorcycles. Overall, the matrices are very close because of the
small dataset used.

(a) FedTM (b) SVM (c) RF

(d) Centralized Neural Network (e) DT (f) GBM

Figure 5. Confusion matrices of the models.

4.2.2. Training Time Performance

In order to verify the hypothesis that the FedTM has a shorter training time than the
centralized Neural Network, a test was carried out in which the training time on the FedTM
server and clients and the centralized training time were measured. For this test, the FedTM
federated server was configured to have three clients and two training rounds, with each
client having a dataset of 33 samples. The centralized Neural Network has a dataset of
99 samples, representing the combination of data from the three customers. The results
obtained are shown in Figure 6.
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Figure 6. CPU usage time histogram for federated and centralized processes.

Note that the federated server had a shorter processing time than the centralized
one (see Figure 6) because the processing on the server is only the task of combining the
models coming from the clients. Clients, in turn, had a longer processing time than the
centralized server because the two training rounds were measured; the training took place
twice for each client. The FedTM feature of most processing in training being located on
the client-side allows the server administrator to spend fewer resources on data processing,
making the FedTM deployment cheaper. Furthermore, the fact that clients in the federated
model are executed repeatedly during the training rounds allows the number of epochs
of the FedTM Neural Network to be smaller than that of the centralized Neural Network
(see Figure 7). Note that the federated model (used in the FedTM) converges to an optimal
epoch value before the centralized model.

Figure 7. Accuracy per number of epochs for the centralized and federated Neural Network.
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A test was carried out with an increasing number of clients to complement the
time analysis conducted previously and check if the FedTM has faster training than the
centralized Neural Network in a scenario where the number of clients increases. For this,
the FedTM received an increasing number of clients, each with 99 training samples, while
the centralized model received the combination of these training samples. The processing
time results are shown in Figure 8. Note that the processing times of both the FedTM and
the centralized model grow linearly. However, the FedTM grows at a substantially slower
rate. For 30 clients, the most significant amount tested, FedTM clients, averaged about
1.82 s, while the centralized model spent about 10.3 s, demonstrating the drop in FedTM
training time due to system parallelism.

Figure 8. Training time for a growing number of clients.

4.2.3. Statistical Comparison of Models

This section will present the statistical comparison of the FedTM with the centralized
models. For this, the Kolmogorov–Smirnov test (KS test) will be used to compare the
similarity of the FedTM with the centralized models. KS is a non-parametric test that
measures the distance between two probability distributions. Knowing that each machine
learning model generates a distribution of the output data, what we want to verify with
the KS test how close each classifier’s generated probability distributions are. The choice to
apply the KS test is justified because it is not sensitive to the type of distribution; that is, we
can compare two models, even if they do not have a Gaussian distribution. In this test, the
null hypothesis, the test (H0) assumes that the models are the same. If the null hypothesis
is accepted, there is no difference between the analyzed models. The alternative hypothesis
(H1) assumes that the models are different. To accept the null hypothesis, the p-value of the
KS test must be greater than 0.05. Otherwise, the null hypothesis can be rejected, with the
ML models being different with a 95% confidence interval.

The results of the KS test are shown in Table 6. First, note that the FedTM is similar
to the centralized Neural Network and this is expected behaviour since the classifier’s
configuration is the same. FedTM is also similar to SVM and different from other classifiers.
Figure 9 shows the relationship between accuracy and the training sample number of
tested models. These curves confirm the results of model similarity given by the KS test.
The FedTM, the Neural Network and the SVM have similar accuracy curves. The other
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classifiers differ from FedTM mainly by converging to high levels of accuracy with fewer
training samples.

Table 6. Kolmogorov–Smirnov hypothesis test of the models.

Model 1 Model 2 p-Value H0

FedTM SVM 0.21 Accept
FedTM DT 6.55 × 10−4 Reject
FedTM RF 6.24 × 10−5 Reject
FedTM GBM 4.37 × 10−3 Reject
FedTM Neural Network 0.21 Accept

Figure 9. Classifiers’ accuracy according to the number of training samples.

Tree-based models (DT, RF and GBM) perform better with small and straightforward
datasets than more complex models, such as SVMs and NNs, that have similar lower results.
This result is a consequence of the small dataset used. This way, FedTM, centralized Neural
Network and SVM were considered similar at the KS test due its similar shape accuracy
curves with the dataset used.

5. Conclusions

This paper showed that it is possible to detect transport modes decentralized from
smartphone sensor data. Data about transport mode usage are essential in several research
areas, such as greenhouse gas emissions, forecasting demand for public transport, studying
user responses to increases in transport costs and urban planning. The FedTM system
presented in this article provides an automated and scalable method for obtaining such
data with a high hit rate.

FedTM was developed using artificial Neural Networks and FL. Due to the FL, the
FedTM differs from the approaches proposed in previous studies, given that decentralization
provided an increase in privacy, lower response time, reduction of computational costs and
less use of the mobile network by the user. In addition, the FedTM uses data collected only
during the curves of the route, reducing the total amount of data to be processed and the
energy expenditure by activating sensors during collection. Thus, the approach presented
in this paper is more suitable for practical use than others already present in the literature.

Given the objective of evaluating the FedTM’s performance in detecting transport
modes, the metrics of accuracy, precision, recall, f1 score and kappa were analyzed.
In addition to the FedTM itself, centralized methods (SVM, DT, RF, GBM and Neural
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Networks) were also tested. This way, it was possible to compare the performance of the
FedTM with that of a centralized approach. The FedTM achieved an average accuracy
of 80.6% in the tests and did not obtain any metric superior to the centralized methods
tested. Such behaviour is expected since the federated training process occurs at the cost
of a decrease in the hit rate. Still, FedTM is more easily scalable, so it can compensate
for its lower accuracy by employing a more significant number of clients in the training
phase. In addition to the metrics tests, a statistical analysis was performed using the
Kolmogorov–Smirnov test. This test showed that the FedTM learning curve is similar to
the SVM and the centralized neural network.

Two tests were carried out during the training phase to validate the performance at
runtime. FedTM was run with just three clients in the first test and its centralized equivalent
with a dataset equivalent to the three clients combined. The FedTM clients had a slightly
longer runtime than the centralized model. The FedTM server had a substantially shorter
runtime, demonstrating that server-side processing costs for FedTM are lower than for a
centralized approach. In turn, analyzing the FedTM’s gains in scale, a test was conducted
with an increasing number of clients. The FedTM had a lower rise in processing time than
the centralized model in this test. In the test case with 30 clients, the FedTM took about
1.82 s to perform the training, while the centralized model took 10.3 s. Thus, the FedTM
proved to be the best performer at runtime.

From the results and analyses presented in this work, it is possible to conclude that the
FedTM is a suitable system for detecting transport modes using smartphone sensor data.
Its decentralization characteristic differentiates it from other approaches already present in
the literature. Despite having lower accuracy than centralized models, the FedTM has more
significant data privacy and security guarantees. In addition, FedTM has gains in training
time and lower server-side computational cost, making it more easily scalable. These
characteristics are essential in a practical scenario, making the FedTM a good alternative.

As future work, we intend to analyze the relationship between the increase in accuracy
versus the increase in FedTM processing time. This is because the system architecture runs
on smartphones, which do not have processing capacity guarantees. Still, we intend to
propose a methodology to automate the activation of sensors for the collection of data only
in curves. Finally, we intend to extend our experiment setup to analyze the FedTM in more
detail, adding new metrics in the analyzed scenario.
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